Articles
The paper is devoted to the systemization of global trends in the industry of rare and rare-earth metals. The trends of the three types (technological, institutional and economic) were revealed and discussed.
The first section of the article contains description of the main technological trends directed to rationalization of mining, production and processing of rare and rare earth metals. The presented examples suggest advisability of automation implementation for mining operations as well as for extraction of rare and rare-earth metals from wastes and new, non-conventional sources.
The second section includes data on institutional trends directed to development of industry of rare and rare-earth metals. Some examples of such trends from USA, EC and Russia were presented. EC experience in the foundation of industry association and the corresponding government measures are of special interest.
The third section contains the main economic trends allowed to reveal the promising fields of demand for rare and rare-earth metals.
Based on the presented data, it was concluded that the revealed trends would have a significant influence on industry of rare and rare-earth metals (both worldwide and in the Russian Federation) on a long-term horizon.
2. Litiy: sverkhvozmozhnosti supermetalla [Lithium: supermechanical superopportunities] // Redkiye Zemli. Available at: http://rareearth.ru/ru/pub/20161026/02870.html (accessed: January 16, 2019).
3. New partnership announced for large-scale lithium-geothermal project in California. Available at: http://www.thinkgeoenergy.com/new-partnership-announced-for-large-scale-lithium-geothermal-project-in-california/ (accessed: April 15, 2019).
4. Minpromtorg provel soveshchaniye po razvitiyu litiyevoy otrasli v Rossii // Redkiye Zemli. Available at: http://rareearth.ru/ru/pub/20180914/04086.html (accessed: December 18, 2018).
5. Minprirody Rossii razrabotalo mekhanizmy po sovershenstvovaniyu dobychi poputnykh poleznykh iskopayemykh i poputnykh komponentov. Available at: http://www.mnr.gov.ru/press/news/ minprirody_rossii_razrabotalo_mekhanizmy_po_sovershenstvovaniyu_dobychi_poputnykh_
poleznykh_iskopaem/ (accessed: April 15, 2019).
6. Mudring A. Ionic liquids open door to better rare-earth materials processing. Available at: https://www.ameslab.gov/news/news-releases/ionic-liquids-open-door-better-rare-earth-materials-processing (accessed: March 04, 2019).
7. Dupont D., Binnemans K. Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3: Eu3+ from lamp phosphor waste // Green Chemistry. 2015. Vol. 17. No. 2. P. 856–868.
8. Method for direct separation of rare earth metals in uranium dioxide or spent fuel: pat. CN108538417A; appl. 03.04.18; publ. 14.09.18.
9. Bagri P., Luo H., Dehaudt J. et al. Electrodeposition of neodymium using room temperature ionic liquids // 256th ACS National Meeting & Exposition (Boston, August 19–23, 2018). 2018. INOR-98.
10. Matsumiya M. Purification of Rare Earth Amide Salts by Hydrometallurgy and Electrodeposition of Rare Earth Metals Using Ionic Liquids // Progress and Developments in Ionic Liquids. DOI: 10.5772/66300. Available at: https://www.intechopen.com/books/progress-and-developments-in-ionic-liquids/purification-of-rare-earth-amide-salts-by-hydrometallurgy-and-electrodeposition-of-rare-earth-metals (accessed: March 04, 2019).
11. Chen L., Chen J., Li H. et al. Applying basic research on a dialkylphosphoric acid based task-specific ionic liquid for the solvent extraction and membrane separation of yttrium // Separation and Purification Technology. 2018. Vol. 207. P. 179–186.
12. Separation of rate earth metals: International application WO2018109483A1; publ. 21.06.18.
13. «VNIIKhT» razrabotal tekhnologiyu izvlecheniya redkozemelnykh metallov s pomoshchyu mikrovolnovogo izlucheniya [VNIIHT has developed a technology for extracting rare earth metals using microwave radiation] // Redkiye Zemli. Available at: http://rareearth.ru/ru/news/20180601/03957.html (accessed: March 04, 2019).
14. «Dalur» vypustit pervuyu promyshlennuyu partiyu oksida skandiya v iyune 2017 goda [«Dalur» will release the first industrial batch of scandium oxide in June 2017] // Redkiye Zemli. Available at: http://rareearth.ru/ru/news/20170425/03131.html (accessed: February 15, 2019).
15. Rosatom dobyl pervuyu partiyu skandiya [Rosatom extracted the first batch of scandium] // Redkiye Zemli. Available at: http://rareearth.ru/ru/news/ 20170713/03295.html (accessed: December 18, 2019).
16. Mine of the Future // RioTinto. Available at: http://www.riotinto.com/ australia/pilbara/mine-of-the-future-9603.aspx (accessed: December 15, 2019).
17. Raynesh E. Robot za rulem. «Intellektualnye karery», «umnyye mashiny» i bezopasnoe budushchee [Robot behind the wheel. «Intellectual careers», «smart machines» and a safe future] // Ugol Kuzbassa. 2017. №3. Available at: http://www.uk42.ru /index.php?id=5292 (accessed: March 15, 2019).
18. Klebanov D.A., Makeyev M.A. Robotizirovannyye tekhnologii dobychi poleznykh iskopayemykh rozhdayutsya v nedrakh innovatsionnogo tsentra Skolkovo [Robotic technologies of mining are born in the depths of the innovation center Skolkovo] // Gornaya promyshlennost. 2012. №4. S. 132. Available at: https://mining-media.ru/ru/article/anonsy/2826-robotizirovannye-tekhnologii-dobychi-poleznykh-iskopaemykh-rozhdayutsya-v-nedrakh-innovatsionnogo-tsenta-skolkovo (accessed: November 15, 2018).
19. Intellektualnyy karer – eto proyekt polnost'yu robotizirovannogo, bezlyudnogo gornogo predpriyatiya [Intellectual quarry is a project of a fully robotized, uninhabited mining enterprise] // Vist Grupp. Available at: http://vistgroup.ru/media/news/nid/intellectual-careers-project/ (accessed: November 15, 2018).
20. Kabirov V.R., Reyshakhrit E.I. Effektivnost kompleksnogo podkhoda k razrabotke mestorozhdeniy metallicheskikh rud v gruppakh [The effectiveness of an integrated approach to the development of metal ore deposits in groups] // Zapiski Gornogo instituta. 2014. T. 208. S. 23–26.
21. A Federal Strategy To Ensure Secure and Reliable Supplies of Critical Minerals / Executive Office of the President. Executive order 13817 of December 26, 2017.
22. Kofner Yu.K. Konsolidatsiya redkozemelnoy industrii v Evropeyskom soyuze: rekomendatsii dlya Evraziyskogo ekonomicheskogo soyuza [Consolidation of the rare-earth industry in the European Union: recommendations for the Eurasian Economic Union] // Mezhdunar. konf. «Redkozemelnye metally 2019» (Moskva, 28 marta 2019 g.). Available at: http://eurasian-studies.org/archives/11704 (accessed: April 17, 2019).
23. Doriomedov M.S., Sevastyanov D.V., Skripachev S.Yu., Daskovskiy M.I. Normativnaya dokumentatsiya v oblasti redkozemelnykh metallov [Reference documentation in the field of rare earth elements] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №5 (65). St. 03. Available at: http://www.viam-works.ru (accessed: April 01, 2019). DOI: 10.18577/2307-6046-2018-0-5-18-23.
24. The rise of electric cars could leave us with a big battery waste problem. Available at: https://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling (accessed: November 15, 2018).
25. Analitiki predpolagayut izbytok predlozheniya litiya na rynke k 2022 godu [Analysts suggest an excess supply of lithium on the market by 2022] // Redkiye Zemli. Available at: http://rareearth.ru/ru/news/20170428 /03143.html (accessed: September 25, 2018).
26. Shein E.A., Doriomedov M.S., Daskovskiy M.I. Sovremennyye materialy dlya raboty v usloviyakh arkticheskogo klimata [Advanced materials for arctic application] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №1 (19). St. 07. Available at: http://materialsnews.ru/ru/articles (accessed: April 01, 2019).
27. Buznik V.M., Kablov E.N. Sostoyaniye i perspektivy arkticheskogo materialovedeniya [State and prospects of the Arctic material science] // Vestnik Rossiyskoy akademii nauk. 2017. T. 87. №9. S. 827–839.
28. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
29. Gasanov A.A., Naumov A.V., Yurasova O.V. i dr. Nekotoryye tendentsii mirovogo rynka RZM i perspektivy Rossii [Some trends in the world market of rare-earth metals and the prospects for Russia] // Izvestiya vuzov. Tsvetnaya metallurgiya. 2018. №4. S. 31–44. DOI: 10.17073/0021-3438-2018-4-31-44.
30. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 20, 2015).
The present article is devoted to consideration of questions of combination of thermoflexible polyurethane of brand Vitur-TM on the basis of simple polyether with In/6 fluoroelastomers SKF-32 and SKF-264.
Fluoroelastomers represent independent class of fluoropolymers of special purpose. On chemical and physics and technology properties they considerably exceed hydrocarbonic and natural rubbers and are irreplaceable material for manufacturing of the rubber products functioning in contact with fuels, oils, acids and other hostile environment at high temperatures. Introduction of fluoroelastomers in compounding of thermoflexible material allows not only to increase the working temperature of polyurethane, but also to provide the increased firmness of fuels and lubricants.
Ways of combination of thermoflexible polyurethane of brand Vitur-TM with fluoroelastomers of the specified brands one – and two-phasic ekstruziya are investigated; with use of vulkanizuyushchy agents for fluoroelastomers and without them; with different options of introduction of components.
The optimum way of combination of components - two-phasic ekstrudirovaniye of mix of initial components (composition on the basis of SKF-264B/6 rubber and diolny vulkanizuyushchy system) when there is the most complete combination of components at maximum level of physicomechanical properties of the received material is defined. It is established that blend thermoelastoplastic (STEP) made by the way of ekstruziya from previously mixed in the bunker of ekstruder of polyurethane and fluoroelastomer possesses increased resistance to TS-1 fuel and MS-8p oil in comparison with initial polyurethane Vitur TM.
The received results will allow:
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
4. Sadova A.N., Kuznetsova O.N., Arkhireyev V.P. i dr. Printsipy upravleniya kachestvom polimernoy produktsii [Principles of quality management of polymer products]. M.: KolosS, 2009. 319 s.
5. Krasnov K.V., Chalaya N.M., Osipchik V.S. Nekotoryye aspekty modifitsirovaniya kompozitsionnykh materialov na osnove termoelastoplastov organoglinami [Some aspects of modifying composite materials based on thermoplastic elastomers with organoclays] // Uspekhi khimii. 2011. T. 25. №3. S. 76–80.
6. Petrova G.N., Beyder E.Ya., Starostina I.V. Lityevye termoplasty dlya izdeliy aviatsionnoy tekhniki [Molded thermoplastics for aviation equipment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №6. S. 10–15.
