Articles
Рresents the results of research work devoted to the study of the dependence of the structure and impact strength (ais) of dispersed-filled epoxy polymers on nanoscale particles (and their agglomerates) of WS-120 grade white soot and monolithic ultradispersed particles of a single-sized dust-like quartz (diameter ~150 nm) and chemical nature (SiO2).
For the first time it has been demonstrated that to increase the impact strength of epoxy dispersed systems, it is most effective to use white soot, which, when forming agglomerates with a diameter of ~150 nm, increases ais ~2 times, while introducing ultrafine particles of dusty quartz with the same diameter (~150 nm) – no more than 20%.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials] // Rossiyskiye nanotekhnologii. 2013. T. 8. №3. S. 28–46.
3. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
4. Kablov E.N., Solovyanchik L.V., Kondrashov S.V., Yurkov G.YU. i dr. Elektroprovodyashchiye gidrofobnyye polimernyye kompozitsionnyye materialy na osnove okislennykh uglerodnykh nanotrubok, modifitsirovannykh telomerami tetraftoretilena [Electrically Conductive Hydrophobic Polymer Composite Materials Based on Oxidized Carbon Nanotubes Modified by Terafluoroethylene Telomeres] // Rossiyskiye nanotekhnologii. 2016. T. 11. №12. S. 91–97.
5. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Perspektivnye tehnologii polucheniya funkcionalnyh materialov konstrukcionnogo naznacheniya na osnove nanokompozitov s UNT (obzor) [Prospective producing methods for functional structural materials based on CNT-filled nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 07. Available at: http://www.viam-works.ru (accessed: April 02, 2019). DOI: 10.18577/2307-6046-2016-0-3-7-7.
6. Larionov S.A., Deev I.S., Petrova G.N., Bejder E.Ya. Vliyanie uglerodnyh napolnitelej na elektrofizicheskie, mehanicheskie i reologicheskie svojstva polietilena [Effect of carbon fillers on the electrical, mechanical and rheological properties of polyethylene] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 04. Available at: http://www.viam-works.ru (accessed: April 02, 2019).
7. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
8. Pykhtin A.A. Vysokotekhnologichnyye epoksidnyye nanodispersii i nanokompozity s reguliruyemoy strukturoy i kompleksom svoystv: dis. … kand. tekhn. nauk [High-tech epoxy nanodispersions and nanocomposites with adjustable structure and complex properties: thesis, Cand. Sc. (Tech.)]. M., 2017. 125 c.
9. Ajayan P.M., Linda S., Schadler L.S., Braun P.V. Nanocomposite Science and Technology. Wiley-VCH, 2003. 236 p.
10. Pol D., Baknell K. Polimernyye smesi [Polymer blends]. SPb.: Nauchnyye osnovy i tekhnologii, 2009. T. II: Funktsionalnyye svoystva. Per. s angl. / pod red. V.N. Kulezneva. 606 s.
11. Trofimov N.N., Kanovich M.Z. Prochnost i nadezhnost kompozitov [Durability and reliability of composites]. M.: Nauka, 2014. 422 s.
12. Kuleznev V.N. Smesi i splavy polimerov [Mixtures and alloys of polymers]. SPb.: Nauchnyye osnovy i tekhnologii, 2013. 216 s.
13. Mir materialov i tekhnologiy. Polimernyye nanokompozity / pod red. Yu. Ving May, Yu. Zhong-Zhen [The world of materials and technology. Polymer nanocomposites / ed. Yu. Ving May, Yu. Zhong-Zhen]. M: Tekhnosfera, 2011. 688 s.
14. Marakhovskiy P.S., Kondrashov S.V., Akatenkov R.V. i dr. O modifikatsii teplostoykikh epoksidnykh svyazuyushchikh uglerodnymi nanotrubkami [On the modification of heat-resistant epoxy binders with carbon nanotubes] // Vestnik MGTU im. N.E Baumana. Ser.: Mashinostroyeniye. 2015. №2. S. 118–127.
15. Kakhramanov N.T., Azizov A.G., Osipchik V.S., Mamedli U.M., Arzumanova N.B. Nanostrukturirovannyye kompozity i polimernoye materialovedeniye [Nanostructured Composites and Polymer Materials Science] // Plasticheskiye massy. 2016. №1–2. S. 49–57.
16. Pykhtin A.A., Simonov-Yemelyanov I.D. Tekhnologicheskiye svoystva nanodispersiy na osnove epoksidnogo oligomera marki DER-330 i beloy sazhi BS-50 [Technological properties of nanodispersions based on epoxy oligomer of the brand DER-330 and BS-50 white soot] // Tonkiye khimicheskiye tekhnologii. 2016. T. 11. №4. S. 63–67.