7. Mikhaylin Yu.A. Termoustoychivyye polimery i polimernyye materialy na ikh osnove [Heat-resistant polymers and polymeric materials based on them]. SPb.: Professiya, 2006. 346 s.
8. Sorokin A.E., Afonicheva O.V., Krasnov A.P. i dr. Vliyaniye molekulyarnoy massy i metodov pererabotki na svoystva poliarilata DV [Influence of molecular weight and processing methods on the properties of DV polyarylate] // Sb. tez. IX simpoziuma «Sovremennaya khimicheskaya fizika». Tuapse, 2011. S. 156–157.
9. Petrova G.N., Starostina I.V., Rumyanceva T.V., Sapego Yu.A. Effektivnost povysheniya kachestva izdelij iz polikarbonata termoobrabotkoj [Efficiency of improvement of quality of products from polycarbonate heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 06. Available at: http://www.viam-works.ru (accessed: March 28, 2019). DOI: 10.18577/2307-6046-2017-0-9-6-6.
10. Kirin B.S., Mishkin S.I., Tikhonov N.N., Osipchik V.S. Razrabotka materialov na osnove polimolochnoy kisloty s uluchshennymi tekhnologicheskimi svoystvami [Development of materials based on polylactic acid with improved technological properties] // Plasticheskiye massy. 2013. №9. S. 61–64.
11. Kirin B.S., Tikhonov N.N., Egorov V.N. Issledovaniya osobennostey modifikatsii polivinilkhlorida produktami malleinizatsii polibutadiyena [Studies of the features of modification of polyvinyl chloride by products of maleinization of polybutadiene] // Plasticheskiye massy. 2010. №10. S. 24–28.
12. Sorokin A.E., Petrova G.N., Beyder E.Ya., Perfilova D.N. Sloistyye ugleplastiki na termoplastichnoy matritse novogo pokoleniya [Layered carbon plastic on a thermoplastic matrix of a new generation] // Vse materialy. Entsiklopedicheskiy spravochnik. 2017. №9. S. 10–17.
13. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: April 11, 2019).
14. Lazareva T.K., Yermakin S.N., Kostyagina V.A. Problemy sozdaniya kompozitsionnykh materialov na osnove konstruktsionnykh termoplastov [Problems of creating composite materials based on structural thermoplastics] // Uspekhi v khimii khimicheskoy tekhnologii. 2010. T. 24. №4. S. 58–63.
15. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
16. Abrosimov A.P. Yevropeyskiy rynok termoplastichnykh elastomerov i sovremennyye tendentsii [The European market of thermoplastic elastomers and current trends] // Promyshlennoye proizvodstvo i ispolzovaniye elastomerov. 2010. №3. S. 29–34.
17. Volfson S.I. Dinamicheski vulkanizovannyye termoelastoplasty [Dynamically cured thermoplastic elastomers]. M.: Nauka, 2004. S. 5–12.
18. Kholden D., Krikheldorf Kh.R., Kuirk R.P. Termoelastoplasty. Per. s angl. [Thermoplastic elastomers. Line from Engl.] SPb.: Professiya, 2011. S. 39.
19. Petrova G.N., Perfilova D.N., Gryaznov V.I., Bejder E.Ya. Termoplastichnye elastomery dlya zameny rezin [Thermoflexible elastomer for replacement of rubbers] // Aviacionnye materialy i tehnologii. 2012. №S. S. 302–308.
20. Novokshonov V.V., Musin I.N., Kimelblat V.I. Optimizatsiya svoystv maslostoykikh termoplastichnykh elastomernykh kompozitsiy [Optimization of the properties of oil-resistant thermoplastic elastomer compositions] // Plasticheskiye massy. 2009. №3. S. 24–27.
21. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: April 11, 2019).
22. Chaykun A.M., Naumov I.S., Petrova A.P. O vozmozhnosti ispolzovaniya rezin v Arkticheskikh usloviyakh [On the possibility of using rubber in the Arctic conditions] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №5. S. 13–22.
23. Chajkun A.M., Venediktova M.A., Eliseev O.A., Naumov I.S. Issledovanie izmeneniya svojstv serijnyh rezin na osnove razlichnyh kauchukov v standartizovannyh rabochih zhidkostyah [Investigation of properties changing of serial rubber compounds on the base of different rubbers in standardized working fluids] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 35–41. DOI: 10.18577/2071-9140-2014-0-s3-35-41.
24. Buznik V.M., Yurkov G.Yu. Primeneniye ftorpolimernykh materialov v tribologii: sostoyaniye i perspektivy [The use of fluoropolymer materials in tribology: the state and prospects] // Voprosy materialovedeniya. 2012. №4 (72). S. 133–148.
25. Nudelman Z.N. Ftorkauchuki. Osnovy. Pererabotka. Primeneniye [The basics. Recycling. Application.]. M.: Reklama-Master, 2006. 384 s.
26. Nudelman Z.N. Sovmeshcheniye ftorkauchukov s drugimi polimerami [Combination of fluororubber with other polymers] // Kauchuk i rezina. 2006. №4. S. 27–37.
27. Methods of improving extrusion properties in an extrudate: pat. US 7008587; filed 10.08.04; publ. 07.03.06.
28. Materials with high benzo-, warm, wear resistance for electric cable covering: pat. 5258616; filed 13.03.92; publ. 08.10.93.
29. Composition based polyvinylenedifluoride: pat. JP 2765792; filed 09.02.93; publ. 18.06.98.
30. Kharitonov A.P. Pryamoye ftorirovaniye polimernykh izdeliy – ot fundamentalnykh issledovaniy k prakticheskomu ispolzovaniyu [Direct fluoridation of polymer products – from basic research to practical use] // Izvestiya Akademii nauk. Ser.: Energetika. 2008. №2. S. 149–159.
31. Kablov E.N. Dominanta natsionalnoy tekhnologicheskoy initsiativy. Problemy uskoreniya razvitiya additivnykh tekhnologiy v Rossii [Dominant of the national technology initiative. Problems of accelerating the development of additive technologies in Russia] // Metally Evrazii. 2017. №3. S. 2–6.
32. Tager A.A., Blinov V.S. Termodinamicheskaya sovmestimost polimerov [Thermodynamic compatibility of polymers] // Uspekhi khimii. 1987. T. 56. №6. S. 1004–1023.
33. Zhen G., Xingyuan Z., Jiabing D. et al. Synthesis characterization and properties of a novel fluorinated polyurethane // European Polymer Journal. 2009. Vol. 45. No. 2. P. 530–536.
34. Sposob polucheniya TEP dlya izgotovleniya konstruktsionnykh detaley s povyshennymi benzo- i maslostoykost'yu i termostoykostyu: pat. 20455543 Ros. Federatsiya [The method of obtaining TEC for the manufacture of structural parts with increased benzo- and oil resistance and heat resistance: pat. 20455543 Rus. Federation]; zayavl. 11.01.93; publ. 10.10.95.
35. Method of preparing thermoelastoplastics: pat. US 2006/0293457; filed 27.06.05; publ. 28.12.06.
Polymer composite materials are gradually replacing metals in the civil and military aviation industry, while providing not only a general reduction in mass, but also increasing the strength characteristics of the aircraft. To date, the proportion of polymeric composite materials in the design of the aircraft can reach 50% by weight and much of it is concentrated in the interior decoration materials, such as: panels of walls, floors, ceilings, partitions, chairs and much more. Three-layer honeycomb panels (TLHP) are widely used to create interior and floor panels for aircraft, thanks to its lightness, high specific strength, rigidity and processability. The main requirements for binders in the prepreg for TLHP are: fast curing cycle, sufficient adhesive strength to the honeycomb core, moderate physicomechanical and thermal characteristics of the cured matrix, low cost. A separate line is the requirements for fire safety cellular interior panels, which are spelled out in the Aviation Rules AP-25 (analogue FAR-25).
The main types of binders for creating interior panels are phenol-formaldehyde and epoxy. In the domestic aviation industry, until recently, binders developed at FSUE “VIAM”, such as EP-2MK, 5-211BN, FPR-520, etc., were used for TLHP.
The world leaders in the production of binders and prepregs for the interior of aviation equipment are the companies Gurit, Huntsman, Henkel, Cytec, TenCate, Hexion, Gill, which are currently pushing domestic interior materials from the market.
Despite the cheapness of phenol-formaldehyde binders and high fireproof characteristics of plastics, honeycomb panels based on them meet the strength requirements only for the production of interior elements from them. For the production of floor panels in domestic and foreign practice using epoxy binders that provide the required str
2. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
6. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Otsenka tekhnologichnosti ispolzovaniya kleyev i kleyevykh prepregov pri izgotovlenii trekhsloynykh paneley [Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels] // Aviacionnye materialy i tehnologii. 2018. №4 (53). S. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
7. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
8. Veshkin E.A., Postnov V.I., Zastrogina O.B., Satdinov R.A. Tekhnologiya uskorennogo formovaniya trekhsloynykh sotovykh paneley interera samoleta [Accelerated molding technology of three-layer honeycomb interior panels of an aircraft] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2013. T. 15. №4. S. 799–805.
9. Kondrashov E.K., Postnov V.I., Petukhov V.I., Kavun N.S., Abramov P.A., Yudin A.A., Barbotko S.L. Issledovaniye svoystv trekhsloynykh paneley na modifitsirovannom svyazuyushchem FPR-520G [Research of properties technological panels on the modified binding FPR-520G] // Aviatsionnye materialy i tehnologii. 2009. №3. S. 19–23.
10. Zastrogina O.B., Shvets N.I., Serkova E.A., Veshkin E.A. Pozharobezopasnyye materialy na osnove fenolformaldegidnykh svyazuyushchikh [Fireproof materials based on phenol-formaldehyde binders] // Klei. Germetiki. Tekhnologii. 2017. №7. S. 22–27.
11. Serkova E.A., Shvets N.I., Zastrogina O.B., Postnov V.I., Barbotko S.L., Veshkin E.A. Bystrootverzhdayemoye fenolformaldegidnoye svyazuyushcheye, pererabatyvayemoye po «crush core» tekhnologii, dlya pozharobezopasnykh materialov interera [Fast-curing phenol-formaldehyde binder, processed by «crush core» technology, for fireproof interior materials] // Tezisy dokladov XIX konferentsii «Konstruktsii i tekhnologii polucheniya izdeliy iz nemetallicheskikh materialov». Obninsk. 2010. S. 70–71.
12. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. K voprosu proizvodstva paneley pola iz PKM dlya letatelnykh apparatov (obzornaya statya) [On the production of floor panels from PCM for aircraft (review article)] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2017. T. 19. №4 (2). S. 198–212.
13. Dushin M.I., Ermolayev A.M., Katyrev I.YA., Neydonov P.N. Ugleplastiki v panelyakh pola trekhsloynoy konstruktsii [Carbon plastics in floor panels of a three-layer construction] // Aviatsionnaya promyshlennost. 1978. №6. S. 8–12.
14. Dveyrin A.Z., Mayorova E.V. Analiz effektivnosti vnedreniya integralnykh konstruktsiy s trubchatymi elementami iz polimernykh kompozitsionnykh materialov [Analysis of the effectiveness of the introduction of integrated structures with tubular elements made of polymer composite materials] // Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov. 2011. №4. S. 65–77.
15. Dementyeva L.A., Tyumeneva T.Yu., Sharova I.A. Klei s ponizhennoy goryuchestyu dlya aviatsionnoy tekhniki [Adhesives with low flammability for aviation technology] // Nauchnyye publikatsii sotrudnikov VIAM. Available at: https://viam.ru/public/files/2011/2011-205777.pdf (accessed: April 29, 2019).
16. Sostav i sposob izgotovleniya svyazuyushchego, preprega i sotovoy paneli: pat. 2460745. Ros. Federatsiya [The composition and method of manufacturing a binder, prepreg and honeycomb: pat. 2460745. Rus. Federation]; zayavl. 29.12.10; opubl. 10.09.12.
7. Termoplavkoye svyazuyushcheye, sposob polucheniya yego, prepreg i sotovaya panel, vypolnennyye na yego osnove: pat. 2486217. Ros. Federatsiya [A hot-melt binder, a method for its preparation, a prepreg and a honeycomb panel based on it: pat. 2486217. Rus. Federation]; zayavl. 21.12.11; opubl. 27.06.13.
18. Shokin G.I., Shershak P.V., Andryunina M.A. Opyt razrabotki i osvoyeniya proizvodstva sotovykh paneley pola iz otechestvennykh materialov [Experience in the development and development of the production of honeycomb floor panels from domestic materials] // Aviatsionnaya promyshlennost. 2017. №1. S. 32–40.
19. Prepreg na osnove kleyevogo svyazuyushchego ponizhennoy goryuchesti i stekloplastik, ugleplastik na yego osnove: pat. 2676634. Ros. Federatsiya [The prepreg based on adhesive bonding low flammability and fiberglass, carbon fiber based on it: pat. 2676634. Rus. Federation]; zayavl. 19.04.18; opubl. 09.01.19.
20. Resins curable into fire-retardant and heat-resistant plastic materials, and method for their preparation: pat. EP 0356379A1; publ. 28.02.90.
21. Aerospace Qualified Prepreg Materials // Gurit. Available at: https://www.gurit.com/Our-Business/Composite-Materials/Prepregs/Aerospace (accessed: April 29, 2019).
22. Advanced materials for aircraft interiors // Compositesworld. Available at: https://www.compositesworld.com/articles/advanced-materials-for-aircraft-interiors (accessed: April: 26, 2019).
23. Rimdusit S., Jubsilp C., Tiptipakorn S. Alloys and Composites of Polybenzoxazines: Properties and Applications. Springer Science & Business Media, 2013. 164 p.
24. Aircraft floor and interior panels using edge coated honeycomb: pat. US 7988809B2; publ. 02.08.11.
25. CYCOM 6826 | Cytec, CYCOM 6826, Phenolic Resin | Aircraft products | Cytec | 48862 JACO Aerospace Products. Available at: https://www.e-aircraftsupply.com/products/ Cytec/48862/CYCOM-6826 (accessed: April 26, 2019).
26. Epoxy foil resins // 5M S.R.O. Company. Available at: https://www.5m.cz/en/products/epoxidove-pryskyrice/epoxy-foil-resins (accessed: May 05, 2019).
27. Krípal L. Mechanical testing of composite specimens made by RFI technology // Aviation. 2007. Vol. 11. P. 6–14.
28. Floor panels // The Gill Corporation. Available at: https://www.thegillcorp.com/home.php?cPath=38_23 (accessed: May 05, 2019).
Existing polyurethane materials are quite actively affected by micromycetes and bacteria. Modification of the formulations of these materials with modern biocidal additives will add them resistance to the effects of microbiological factors, thereby ensuring the durability of products and construction, as well as the preservation of functional properties during the period of exploitation.
To combat microbiological damage to polymers, different antimicrobial organic and inorganic additives are used. Among bactericidal and fungicidal preparations, polymeric guanidine derivatives are interesting due to wide spectrum of action. “Anavidin” is the one of the most perspective biocidal preparation from the class of polyalkyleneguanidine. A feature of the new preparations based on polyhexamethylene guanidium salts is that their antibacterial activity varies little under the influence of the external environment. The great potential of polyguanidines is associated with the relatively high reactivity of guanidine groups. While low molecular weight compounds lose their biocidal properties during any chemical transformation, the biocidal properties of polyguanidines are preserved in many chemical reactions, due to guanidine groups are combined into a common polymer chain, and only some of them are involved in a chemical reaction; at the same time, unchanged groups retain biocidal properties of the new compound. Aqueous solutions of salts of polyhexamethylene guanidine can also stabilizating matrices of silver nanoparticles. Silver nanoparticles are the most common biocide among inorganic materials. A promising research is the possibility of using combined biocidal additives, including organic and inorganic components, to add polyurethane foams and elastomers increased resistance to microbiological factors.
2. Kablov E.N., Erofeev V.T., Svetlov D.A., Smirnov V.F., Bogatov A.D. Biopovrezhdeniya v kosmicheskikh apparatakh [Biological damages in spacecraft] // Sb. Mezhdunar. nauch.-tekhnich. konf. «Kompozitsionnyye stroitelnye materialy. Teoriya i praktika». M.: Penza, 2015. S. 40–46.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Buharev G.M. Ispytaniya na mikrobiologicheskuyu stojkost v naturnyh usloviyah razlichnyh klimaticheskih zon [Microbiological resistance tests under nature conditions in variety of climatiс zones] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 11. Available at: http://www.viam-works.ru (accessed: May 18, 2019). DOI: 10.18577/2307-6046-2016-0-4-11-11.
5. Sakhno O.N., Selivanov O.G., Chukhlanov V.Yu. Biologicheskaya ustoychivost' polimernykh materialov [Biological stability of polymeric materials]. Vladimir: Vladim. gos. un-t. im. A.G. i N.G. Stoletovykh, 2014. 64 s.
6. Klempner D., Sendidzharevich V. Polimernyye peny i tekhnologiya vspenivaniya. Per. s angl. [Polymer foams and foaming technology. Line from Engl.]. SPb.: Professiya, 2009. 600 s.
7. Pekhtasheva E.L., Neverov A.N., Zaikov G.E., Stoyanov O.V., Rusanova S.N. Biopovrezhdeniya i zashchita sinteticheskikh polimernykh materialov [Biological damages and protection of synthetic polymeric materials] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. T. 15. №10. S. 166–173.
8. Krivushina A.A., Goryashnik Yu.S. Sposoby zashchity materialov i izdeliy ot mikrobiologicheskogo porazheniya (obzor) [Ways of protection of materials and products from microbiological damage (review)] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
9. Vointseva I.I., Gembitskiy P.A. Poliguanidiny – dezinfektsionnyye sredstva i polifunktsionalnye dobavki v kompozitsionnyye materialy [Polyguanidines – disinfectants and polyfunctional additives in composite materials]. M.: LKSM-press, 2009. 303 s.
10. Priyemoperedayushchee ustroystvo: pat. 2144024 Ros. Federatsiya [Transceiver device: pat. 2144024 Rus. Federation]; zayavl. 28.10.98; opubl. 10.01.00.
11. Priyemoperedayushcheye ustroystvo: pat. 2167167 Ros. Federatsiya [Transceiver device: pat. 2167167 Rus. Federation]; zayavl. 18.01.00; opubl. 20.05.01.
12. Priyemoperedayushchee ustroystvo: pat. 2136155 Ros. Federatsiya [Transceiver device: pat. 2136155 Rus. Federation]; zayavl. 21.05.98; opubl. 10.09.99.
13. Shelupayev A.P., Stankevich V.K., Lopyrev V.A., Kukharev B.F. Anavidin – universalnyy antiseptik novogo pokoleniya [Anavidin – a universal antiseptic of a new generation] // Nauka – proizvodstvu. 2003. №5. S. 20–22.
14. Ozerov M.Yu., Karkishchenko V.N., Popov D.V. i dr. Sredstva dlya obezzarazhivaniya ob"yektov, kontaminirovannykh sporami B. Anthracis [Means for disinfecting objects contaminated with B. Anthracis spores] // Biomeditsina. 2009. №1. S. 28–37. 15. Grigor'yev E.G., Kogan A.S. Khirurgiya tyazhelykh gnoynykh protsessov. Novosibirsk: Nauka, 2000. S. 298–313.
16. Gospitalnaya infektsiya v mnogoprofil'noy khirurgicheskoy klinike [Hospital infection in a multidisciplinary surgical clinic]. Novosibirsk: Nauka, 2003. S. 125–176.
17. Priyemoperedayushcheye ustroystvo: pat. 2141398 Ros. Federatsiya [Transceiver device: pat. 2141398 Rus. Federation]; zayavl. 21.05.98; opubl. 20.11.99.
18. Dobysh V.A., Koktysh N.V., Belyasova N.A., Korney V.V., Tarasevich V.A. Issledovaniye struktury i svoystv troynogo polimer-metallicheskogo kompleksa khitozan-Cu(II)-poligeksametilenguanidin [Tarasevich V.A. Study of the structure and properties of the ternary polymer-metal complex chitosan-Cu(II)-polyhexamethyleneguanidine] // Izvestiya vuzov. Ser.: Prikladnaya khimiya i biotekhnologiya. 2017. T. 7. №1. S. 31–38.
19. Bespalov A.V., Strelkov V.D., Dumenko M.S. Formirovaniye nanorazmernykh chastits serebra v vodnykh rastvorakh poligeksametilenguanidin gidrokhlorida [The formation of nanoscale particles of silver in aqueous solutions of polyhexamethylene guanidine hydrochloride] // V Konf. «Organicheskiye i gibridnyye nanomaterialy s elementami nauchnoy shkoly dlya molodezhi». Ivanovo, 2015. S. 87–89.
20. Dallas P., Sharma V.K., Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives // Advances in Colloid and Interface Science. 2011. Vol. 166. P. 119–135.
21. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials // Biotechnology Advances. 2009. Vol. 27. P. 76–83.
22. Rizzello L., Cingolani R., Pompa P.P. Nanotechnology tools for antibacterial materials // Nanomedicine. 2013. Vol. 8 (5). P. 807–821.
23. Duran N., Duran M., de Jesus M.B. et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity // Nanomedicine: Nanotechnology, Biology, and Medicine 2016. Vol. 12. P. 789–799.
24. Picca R.A., Paladini F., Sportelli M.C. et al. Combined Approach for the Development of Efficient and Safe Nanoantimicrobials: The Case of Nanosilver-Modified Polyurethane Foams // ACS Biomaterials Science & Engineering. 2017. Vol. 3 (7). P. 1417–1425.