17. Klenin V.I., Shchegolev S.Yu., Lavrushin V.I. Kharakteristicheskiye funktsii svetorasseyaniya dispersnykh system [Characteristic functions of dispersion of light scattering systems]. Saratov: Izd-vo Saratovskogo un-ta. 1977. 177 s.
18. Lukyanovich V.M. Elektronnaya mikroskopiya v fiziko-khimicheskikh issledovaniyakh [Electron microscopy in physicochemical studies]. M.: Izd-vo AN SSSR, 1960. S. 90–116.
Ceramics based on aluminum oxynitride (AlON) by the method of spark plasma sintering (SPS) were synthesized. It has been established that a decrease in the particle size of the initial powders leads to an intensification of the AlON phase formation process and an increase in the physicomechanical properties of ceramics. It is shown that the introduction of sintering additive Y2O3 contributes to a more complete transformation of the initial components into the AlON phase due to the formation of a liquid phase at the grain boundaries. It was revealed that an increase in the sintering temperature by the SPS method from 1600 to 1700°С leads to a decrease in the va-lues of density and physicomechanical properties of ceramics based on aluminium oxynitride.
2. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
3. Kablov E.N., Grashchenkov D.V., Isayeva N.V., Solntsev S.S., Sevastyanov V.G. Vysokotemperaturnye konstruktsionnye kompozitsionnye materialy na osnove stekla i keramiki dlya perspektivnykh izdeliy aviatsionnoy tekhniki [High-temperature structural composite materials based on glass and ceramics for promising products of aeronautical engineering] // Steklo i keramika. 2012. №4. S. 7–11.
4. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspektivnye vysokotemperaturnye keramicheskie kompozitsionnye materialy [Prospective high-temperature ceramic composite materials] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 20–24.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
7. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsional'noy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2. S. 16–21.
8. Kablov E.N. Innovatsionnoye razvitiye – vazhneyshiy prioritet gosudarstva [Innovative development is the most important priority of the state] // Metally Evrazii. 2010. №2. S. 6–11.
9. McCauley J.W., Patel P., Chen M. AlON: a brief history of its emergence and evolution // Journal of the European Ceramic Society. 2009. Vol. 29. No. 2. P. 223–236.
10. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Keramicheskiye materialy v aviatsionnom dvigatelestroyenii (obzor) [Ceramic materials in aviation engineering (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 06. Available at: http://www.viam-works.ru (accessed: March 22, 2019). DOI: 10.18577/2307-6046-2018-0-12-54-61.
11. Liu X.J., Chen F., Zhang F. Hard transparent AlON ceramic for visible/IR windows // International Journal of Refractory Metals and Hard Materials. 2013. Vol. 39. P. 38–43.
12. Method of making aluminum oxynitride: US8211356B1; filed 18.07.00; publ. 03.07.12.
13. Wang J., Lin J., Zhang Z., Chen S. Effect of Y2O3 and La2O3 on the sinterability of g-AlON transparent ceramics // Journal of the European Ceramic Society. 2015. Vol. 35. No. 1. P. 23–28.
14. Li X., Luo J., Zhou Y. Spark plasma sintering behavior of AlON ceramics doped with different concentrations of Y2O3 // Journal of the European Ceramic Society. 2015. Vol. 35. No. 7. P. 2027–2032.
15. Vaganova M.L., Sorokin O.YU., Osin I.V. Soyedineniye keramicheskikh materialov metodom iskrovogo plazmennogo spekaniya // Aviatsionnyye materialy i tekhnologii. 2017. №S. S. 306–317. DOI: 10.18577/2071-9140-2017-0-S-306-317.
16. Kessel Kh.U. Tekhnologiya spekaniya v elektricheskom pole: «FAST» (field assisted sintering technology)-novyy metod spekaniya metallicheskikh i keramicheskikh materialov. Available at: http://www.fct-systeme.de/ (accessed: March 28, 2019).
17. Xidong W., Fuming W., Wenchao L. Synthesis, microstructures and properties of g-aluminum oxynitride // Materials Science and Engineering: A. 2003. Vol. 342. No. 1. P. 245–250.
18. Graham E.K., Munly W.C., McCauley J.W. Elastic properties of polycrystalline aluminum oxynitride spinel and their dependence on pressure, temperature, and composition // Journal of the American Ceramic Society. 1988. Vol. 71. No. 10. P. 807–812.