25. Liu H.-L., Dai S.A., Fu K.-Y., Hsu S.-H. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane // International Journal of Nanomedicine. 2010. Vol. 5. P. 1017–1028.
26. Jain P., Pradeep T. Potential of Silver Nanoparticle-Coated Polyurethane Foam As an Antibacterial Water Filter // Biotechnol Bioeng. 2005. Vol. 90 (1). P. 59–63.
27. Ning Cui, Haoyu Xu, Shijie Yao et al. Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils // Environmental Science and Pollution Research. 2018. Vol. 25. P. 25468–25475.
28. Mal’tseva E.V., Yudina N.V., Chaikovskaya O.N., Nechaev L.V. Association Constants of Modified Humic Acids with Biocides of the Triazole Series: Cyproconazole and Tebuconazole // Russian Journal of Physical Chemistry A. 2011. Vol. 85. No. 9. P. 1558–1561.
29. Domenech B., Ziegler K., Vigueґs N. et. al. Polyurethane foams doped with stable silver nanoparticles as bactericidal and catalytic materials for the effective treatment of water // New Journal of Chemistry. 2016. Vol. 40. P. 3716–3725.
30. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
31. The e-Pesticide Manual: a world compendium. Tebuconazole. 13th ed. / ed. C.D.S. Tomlin. UK: British Crop Protection Council, 2003 (CD-R).
This article addresses the problem of creating ceramic materials for the manufacture of ceramic and hybrid bearings of aircraft gas turbine engines (GTE). A comparative characteristic of steel and ceramic bearing materials based on silicon nitride, silicon carbide, aluminum oxide, and zirconium oxide is given.
The use of silicon nitride based ceramics is proposed as a promising material. Silicon nitride ceramic materials are characterized by high mechanical characteristics, are resistant to aggressive media and high temperatures, as well as wear resistance and low friction coefficient.
The structure of α- and β-modifications of silicon nitride is considered, as well as the α→β phase transition occurring during the liquid-phase sintering of silicon nitride powders.
The methods of obtaining silicon nitride powders are briefly affected: an economically viable process of self-propagating high-temperature synthesis (SHS) and a plasma-chemical method, which makes it possible to obtain ultrafine powders.
The problem of obtaining highly sintered materials based on silicon nitride is highlighted due to the covalent nature of Si3N4 bonds. It is shown that the introduction of oxide or nitride sintering additives that form a liquid phase during sintering, as well as the use of methods of sintering under pressure (hot pressing, hot isostatic pressing) allows to solve this problem.
Methods for the manufacture of ceramic nitride silicon materials, their advantages and disadvantages, as well as the characteristics of materials obtained using these methods are considered.
The data on the creation of nitride silicon ceramics with dry lubricants are given, which make it possible to reduc
2. Kablov E.N., Grashchenkov D.V., Shchegoleva N.E., Orlova L.A., Suzdaltsev E.I. Radioprozrachnaya steklokeramika na osnove strontsiyalyumosilikatnogo stekla [Radiotransparent glass ceramics based on strontium-aluminosilicate glass] // Ogneupory i tekhnicheskaya keramika. 2016. №6. S. 31–38.
3. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Grashchenkov D.V., Solntsev S.St., Ermakova G.V, Prokopchenko G.M., Kablov E.N., Kuznetsov N.T. Polucheniye nitevidnykh kristallov karbida kremniya s primeneniyem zol-gel metoda v obeme SiC-keramiki [Preparation of whiskers of silicon carbide using the sol-gel method in the bulk of SiC ceramics] // Kompozity i nanostruktury. 2014. T. 6. №4. S. 198–211.
4. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Issledovaniye okislitelnoy stoykosti vysokotemperaturnogo pokrytiya na SiC-materiale pod vozdeystviyem vysokoental'piynogo potoka [Investigation of the oxidative resistance of a high-temperature coating on a SiC material under the influence of a high-enthalpy flow] // Teplofizika vysokikh temperatur. 2017. T. 55. №6. S. 704–711.
5. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Keramicheskiye materialy v aviatsionnom dvigatelestroyenii (obzor) [Ceramic materials in aviation engineering (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 06. Available at: http://www.viam-works.ru (accessed: March 10, 2019). DOI: 10.18577/2307-6046-2018-0-12-54-61.
6. Inozemtsev A.A., Sandratskiy V.L. Gazoturbinnyye dvigateli [Gas turbine engines]. Per: Aviadvigatel, 2006. S. 278–280.
7. Gromov V.I., Kurpyakova N.A., Korobova E.N., Sedov O.V. Novaya teplostoykaya stal dlya aviatsionnykh podshipnikov [New heat resistant steel for aircraft bearings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №2 (74). St. 02. Available at: http://www.viam-works.ru (accessed: March 10, 2019). DOI: 10.18577/2307-6046-2019-0-2-17-23.
8. Kulagina G.S., Zhelezina G.F., Levakova N.M. Antifriktsionnyye organoplastiki dlya vysokonagruzhennykh uzlov treniya [Antifriction organoplastics for high-loaded friction knots] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №2 (74). St. 09. Available at: http://www.viam-works.ru (accessed: March 10, 2019). DOI: 10.18577/2307-6046-2019-0-2-89-96.
9. Makarchuk V.V. Strategiya razvitiya metodov rascheta i konstruirovaniya vysokoskorostnykh podshipnikov aerokosmicheskogo primeneniya [Strategy of development of methods of calculation and designing of high speed bearings of space application] // Aviatsionnaya i raketno-kosmicheskaya tekhnika. 2009. №3 (19). S. 361–365.
10. Shevchenko V.Ya. Vvedeniye v tekhnicheskuyu keramiku [Introduction to technical ceramics]. M.: Nauka, 1993. 112 s.
11. Kritskiy V.Yu., Zubko A.I. Issledovaniye vozmozhnosti ispolzovaniya keramicheskikh aviatsionnykh podshipnikov skolzheniya novogo pokoleniya v konstruktsiyakh opor rotorov gazoturbinnykh dvigateley [Study of the possibility of using a new generation of ceramic aviation bearings in the construction of the supports of the rotors of gas turbine engines] // Dvigatel. 2013. №3. S. 24–26.
12. Pallini R.A. Turbine engine bearings for ultra-high temperatures // SKF Ball Bearing Journal. 1989. Vol. 234. P. 12–15.
13. Specialty Products Catalog // The Barden Corporation [Электронный ресурс]. Available at: http://www.bardenbearings.com (accessed: March 10, 2019).
14. Petzow G., Herrmann M. Silicon nitride ceramics // High performance non-oxide ceramics II. Berlin, Heidelberg: Springer, 2002. Р. 47–167.
15. Andriyevskiy R.A. Nitrid kremniya – sintez i svoystva [Silicon nitride – synthesis and properties] // Uspekhi khimii. 1995. T. 64. №4. S. 311–329.
16. Liu X.J., Huang Z.Y., Ge Q.M. et al. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO–Al2O3–SiO2 as sintering additive // Journal of the European Ceramic Society. 2005. Vol. 25. No. 14. Р. 3353–3359.
17. Tatarko P., Kašiarová M., Dusza J. et al. Wear resistance of hot-pressed Si3N4/SiC micro/nanocomposites sintered with rare-earth oxide additives // Wear. 2010. Vol. 269. No. 11. P. 867–874.
18. Herrmann M., Shen Z., Schulz I. et al. Silicon nitride nanoceramics densified by dynamic grain sliding // Journal of Materials Research. 2010. Vol. 25. No. 12. P. 2354–2361.
19. Bal B.S., Rahaman M. The rationale for silicon nitride bearings in orthopaedic applications // Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment. IntechOpen, 2011. P. 421–432.
20. Perevislov S.N. Mekhanizm zhidkofaznogo spekaniya karbida i nitrida kremniya s oksidnymi aktiviruyushchimi dobavkami [The mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives] // Steklo i keramika. 2013. №7. S. 34–38.
21. Lysenkov A.S. Konstruktsionnaya keramika na osnove nitrida kremniya s dobavkoy alyuminatov kaltsiya: dis. … kand. tekhn. Nauk [Structural ceramics based on silicon nitride with the addition of calcium aluminates: thesis, Cand. Sc. (Tech.)]. M., 2014. 139 s.
22. Bolsunovskaya T.A., Efimochkin I.Yu., Sevostyanov N.V., Burkovskaya N.P. Vliyaniye marki grafita v kachestve tverdoy smazki na tribotekhnicheskiye svoystva metallicheskogo kompozitsionnogo materiala [The graphite grades lubrication effect on tribotechnical properties of the metallic composite material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №7 (67). St. 08. Available at: http://www.viam-works.ru (accessed: March 10, 2019). DOI: 10.18577/2307-6046-2018-0-7-69-77.
23. Zhu S., Cheng J., Qiao Z., Yang J. High temperature solid-lubricating materials: A review // Tribology International. 2018. Vol. 133. P. 206–223.
24. Gangopadhyay A., Jahanmir S., Peterson M.B. Self-lubricating ceramic matrix composites // Friction and wear of ceramics. 1994. Р. 163–197.
25. Carrapichano J.M., Gomes J.R., Silva R.F. Tribological behaviour of Si3N4–BN ceramic materials for dry sliding applications // Wear. 2002. Vol. 253. No. 9–10. Р. 1070–1076.
26. Liu J., Yang J., Yu Y. et al. Self-Lubricating Si3N4-based composites toughened by in situ formation of silver // Ceramics International. 2018. Vol. 44. No. 12. Р. 14327–14334.
27. Sun Q., Yang J., Yin B. et al. High toughness integrated with self-lubricity of Cu-doped Sialon ceramics at elevated temperature // Journal of the European Ceramic Society. 2018. Vol. 38. No. 7. Р. 2708–2715.
28. Sun Q., Wang Z., Yang J. et al. High-performance TiN reinforced Sialon matrix composites: A good combination of excellent toughness and tribological properties at a wide temperature range // Ceramics International. 2018. Vol. 44. No. 14. Р. 17258–17265.
In this work a metal powder alloy of tungsten and molybdenum was obtained. The powder mixture with the required tungsten content was compacted by the method of spark plasma sintering. Sintering modes were different. Samples for measuring the specific electrical resistance were made from the sintered billets and their density was determined, then microsections were made and the microstructure was investigated. The goal of this work was to study the specific electrical resistance of MW alloys and to find out the main factors influencing it.