Samples of glass-ceramic material based on oxide charge containing samarium oxide and sodium-disilicate or sodium-tetraborate flux were made. Samarium was used as a simulator of trivalent actinoids to predict their structural position in the material. The obtained samples were investigated by x-ray phase anaise, electron microscopy and infrared spectroscopy. It is established that all materials regardless of the amount of fluxing additives consist of the same phases, but the samples obtained by annealing are better crystallized. The crystallization process takes place with the release of the intermediate phases in the final material, the predominant phase of britholite, which includes samarium.
2. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Keramicheskiye materialy v aviatsionnom dvigatelestroyenii (obzor) [Ceramic materials in aviation engineering (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 06. Available at: http://www.viam-works.ru (accessed: February 14, 2019). DOI: 10.18577/2307-6046-2018-0-12-54-61.
3. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: February 14, 2019). DOI: 10.18577/2307-6046-2014-0-6-8-8.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
6. Chaynikova A.S., Vaganova M.L., Shchegoleva N.E., Lebedeva Yu.E. Tekhnologicheskiye aspekty sozdaniya radioprozrachnykh steklokristallicheskikh materialov na osnove vysokotemperaturnykh alyumosilikatnykh sistem (obzor) [Technological aspects of fabrication of radiotransparent glass-ceramic materials based on high-temperature aluminosilicate systems (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 04. Available at: http://www.viam-works.ru (accessed: February 14, 2019). DOI: 10.18577/2307-6046-2015-0-11-4-4.
7. Vinokurov S.E., Kulyako Yu.M., Slyunchev O.M. et al. Magnesium Potassium Phosphate Matrices for Immobilization of High-Level Liquid Wastes // Radiochemistry. 2009. Vol. 51. No. 1. P. 65–72.
8. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. P. 986–991.
9. Stefanovskiy S.V., Ivanov I.A., Gulin A.N. Issledovaniye metodom IK spektroskopii struktury stekol, soderzhashchikh zolu sozhzhennykh radioaktivnykh otkhodov [The study by the method of IR spectroscopy of the glass structure containing the ash of burnt radioactive waste] // Zhurnal prikladnoy spektroskopii. 1992. T. 57. №1–2. S. 67–74.
10. Stefanovskiy S.V. EPR ionov zheleza, margantsa, medi i radiatsionnykh tsentrov v mnogokomponentnykh steklakh i steklokristallicheskikh materialakh [EPR of iron, manganese, copper ions and radiation centers in multicomponent glasses and glass-ceramic materials] // Zhurnal prikladnoy spektroskopii 1995. T. 62. №6. S. 150–156.
11. Malinina G.A. Stroyeniye i gidroliticheskaya ustoychivost samariy-, gafniy- i uransoderzhashchikh steklokristallicheskikh materialov dlya immobilizatsii tverdykh radioaktivnykh otkhodov: dis. ... kand. khim. nauk [The structure and hydrolytic stability of samarium, hafnium and uranium-containing glass-ceramic materials for immobilization of solid radioactive waste: thesis, Cand Sc. (Chem.)]. M., 2016. 117 s.
12. Melnikov V.S., Grechanovskaya E.E. Psevdomorfnoye zameshcheniye britolita Azovskogo tsirkoniy-redkozemelnogo mestorozhdeniya. Rol metamiktnosti i metosamotoza [Pseudomorphic substitution of the britholite of the Azov zirconium-rare-earth deposit. The role of metamictism and metamotosis] // Mineralogichniy zhurnal. 2010. №3. S. 11.
13. Li H., Hrma P., Vienna J.D. et al. Effects of Al2O3, B2O3, Na2O, and SiO2 on Nepheline Formation in Borosilicate Glasses: Chemical and Physical Correlations // Journal of Non-Crystalline Solids. 2003. Vol. 331. P. 202–216.
14. Infrakrasnyye spektry shchelochnykh silikatov / pod red. A.G. Vlasova, V.A. Florinskoy [Infrared spectra of alkali silicates / ed. by A.G. Vlasov, V.A. Florinskaya]. L.: Khimiya, 1970. 281 s.
15. Anfilogov V.N., Bykov V.N., Osipov A.A. Silikatnyye rasplavy [Silicate melts]. M.: Nauka, 2005. 357 s.
16. Chekhovskiy V.G. Interpretatsiya IK spektrov shchelochnoboratnykh stekol [Interpretation of IR spectra of alkaline borate glasses] // Fizika i khimiya stekla. 1985. T. 11. №1. S. 24–32.
17. Kolesova V.A. Kolebatelnyye spektry i struktura shchelochnoboratnykh stekol [Oscillatory spectra and the structure of alkaline borate glasses] // Fizika i khimiya stekla. 1986. T. 12. №1. S. 4–13.