As a result, it was found that the values of electrical resistivity for an alloy with 20% wt. tungsten are within the range of 7,83·10-8 to 10,60·10-8 Ohm·m. depending on the sintering temperature; for an alloy with 30% wt. tungsten these values are within the range of 7,83·10-8 to 10,60·10-8 Ohm·m. The specific electrical resistance of alloys increases with the increase of sintering temperature and reaches it’s maximum values at a sintering temperature of 1800 C. The values of electrical resistivity for an alloy with 20% wt. tungsten are always less than those values for an alloy with 30% wt. at the same sintering temperature and porosity because of the formation of solid solution which electrical resistivity increases with the increase of tungsten content. It was found that at all sintering temperatures the values of electrical resistivity correlate with porosity. However, other structural factors, such as the grain size of the phases and the number of oxide inclusions greatly influence this characteristic at sintering temperatures of 1400 and 1600°C. It is shown that an increase in the grain sizes of both the main phase and oxide inclusions leads to a decrease in the electrical resistivity of the alloys, which is associated with a decrease in the length of the g
2. Kablov E.N., Svetlov I.L., Neiman A.V., Min P.G., Karachevtsev F.N., Karpov M.I. High-temperature composites based on the Nb–Si system reinforced with niobium silicides // Inorganic Materials: Applied Research. 2017. Vol. 8. No. 4. P. 609–617.
3. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
4. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Tugoplavkie splavy dlia novoi tekhniki [Refractory alloys for innovative equipment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 05. Available at: http://www.viam-works.ru (accessed: April 10, 2019). DOI:10.18577/2307-6046-2016-0-10-5-5.
5. Kucher A.M. Tekhnologiya metallov [Metal technology]. L.: Mashinostroyeniye, 1987. 214 s.
6. Agte K., Vatsek I. Volfram i molibden [Wolfram and molybdenum]. L.: Energiya, 1964. 455 s.
7. Batiyenkov R.V., Bolshakova A.N., Yefimochkin I.Yu. Problema nizkotemperaturnoy plastichnosti molibdena i splavov na yego osnove (obzor) [The problem of low-temperature plasticity of molybdenum and alloys based on it (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 02. Available at: http://www.viam-works.ru (accessed: April 11, 2019). DOI: 10.18577/2307-6046-2018-0-3-12-17.
8. Samodurova M.N., Barkov L.A., Ivanov V.A. Metallurgiya i tekhnologiya poroshkovogo molibdena: ucheb. Posobiye [Metallurgy and molybdenum powder technology: tutorial]. Chelyabinsk: YuUrGU, 2014. 186 s.
9. Morgunova N.N., Klypin B.A., Boyarshinov V.A. i dr. Splavy molibdena [Alloys of molybdenum]. M.: Metallurgiya, 1975. 392 s.
10. Svoystva i primeneniye metallov i splavov dlya elektrovakuumnykh priborov: spravochnoye posobiye / pod obshch. red. R.A. Nilendera [Properties and applications of metals and alloys for vacuum devices: a reference guide / gen. ed. R.A. Nilender]. M.: Energiya, 1973. 336 s.
11. Torresilyas San Millan R., Pinargote Solis N.V., Okunkova A.A., Peretyagin P.Yu. Osnovy protsessa iskrovogo plazmennogo spekaniya nanoporoshkov [Fundamentals of spark plasma sintering of nanopowders]. M.: Tekhnosfera, 2014. 96 s.
12. Ermakov S.S. Fizika metallov i defekty kristallicheskogo stroyeniya: ucheb. posobiye [Physics of metals and defects of a crystal structure: tutrial]. L.: Izd-vo Leningr. un-ta, 1989. 280 s.
13. Sevostyanova I.N., Anisimov V.Zh., Gnyusov S.F., Kulkov S.N. Fiziko-mekhanicheskiye svoystva poristykh kompozitov na osnove karbida titana [Physical and mechanical properties of porous composites based on titanium carbide] // Fizicheskaya mezomekhanika. 2004. Ch. 2. №7. Spetsvypusk. S. 89–92.
14. Livshits B.G., Kraposhin V.S., Linetskiy Ya.L. Fizicheskiye svoystva metallov i splavov [Physical properties of metals and alloys]. M.: Metallurgiya, 1980. 318 s.
15. Batiyenkov R.V., Efimochkin I.Yu., Osin I.V., Khudnev A.A. Issledovaniye mekhanicheskikh svoystv poroshkovykh materialov sistemy Mo–W, poluchennykh elektroiskrovym plazmennym spekaniyem [Investigation of the mechanical properties of powder materials of the Mо–W system obtained by spark plasma sintering] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №2 (74). St. 07. URL: http://www.viam-works.ru (April 08, 2019). DOI: 10.18577/2307-6046-2019-0-2-68-76.
It is shown theoretically that sintered PR–Tb–Gd–Fe–Co–B magnets containing terbium have a higher saturation magnetization compared to the magnets of similar composition doped with dispersion. The calculated value of the temperature coefficient of induction of the main magnetic phase in the region -60÷120°C is determined, which makes terbium-based magnets the most temperature-stable of all known rare earth magnets. The decreasing dependence of the bulk content of the main magnetic phase 2-14-1 on the atomic concentration of cobalt in the sintered material (Pr,Tb)–(Fe1-yCoy)–B. This dependence shows that the properties of the finished magnets deteriorate with increasing Сo сoncentration, despite the improvement of the properties of the phase 2-14-1. The amount of phase 2-14-1 in sintered materials (Pr,Tb)–(Fe1-yCoy)-B is reduced from 89 to 79 vol. % with an increase in cobalt content from y=0,20 to y=0.45 at. %. The content of the main magnetic phase in terbium-based magnets is twice higher than in similar materials, where instead of terbium dysprosium is used. The expected gain in magnetization of permanent magnets due to the increase in the proportion of phase 2-14-1 levels small economic losses from the use of more expensive terbium instead of dysprosium. It is found that in the range -60÷120°C the module of the temperature coefficient of induction decreases in absolute value with an increase in the magnetic moment of the «heavy» rare-earth metal ion in the series of terbium-dysprosium-gadolinium. The calculation of the temperature coefficient of induction in the molecular field approximation for phase 2-14-1 in sintered magnets (Pr,Tb)–(Fe1-yCoy)–B deviates from the experimentally determined value by no more than 0.005% K-1. Low TCI values in sintered magnets (Pr,
2. Zhi-dong Zhang, Sun X.K., Zhong Zhen-chen et al. Effects of partial Co substitution on structural and magnetic properties of (Pr, Gd)2Fe14B compounds // Journal of Magnetism and Magnetic Materials. 1991. Vol. 96. P. 215–218.
3. Herbst J.F. R2Fe14B materials: Intrinsic properties and technological aspects // Reviews of Modern Physics. 1991. Vol. 63. No. 4. P. 819–898.
4. Pedziwiatr A.T., Wallace W.E. Structure and magnetism of the R2Fe14-xCoxB ferrimagnetic systems (R=Dy and Er) // Journal of Magnetism and Magnetic Materials. 1987. Vol. 66. P. 63–68.
5. Zhoy S.Z., Guo C., Hu Q. Magnetic properties and microstruture of iron-based rare-earth magnets with low-temperature coefficients // Journal of Applied Physics. 1988. Vol. 63. No. 8. P. 3327–3329.
6. Hirosawa S., Matsuura Y., Yamamoto H., Fujimura S., Sagawa M. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals // Journal of Applied Physics. 1986. Vol. 59. P. 873–879.
7. Pedziwiatr F.T., Chen H. Y., Wallace W.E. Magnetism of the Tb2Fe14-xCoxB system // Journal of Magnetism and Magnetic Materials. 1987. Vol. 67. P. 311–315.
8. Raspopov V.Ya. Mikromekhanicheskiye pribory [Micromechanical devices]. M.: Mashinostroyeniye, 2007. 399 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
11. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
12. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. i dr. Sravnenie temperaturnoj stabilnosti magnitov na osnove SmCo i PrDy–FeCo–B [Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2. S. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
13. Li Huai-Shan, Zhang Zhuong-Wu, Dang Mei-Zhen. Molecular field theory analysis of R2Fe14B intermetallic compounds // Journal of Magnetism and Magnetic Materials. 1988. Vol. 71. P. 355–358.
14. Smart D. Effektivnoye pole v teorii magnetizma [Effective field in the theory of magnetism]. M.: Mir, 1968. 271 s.
15. Popova A.G., Kolodkina D.A., Gavikoa V.S. et al. High-power (Nd, Dy)–(Fe, Co)–B magnets with a low temperature coefficient of induction // Physics of Metals and Metallography. 2017. Vol. 118. No. 10. P. 935–945.
16. Faria B.E., Davies D.N., Brown D.N., Harris I.R. Microstructural and magnetic studies of cast and annealed Nd and PrFeCoBZr alloys and HDDR materials // Journal of Alloys and Compounds. 2000. Vol. 296. P. 223–228.
Microwires manufactured by the method of ultra-fast cooling of the melt demonstrate stratification into the soft magnetic phase α-Fe and the soft magnetic amorphous shell DyPrFeCoB. The rare-earth amorphous shell wins in comparison with the everywhere created glass shell because, keeping protective properties of a microwire, the amorphous shell in addition gives: flexibility and lack of fragility, the increased coefficient of magnetostriction in comparison with glass, own unique magnetic properties which in combination with exchange interaction with a kernel, can lead to emergence of new functional properties of microwires.
The analysis of the local shape of the magnetic hysteresis loops, recording excavated using the Kerr microscope in different points of the multi-layered coaxial microwire α-Fe/DyPrFeCoB. Depending on the distance from the ends of the microwire, where the demagnetization field makes a significant contribution to magnetization, hysteresis loops of different forms are obtained. The most significant for practical application fragments of the microwire demonstrate a rectangular hysteresis loop with an exchange displacement, as well as a hysteresis loop with 4 equilibrium levels of magnetization by the type of spin-valve devices.
Variations in the thickness of the core α-Fe and rare-earth sheath DyPrFeCoB Mick-reproved along with a change in the stray field as the distance from its end over-represent the variability of the local magnetic hysteresis loops recorded in its different parts. There are three main types of hysteresis loops – near the end of the microwire there is a chamfered loop of complex shape «butterfly», closer to the middle of the microwire there is a loop with several stationary levels of magnetization (up to four), or a rectangular loop with displacement. The last two types of gyro-steresis loop
2. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
3. Kablov E.N., Ospennikova O.G., Korolev D.V., Piskorskij V.P., Valeev R.A., Rezchikova I.I. Mehanizm vliyaniya soderzhaniya bora i termoobrabotki na svojstva magnitov sistemy Nd–Fe–Al–Ti–B [Influence mechanisms of boron content and heat treatment on the properties of Nd–Fe–Al–Ti–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 30–34. DOI: 10.18577/2071-9140-2015-0-S2-30-34.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Koplak O.V., Gornakov V.S., Kabanov Yu.P., Kunitsyna E.I., Shashkov I.V. Temperaturnaya zavisimost obmennoy anizotropii ferrimagnitnoy plenki GdFeCo, svyazannoy s antiferromagnetikom IrMn [Temperature dependence of the exchange anisotropy of the GdFeCo ferrimagnetic film associated with the antiferromagnet IrMn] // Pisma v zhurnal eksperimentalnoy i teoreticheskoy fiziki. 2019. T. 109. Vyp. 11. S. 753–760.
6. Fache T., Tarazona H.S., Lu Y. et al. Nonmonotonic aftereffect measurements in perpendicular synthetic ferrimagnets // Physical Review B. 2018. Vol. 98. P. 064410–064418.
7. Morgunov R., Lu Y., Lavanant M. et al. Magnetic aftereffects in CoFeB/Ta/CoFeB spin valves of large area // Physical Review B. 2017. Vol. 96 (5). P. 054421.
8. Knobel M., Sampaio L.C., Sinnecker E.H.C.P. et al. Dipolar magnetic interactions among magnetic microwires // Journal of Magnetism and Magnetic Materials. 2002. Vol. 249. P. 60–72.
9. Piskorskiy V.P., Korolev D.V., Valeyev R.A., Morgunov R.B., Kunitsyna E.I. Fizika i inzheneriya postoyannykh magnitov: ucheb. posobie / pod obshch. red. E.N. Kablova [Physics and engineering of permanent magnets: tutorial / gen. ed. E.N. Kablov]. M.: VIAM, 2018. 360 s.
10. Peng H., Qin F., Phan M. Ferromagnetic Microwire Composites From Sensors to Microwave Applications // Engineering Materials and Processes. Springer, 2016. 240 p.
11. Draganová K., Blažek J., Praslička D., Kmec F. Possible applications of magnetic microwires in aviation // Journal of Fatigue of Aircraft Structures. 2013. Vol. 1. P. 12–17.
12. Panina L., Ipatov M., Zhukova V. et al. Tuneable Composites Containing Magnetic Microwires // Metal, Ceramic and Polymeric Composites for Various Uses. 2011. P. 431–461.
13. Evstigneeva S., Morchenko A., Trukhanov A. Structural and magnetic anisotropy of directionally – crystallized ferromagnetic microwires // EPJ Web of Conferences. 2018. Vol. 185. P. 04022.
14. Baranov S.A. Cast Amorphous Magnetic Microwires for Medical Applications // Advanced in Biotechnology and Microbiology. 2018. Vol. 8 (3). P. 555736.
15. Szary P., Luciu I., Duday D. et al. Synthesis and magnetic properties of Ta/NdFeB-based composite microwires // Journal of Applied Physics. 2015. Vol. 117. P. 17D134.
Non-metallic materials and products in connection to expansion of their use constantly get into different operating conditions, where they are exposed to a variety of climatic and biological factors. The microorganisms impact on different materials is particularly significant in a humid tropical climate – microbiological communities of this climatic and geographic areas characterized by the highest level of biodiversity in the world. In Russia there are no own territories with a humid tropical climate, due to this fact the demand for microbiological resistance testing under humid tropical climate simulation occurred. For this task there was selected for the optimal conditions a Tropical block of New Fundal Conservatory of the Main Botanical Garden named after N.V. Tsitsin. Functional polymeric materials were exposed for 18 months under imitation of tropical climate weathering conditions. In exposition were used samples of rubber and sealant.
10 strains of microscopic fungi were isolated after exposure from the samples surfaces and thereafter their species identified along with theirs occurrence frequency counting. The dominant micromycetes species were Penicillium lanosum and Cladosporium sphaerospermum. Slightly less common were two other species of same genera Penicillium sp. and Cladosporium oxysporum. The species Aspergillus ochraceus. Rhizopus oryzae, Aspergillus terreus, Acremonium sp., Stachybotrys chartarum, Trichoderma viride are singularly met. Almost all isolated species of fungi are known as destructors of polymeric materials in different climatic zones and environmental conditions. Some species and genera of fungi are part of the test cultures sets of Russian and international standards used in laboratory fungal resistance testing of materials and products. The isolated cultures of micromycetes are of interest for their further use for research purposes, as well as for accelerate
2. Kablov E.N., Erofeev V.T., Svetlov D.A., Smirnov V.F., Bogatov A.D. Biopovrezhdeniya v kosmicheskikh apparatakh [Biodetermination in spacecraft] // Tr. Mezhdunar. nauch.-tekhnich. konf. «Kompozitsionnyye materialy. Teoriya i praktika», 2015. S. 40–46.
3. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Krivushina A.A., Goryashnik Yu.S. Sposoby zashchity materialov i izdeliy ot mikrobiologicheskogo porazheniya (obzor) [Ways of protection of materials and products from microbiological damage (review)] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Buharev G.M. Ispytaniya na mikrobiologicheskuyu stojkost v naturnyh usloviyah razlichnyh klimaticheskih zon [Microbiological resistance tests under nature conditions in variety of climatiс zones] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 11. Available at: http://www.viam-works.ru (accessed: March 25, 2019). DOI: 10.18577/2307-6046-2016-0-4-11-11.
7. Romanov M.S., Zolkin S.Yu., Kolomeytseva G.L. Istoriya i dinamika komplektovaniya fondovoy oranzherei Glavnogo botanicheskogo sada im. N.V. Tsitsina RAN [The history and dynamics of stock picking greenhouses of the Main Botanical Gardens them. N.V. Tsitsina RAS] // Byulleten Glavnogo botanicheskogo sada. 2015. №2 (201). S. 23–36.
8. Dudka I.A., Vasser S.P., Ellanskaya I.A i dr. Metody eksperimentalnoy mikologii: spravochnik / pod red. V.I. Bilay [Methods of Experimental Mycology: handbook]. Kiyev: Naukova dumka, 1982. S. 432–460.
9. Raper K.B., Fennell D.I. The genus Aspergillus. Baltimore: The Williams and Wilkins Company, 1965. 686 p.
10. Raper K.B., Thom C., Fennell D.I. A Manual of the Penicillia. New York–London: Hafner Publishing Company, 1968. 875 p.
11. Ellis M.V. Dematiaceous hyphomycetes. Kew, Surreg, England, 1971. 608 p.
12. Gams W., Holubova-Jechova V. Chloridium and some other Dematiaceous Hyphomycetes growing on decaying wood // Studies in Mycology. 1976. No. 13. P. 59–71.
13. Domsch K.H., Gams W., Anderson T.H. Compendium of Soil Fungi. London: Academic Press, 1980. Vol. 1, 2. 1264 p.
14. Domsch K.H., Gams W., Anderson T.H. Compendium of Soil Fungi. 2nd ed. Lubrecht & Cramer Ltd, 2007. 672 p.
15. Lugauskas A.Yu., Mikulskene A.I., Shlyauzhene D.Yu. Katalog mikromitsetov – biodestruktorov polimernykh materialov [Catalog of micromycetes – biodestructors of polymeric materials]. M: Nauka, 1987. S. 258–259.
16. Watanabe T. Pictorial Atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Boca Raton-Ann Arbor-London-Tokyo: Lewis publishers, 1994. 411 p.
17. De Hoog G.S., Guarro J., Gene J., Figueras M.J. Atlas of clinical fungi. CBS, Utrecht; Universitat Rovira i Virgili Reus, 2000. 1126 p.
18. GOST 9.049–91. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Materialy polimernyye i ikh komponenty. Metody laboratornykh ispytaniy na stoykost k vozdeystviyu plesnevykh gribov [State Standard 9.049–91. Uniform system of protection against corrosion and aging (EUPCA). Polymer materials and their components. Laboratory test methods for resistance to mold fungi]. M.: Izd-vo standartov, 1994. 15 s.
19. GOST 9.048–89. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Izdeliya tekhnicheskiye. Metody laboratornykh ispytaniy na stoykost k vozdeystviyu plesnevykh gribov [State Standard 9.048–89. Uniform system of protection against corrosion and aging (EUPCA). Technical products. Laboratory test methods for resistance to mold fungi]. M.: Izd-vo standartov, 1994. 23 s.
20. Krivushina A.A., Chekunova L.N., Mokeyeva V.L. Morfologicheskiye osobennosti shtammov «kerosinovogo» griba Hormoconis resinae pri roste v aviatsionnom toplive i na pitatelnykh sredakh [Morphological features of the «kerosene» fungus Hormoconis resinae with growth in aviation fuel and in nutrient media] // Mikologiya i fitopatologiya. 2019. №1. S. 23–32.
21. GOST 9.023–74. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Topliva neftyanyye. Metod laboratornykh ispytaniy biostoykosti topliv, zashchishchennykh protivomikrobnymi prisadkami [State Standard 9.023–74. Uniform system of protection against corrosion and aging (EUPCA). Fuel oil. Laboratory test method for biostability of fuels protected by antimicrobial additives]. M.: Izd-vo standartov, 1994. 9 s.
Results of research of samples of materials (polyethylene terephthalate, polystyrene) in water of the Black sea (Gelendzhik) and the mineralized water of a circulating cycle of the petrochemical plant (Ufa) are resulted.
The study of samples of materials (polystyrene and polyethylene terephthalate) allowed on the basis of the analysis of strength properties, deposits on the surface to assess the stages of the process of bio fouling and biodegradation at the initial stage – up to 60 days of exposure.
Taking into account the peculiarities of the life of microorganisms and microalgae, it is possible to make an assumption about significant oxygen content at the first stage of exposure on the surface of the sample. Oxygen as an active oxidizer leads to reactions of additional cross-linking of polymers, both polystyrene and PET, which affects the strength characteristics of polymers. Values of the maximum load at destruction of samples on in the first days of exposure at first increase at the expense of building of additional communications between macromolecules of polymers reactions with oxygen at active photosynthesis of algae. At the next stage of exposure, the loads are reduced due to the fouling of autotrophic bacteria, which oxidize organic products in the process of life and as products of metabolism form organic acids, carbon dioxide and hydrogen sulfide, which are concentrated under the biofilm significantly reducing the pH at the surface. Acid solutions actively penetrate into the polymer volume and plasticize it, reducing the maximum tensile stress of the sample.
It is established that after 30-40 days of exposure, the polymer samples are saturated with moisture and the surface is destroyed by the products of bacterial metabolism, which leads to a drop in both the strength and plasticity of polystyrene and polyeth
2. Koch G.H., Brongers M.P.H., Thompson N.G. et al. Corrosion costs and preventive strategies in the United States. Washington D.C.: FHWA, 2001. P. 1–36.
3. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
5. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Yakovenko T.V. Ispytaniya na mikrobiologicheskuyu stojkost v usloviyah teplogo i vlazhnogo klimata [Microbiological resistance tests under conditions of warm and damp climate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 06. Available at: http://www.viam-works.ru (accessed: March 28, 2019).
6. Nica D., Davis J.L., Kirby L. et al. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers // International Biodeterioration and Biodegradation. 2000. Vol. 46. No. 1. 61–68.
7. Roberts D.J., Nica D., Davis J.L., Zuo G. Quantifying microbially induced deterioration of concrete: initial studies // International Biodeterioration and Biodegradation. 2002. Vol. 49. No. 4. P. 227–234.
8. Gusev M.V., Mineyeva L.A. Mikrobiologiya [Microbiology]. M.: Akademiya, 2008. 462 s.
9. Dickinson W.H., Lewandowski Z. Manganese biofouling and the corrosion behavior of stainless steel // Biofouling. 1996. Vol. 10 (1–3). P. 79–93.
10. Dzierzewicz Z., Cwalina B., Chodurek E., Wilczok T. The relationship between microbial metabolic activity and biocorrosion of carbon steel // Results Microbiol. 1997. No. 148. P. 785–793.
11. Zavarzin G.A., Kolotilova N.N. Vvedeniye v prirodovedcheskuyu mikrobiologiyu [Introduction to the natural history of microbiology]. M.: Knizhnyy dom «Universitet», 2001. 256 s.
12. Nyanikova G.G., Vinogradov E.Ya. Bacillus mucilagenosus perspektivy ispolzovaniya [acillus mucilagenosus use prospects]. SPb.: NIIKH SPbGU, 2000. 120 s.
13. Karavayko G.I. Mikrobnaya destruktsiya mineralnykh materialov [Microbial destruction of mineral materials] // Trudy Instituta mikrobiologii im. S.N. Vinogradskogo. 2004. Vyp. XII. S. 172–195.
14. Saiz-Jimenez C. Biodeterioration and Biodegradation: the Role of Microorganisms in the Removal of Pollutants Deposited on Historic Buildings // International Biodeterioration and Biodegradation. 1997. Vol. 40. No. 2–4. P. 225–232.
15. Warscheid T. Integrated concepts for the protection of cultural artifacts against biodeterioration // Of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage. Dordrecht: Kluwer Academic Publishers, 2000. P. 185–202.
16. Warscheid T. Biodeterioration of stones: analysis, quantification and evaluation // Proceedings of the 10th International Biodeterioration and Biodegradation Symposium, Dechema-Monograph No. 133. Frankfurt: Dechema, 1996. P. 115–120.
17. Silverman M.P. Biological and organic chemical decomposition of silicates // Studies in Environmental Science. 1979. Vol. 3. P. 445–465.
18. Berthelin J. Microbial weathering processes // Microbial Geochemistry. Oxford: Blackwell Scientific Publications, 1983. P. 223–262.
19. Braams J. Ecological studies on the fungal microflora inhabiting historical sandstone monuments: thesis, PhD. Oldenburg, 1992. 104 p.
20. Walsh J.H. Ecological considerations of biodeterioration // International Biodeterioration and Biodegradation. 2001. Vol. 48. No. 1. P. 16–25.
21. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Termodinamicheskiye kharakteristiki stareniya polimernykh kompozitsionnykh materialov v usloviyakh realnoy ekspluatatsii [Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
22. Laptev A.B., Lutsenko A.N., Kurs M.G., Bukharev G.M. Opyt issledovaniy biokorrozii metallov [Experience in the study of the biocorrosion of metals] // Praktika protivokorrozionnoy zashchity. 2016. №2 (80). S. 36–57.
23. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
24. Laptev A.B., Perov N.S., Bukharev G.M., Krivushina A.A. Korroziya metallov i splavov v vode Chernogo morya v prisutstvii organizmov biodestruktorov [Corrosion of metals and alloys in the water of the Black Sea in the presence of biodestructor organisms] // Korroziya: materialy, zashchita. 2017. №10. S. 32–36.
The paper deals of the main failure criteria of polymer matrix composites, used in modern simulation’s software systems, by calculating the strength of composite plates and shells.The limit criteria (for stress and strain) are noted, also the polynomial failure criteria: Tsai-Wu, Tsai-Hill, Yamada-Sun, Hoffman, Cowin, Hankinson, Norris, and separated modes failure criteria: Puck (in various modifications), Hashin, Christensen, LaRC, Cuntze and others. Much attention is given to the theoretical background of the criteria and the applied approaches for the calculation of the strength of composite materials. It is analyzed criteria for first-ply-theory for composites, or for last-ply-theory (for progressive damage of structures). The criteria can be divided into: limiting values criteria — the simplest ones that do not require complicated calculations or additional experimental studies; interactive criteria - combining of the stress tensor components by a general, easily analyzed, polynomial equation; criteria for the type of destruction - the most complex, piecewise-defined functions, considering different types of failure separately. The presented criteria may have different accuracy of the description of the properties of the polymer composite materials. Without enough experimental test data, it is necessary to choose the most conservative result at all. According to the demonstrated results, the criteria rather accurately predict the failure of unidirectional polymer composites.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [Formation of domestic space materials science] // Vestnik RFFI. 2017. №3. S. 97–105.
4. Yakovlev N.O., Gulyaev A.I., Lashov O.A. Treshchinostoikost sloistykh polimernykh kompozitsionnykh materialov (obzor) [Crack firmness of layered polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №4 (40). St. 12. Available at: http://www.viam-works.ru (accessed: March 19, 2019) DOI: 10.185772307-6046-2016-0-4-12-12.
5. Krylov V.D., Yakovlev N.O., Kurganova Yu.A., Lashov O.A. Mezhsloevaya treshchinostoikost konstruktsionnykh polimernykh kompozitsionnykh materialov [Mezhsloyevy crack firmness of constructional polymeric composite materials] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 79–85. DOI: 10.18577/2071-9140-2016-0-1-79-85.
6. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: March 20, 2019).
7. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Fiziko-mehanicheskie svojstva nanokompozitov s UNT (obzor) [Mechanical properties of CNT nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 08. Available at: http://www.viam-works.ru (accessed: March 19, 2019). DOI: 10.18577/2307-6046-2016-0-5-8-8.
8. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 12. Available at: http://www.viam-works.ru (accessed: March 19, 2019). DOI: 10.18577/2307-6046-2016-0-7-12-12.
9. Dimitriyenko Yu.I., Gubareva E.A., Sborshchikov S.V., Erasov V.S., Yakovlev N.O. Chislennoye modelirovaniye i eksperimental'noye issledovaniye deformirovaniya uprugoplasticheskikh plastin pri smyatii [Numerical modeling and experimental study of the deformation of elastoplastic plates when bent] // Matematicheskoye modelirovaniye i chislennyye metody. 2015. №1 (5). S. 67–82.
10. Dimitriyenko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborshchikov S.V., Prozorovskiy A.A., Erasov V.S., Yakovlev N.O. Modelirovaniye i razrabotka trekhsloynykh kompozitsionnykh materialov s sotovym zapolnitelem [Modeling and development of three-layer composite materials with honeycomb] // Vestnik MGTU im. N.E. Baumana. Ser.: Estestvennyye nauki. 2014. №5. S. 66–81.
11. Erasov V.S., Yakovlev N.O., Gladkikh A.V., Goncharov A.A., Skiba O.V., Boyarskikh A.V., Podzhivotov N.Yu. Ispytaniya krupnogabaritnykh konstruktsiy iz polimernykh kompozitsionnykh materialov na silovom polu GTSKI VIAM im. G.V. Akimova [Testing of large-sized structures made of polymer composite materials on the power floor G.V. Akimov GTCT of VIAM] // Kompozitnyy mir. 2014. №1. S. 72–78.
12. Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskiy Yu.V., Semisalov B.V., Yurchenko A.V., Yakovlev N.O. O nelineynom deformirovanii ugleplastikov: eksperiment, model, raschet [On the nonlinear deformation of carbon plastics: experiment, model, calculation] // Vychislitelnyye tekhnologii. 2015. №5. S. 27–52.
13. Skvortsov Yu.V. Mekhanika kompozitsionnykh materialov: konspekt lektsiy [Mechanics of composite materials: lecture notes]. Samara: SGAU, 2013. 94 s.
14. Cuntze R. Neue Bruchkriterien und Festigkeitsnachweise für unidirektionalen Faserkunststoffverbund unter mehrachsiger Beanspruchung: Modellbildung und Experimente. Düsseldorf: VDI-Verlag, 1997. 249 p.
15. Stowell E.Z., Liu T.S. On the Mechanical Behavior of Fiber Reinforces Crystalline Solids // Journal of the Mechanics and Physics of Solids. 1961. Vol. 9. P. 242–260.
16. Kelly A., Davies G.J. The Principles of the Fibre Reinforcement of Metals // Metallurgical Reviews. 1965. Vol. 10. No. 37. P. 1–77.
17. Zakharov K.V. Kriteriy prochnosti dlya sloistykh mass [Strength criterion for layered masses] // Plasticheskiye massy. 1961. №8. S. 61–67.
18. Malmeyster A.K. Geometriya teoriy prochnosti [Geometry of theories of strength] // Mekhanika polimerov. 1966. №4. S. 519–534.
19. Goldenblat I.I., Kopnov V.A. Kriteriy prochnosti anizotropnykh materialov [Strength criterion for anisotropic materials] // Mekhanika. 1965. №6. S. 77–83.
20. Goldenblat I.I., Kopnov V.A. Kriterii prochnosti i plastichnosti konstruktsionnykh materialov [Criteria of strength and plasticity of structural materials]. M.: Mashinostroyeniye, 1968. 192 s.
21. Makovenko S.Ya. O vzaimnosti komponent tenzorov prochnosti nekotorykh teoriy prochnosti anizotropnykh materialov [On the reciprocity of the component tensors of strength of some theories of strength of anisotropic materials] // Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2005. №1. S. 65–70.
22. Reddy J.N., Pandey A.K. A first-ply failure analysis of composite laminates // Computers & Structures, 1987. No. 25 (3). P. 371–393. DOI: 10.1016/0045-7949(87)90130-1.
23. ANSYS Composite PrepPost User's Guide. Available at: https://ansyshelp.ansys.com (accessed: March 19, 2019).
24. Muyzemnek A.Yu., Kartashova E.D. Mekhanika deformirovaniya i razrusheniya polimernykh sloistykh kompozitsionnykh materialov: ucheb. Posobiye. [Mechanics of deformation and destruction of polymer layered composite materials: tutorial] Penza: Izd-vo PGU, 2017. 77 s.
25. Abrate S. Criteria for yielding or failure of cellular materials // Journal of Sandwich Structures and Materials. 2008. Vol. 10. P. 5–51.
26. Hill R. The Mathematical theory of plasticity. London: Oxford University Press, 1950. 317 p.
27. Azzi V.D., Tsai S.W. Anisotropic Strength of Composites // Experimental Mechanics. 1965. Vol. 5. Nо. 9. P. 283–288. DOI: 10.1007/BF02326292.
28. Yamada S.E., Sun C.T. Analysis of Laminate Strength and Its Distribution // Journal of Composite Materials. 1978. No. 12 (3). P. 275–284. DOI: 10.1177/002199837801200305.
29. Hoffman O. The brittle strength of orthotropic materials // Journal of Composite Materials. 1967. No. 1. P. 200–206.
30. Tsai S.W., Wu E.M. A General Theory of Strength for Anisotropic Materials // Journal of Composite Materials. 1971. No. 5 (1). P. 58–80. DOI:10.1177/002199837100500106.
31. Tarnopolskiy Yu.M., Kintsis T.YA. Metody staticheskikh ispytaniy armirovannykh plastikov. 2-e izd. pererab. i dop. [Static test methods for reinforced plastics. 2nd ed. eev. and add]. M.: Khimiya, 1975. 262 s.
32. Hankinson R.L. Investigation of crushing strength of spruce at varying angles of grain // Air Force Information Circular. 1921. No. 259. P. 3–15.
33. Cowin S.C. Fabric Dependence of an Anisotropic Strength Criterion // Mechanics of Materials. 1986. No. 5 (3). P. 251–260. DOI: 10.1016/0167-6636(86)90022-0.
34. MSC Laminate Modeler Version 2008 r2. User’s Guide. MSC Software Corporation, 2008. 176 p.
36. Mascia N.T., Simoni R.A. Analysis of failure criteria applied to wood // Engineering Failure Analysis. 2013. No. 35. P. 703–712. DOI: 10.1016/j.engfailanal.2013.07.001.
37. Puck A., Schneider W. On Failure Mechanisms and Failure Criteria of Filament-wound Glass-Fiber/Resin Composites // Plastic and Polymer Technology. 1969. Vol. 00/Publisher. P. 33–43.
38. Puck A. Festigkeitsberechnung an Glasfaser/Kunststoff-Laminaten bei zusam-mengesetzter Beanspruchung // Kunststoffe. 1969. Vol. 59. No. 11. P. 780–787.
39. Knops M. Analysis of Failure in Fiber Polymer Laminates. Springer Berlin Heidelberg, 2008. 205 p. DOI: 10.1007/978-3-540-75765-8.
40. Puck A., Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models // Composites Science and Technology. 1998. Vol. 58. P. 1045–1067.
41. Puck A., Kopp J., Knops M. Failure analysis of FRP laminates by means of physically based phenomenological models // Composites Science and Technology. 2002. Vol. 62. P. 1633–1662.
42. Puck A., Kopp J., Knops M. Guidelines for the determination of the parameters in Puck's action plane strength criterion // Composites Science and Technology. 2002. Vol. 62. P. 371–378.
43. Hashin Z., Rotem A.A. Fatigue Failure Criterion for Fiber Reinforced Materials // Journal of Composite Materials. 1973. No. 7 (4). P. 448–464. DOI: 10.1177/002199837300700404.
44. Hashin Z. Failure Criteria for Unidirectional Fiber Composites // Journal of Applied Mechanics. 1980. No. 47. P. 329–334.
45. Christensen R.M. Stress Based Yield/Failure Criteria for Fiber Composites // International Journal of Solids and Structures. 1997. No. 34. P. 529–543.
46. Davila C., Navin J. Failure Criteria for FRP Laminates in Plane-Stress. NASA Langley Research Center, 2003. 28 p.
47. Pinho S., Davila C., Camanho P. et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity: TM-2005-213530. NASA, 2005. 69 p.
48. Laws N. A note on interaction energies associated with cracks in anisotropic solids // Philosophical Magazine. 1977. No. 36 (2). P. 367–372. DOI: 10.1080/14786437708244940.
49. Pinho S.T., Robinson P., Iannucci L. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites // Composites Science and Technology. 2006. No. 66 (13). P. 2069–2079.
50. Davila C., Jaunky N., Goswami S. Failure Criteria for FRP Laminates in Plane Stress // 44th AI-AA/AME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. (Norfolk, Virginia, April 7–10, 2003). 2003. 11 p. DOI: 10.2514/6.2003-1991.
51. Cuntze R., Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates // Composites Science and Technology. 2004. Vol. 64. P. 343–377.
52. Cuntze R. Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design // Composites Science and Technology. 2006. Vol. 66. No. 7–8. P. 1081–1096.
53. Cuntze R. The predictive capability of failure mode concept-based strength conditions for laminates composed of UD laminas under static tri-axial stress states. Part A of the WWFE-II // Journal of Composite Materials. 2012. No. 46 (19–20). P. 2563–2594. DOI: 10.1177/0021998312449894.
54. Boehler J.P. Failure Criteria for Glass-Fiber Reinforced Composites under Confining Pressure // Journal of Structural Mechanics. 1985. No. 13. 371 p.
The metal equipment at the enterprises of the petrochemical industry is operated under the conditions of interaction with the aquatic environment and, as a result, is subject to corrosive destruction. Microorganisms contained in the circulating water may accumulate on the surface of the metal and cause its biodegradation. To study the mechanisms of bio deterioration of materials under the conditions of a petrochemical plant, steel samples were exposed to exposure to circulating cooling water for different periods of time. The surface of the samples was investigated using confocal scanning laser microscopy and scanning electron microscopy. The products of interaction with circulating water found on the metal surface are represented by iron oxides, insoluble calcium salts, particles of coke, and also microorganisms and products of their vital activity. Microorganisms are identified as diatoms with a silicon shell and emit oxygen in the presence of daylight. It is known that silicon and carbon create with the metal of the pipeline and the equipment of the water-circulation cycle galvano couple and increase the corrosion rate. At the same time, the presence of oxygen on the metal surface, the concentration of which exceeds many times the concentration of oxygen in the volume of water, also leads to a significant increase in the rate of its corrosion. To reduce the intensity of corrosion damage to the material of the equipment of the petrochemical plant, the following recommendations were proposed: determination of the source of fine carbon discharged into the circulating water and its elimination; the use of reagents for the treatment of recycled water, preventing the growth of algae; the exclusion of sunlight in the circulating water in order to level the release of oxygen by the algae on the metal surface.
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Javaherdashti R., Alasvand K. Biological treatment of microbial corrosion. Elsevier, 2019. 162 p.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
5. Kozlova L.S., Sibileva S.V., Chesnokov D.V., Kutyrev A.E. Ingibitory korrozii (obzor) [Corrosion inhibitors (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 67–75. DOI: 10.18577/2071-9140-2015-0-2-67-75.
6. Pakiet M., Kowalczyk I., Leiva R. et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel // Bioelectrochemistry. 2019. Vol. 128. P. 252–262.
7. Vdovin S.M., Kablov E.N., Erofeev V.T., Startsev O.V. i dr. Ekonomicheskiye poteri ot biodestruktsii [Economic losses from biodegradation] // Sb. tr. Mezhdunar. nauch.-tekhn. konf. «Kompozitsionnyye stroitelnye materialy. Teoriya i praktika». Penza, 2015. S. 21–29.
8. Telegdi J., Shaban A., Vastag G. Biocorrosion – Steel // Encyclopedia of Interfacial Chemistry. Surface Science and Electrochemistry. 2018. P. 28–42.
9. Chesnokova M.G., Shalaj V.V., Kraus Ju.A., Mironov A.Ju. Assessment of Soil Biocorrosion Severness on the Pipeline Locations // Procedia Engineering. 2015. Vol. 113. P. 57–61.
10. Bellendir L.E., Vlasov D.Yu., Durcheva V.N., Tsarovtseva I.M. Rol biofaktora v korrozii metallicheskikh i zhelezobetonnykh konstruktsiy gidrotekhnicheskikh sooruzheniy [Biofactor role in corrosion of metal and steel concrete structures of hydraulic engineering constructions] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 61–66. DOI: 10.18577/2071-9140-2015-0-S1-61-66.
11. Arabey T.I., Beloglazov S.M. Uluchsheniye zashchitnogo deystviya grunta-modifikatora rzhavchiny na stal, korrodiruyushchuyu v morskoy vode i pod deystviyem Aspergillus niger [Improving the protective effect of the soil-modifier rust on steel, corroding in sea water and under the action of Aspergillus niger] // Praktika protivokorrozionnoy zashchity. 2010. Vyp. 1 (55). S. 17–22.
12. Reformatskaya I.I., Podobayev A.N., Ashcheulova I.I., Artamonov O.Yu. i dr. Lokalnaya korroziya staley v usloviyakh ekvipotentsialnosti poverkhnosti [Local corrosion of steels under conditions of surface equipotentiality] // Praktika protivokorrozionnoy zashchity. 2011. Vyp. 3 (61). S. 55–63.
13. Kablov E.N., Polyakova A.V., Vasileva A.A., Goryashnik Yu.S., Kirillov V.N. Mikrobiologicheskiye ispytaniya aviatsionnykh materialov [Microbiological testing of aviation materials] // Aviatsionnaya promyshlennost. 2011. №1. S. 35–40.
14. Aktas D.F., Sorrell K.R., Duncan K.E. et al. Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine enviroments: The impact of different ultra low sulfur diesels and bioaugmentation // International Biodeterioration and Biodegradation. 2017. Vol. 118. P. 45–56.
15. Akhiyarov R.Zh., Laptev A.B., Ibragimov I.G. Povysheniye promyshlennoy bezopasnosti ekspluatatsii obektov neftedobychi pri biozarazhenii i vypadenii soley metodom kompleksnoy obrabotki plastovoy vody [Increase of industrial safety of operation of oil production facilities with bioinfection and salt precipitation by the method of complex treatment of formation water ] // Neftepromyslovoye delo. 2009. №3. S. 44–46.
16. Krivushina A.A., Goryashnik Yu.S. Sposoby zashchity materialov i izdeliy ot mikrobiologicheskogo porazheniya (obzor) [Ways of protection of materials and products from microbiological damage (review)] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
17. Laptev A.B., Navalikhin G.P. Povysheniye bezopasnosti ekspluatatsii promyslovykh nefteprovodov [Improving the safety of operating oil pipelines] // Neftepromyslovoye delo. 2006. №1. S. 48–52.
18. Akhiyarov R.Zh., Matveyev Yu.G., Laptev A.B., Bugay D.E. Resursosberegayushchiye tekhnologii predotvrashcheniya biozarazheniya plastovykh vod predpriyatiy neftedobychi [Resource-saving technologies to prevent bioinfection of formation waters of oil production enterprises] // Neftegazovoye delo: elektron. nauch. zhurn. 2011. №5. S. 232–242. Available at: htt://ogbus.ru (accessed: March 29, 2019).
19. Laptev A.B., Lutsenko A.N., Kurs M.G., Bukharev G.M. Opyt issledovaniy biokorrozii metallov [Experience in the study of the biocorrosion of metals] // Praktika protivokorrozionnoy zashchity. 2016. №2 (80). S. 36–57.
20. Mityaseva N.A., Maksimova O.V., Georgiyev A.A. Flora makrovodorosley severnoy chasti rossiyskogo poberezhya Chernogo morya [Macro-algae flora of the northern part of the Russian Black Sea coast] // Ekologiya morya. 2003. Vyp. 64. S. 24–28.