In recent years there were many messages about development and use of a new class of materials – aero gels of various structure. Aero gels represent solid substance with very low density and a large number of the time filled with air or gas. Aero gel has low heat conductivity, index of refraction of light, dielectric permeability and speed of distribution of a sound. Modern technologies allowed to begin mass production of aero gels of dioxide of silicon which find more and more broad application at production of thermal insulation for industrial and construction use. This article submits the review of the heat-insulating materials intended for protection both from high, and from low temperatures, with use of aero gels.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Bez novykh materialov – net budushchego [Without new materials there is no future] // Metallurg. 2013. №12. S. 4–8.
4. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: April 03, 2019).
5. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: April 03, 2019). DOI: 10.18577/2307-6046-2015-0-1-3-3.
6. Buchilin N.V., Lyulyukina G.Yu. Osobennosti spekaniya vysokoporistykh keramicheskikh materialov na osnove oksida alyuminiya [Characteristics of sintering of highly porous alumina-based ceramic materials] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 40–46. DOI: 10.18577/2071-9140-2016-0-4-40-46.
7. Istomin A.V., Bespalov A.S., Babashov V.G. Pridaniye povyshennoy ognestoykosti teplozvukoizolyatsionnomu materialu na osnove smesi neorganicheskikh i rastitelnykh volokon [Adding increased resistance to heat and sound insulation of material based on mixture of inorganic and plant fibers] // Aviacionnye materialy i tehnologii. 2018. №4 (53). S. 74–78. DOI: 10.18577/2071-9140-2018-0-4-74-78.
8. Smirnov B.M. Aerogeli [Aerogels] // Uspekhi fizicheskikh nauk. 1987. T. 152. Vyp. 1. S. 133–157.
9. Danilyuk A.F., Kononov S.A., Kravchenko Ye.A., Onuchin A.P. Aerogelevyye cherenkovskiye detektory v eksperimentakh na vstrechnykh puchkakh [Airgel Cherenkov detectors in experiments on colliding beams] // Uspekhi fizicheskikh nauk. 2015. T. 185. №5. S. 540–548.
10. Lermontov S.A., Malkova A.N., Sipyagina N.A. i dr. Upravleniye gidrofobnostyu/gidrofilnostyu aerogeley na osnove SiO2: rol sverkhkriticheskogo rastvoritelya [Hydrophobicity / hydrophilicity control of SiO2-based aerogels: the role of a supercritical solvent] // Zhurnal neorganicheskoy khimii. 2015. T. 60. №10. S. 1283–1286.
11. Kovalko N.Yu., Kalinina M.V., Malkova A.N. i dr. Sintez i sravnitelnoye issledovaniye kserogeley, aerogeley i poroshkov na osnove sistemy ZrO2–Y2O3–CeO2 [Synthesis and Comparative Study of Xerogels, Aerogels, and Powders Based on the ZrO2–Y2O3–CeO2 System] // Fizika i khimiya stekla. 2017. T. 43. №4. S. 415–424.
12. Shindryayev A.V., Kozhevnikov Yu.Yu., Lebedev A.E., Menshutina N.V. Issledovaniye protsessa polucheniya teploizolyatsionnykh materialov na osnove aerogeley [Investigation of the Process of Obtaining Thermal Insulating Materials Based on Aerogels] // Uspekhi v khimii i khimicheskoy tekhnologii. 2017. T. 31. №6. S. 130–132.
13. Lebedev A.Ye. Modelirovaniye i masshtabirovaniye protsessov polucheniya aerogeley i funktsionalnykh materialov na ikh osnove: dis. … kand. tekhn. nauk [Modeling and scaling of the processes of obtaining aerogels and functional materials based on them: thesis, Cand. Sc. (Tech.)]. M., 156 s.
14. Ivanov S.I., Tsygankov P.Yu., Khudeyev I.I., Menshutina N.V. Polucheniye gidrofobnykh aerogeley [Production of hydrophobic airgel] // Uspekhi v khimii i khimicheskoy tekhnologii. 2015. T. 29. №4. S. 112–114.
15. Aerogel matrix composites: pat. US 5306555, No. 904777; filed 26.06.92; publ. 26.04.94.
16. Aerogel composites, process for producing the same and their use: pat. US 5789075, No. 793178; filed 17.08.95; publ. 04.08.98.
17. Flexible aerogel superinsulation and its manufacture: pat. US 6068882, No. 09/056413; filed 07.04.98; publ. 30.05.00.
18. Aerogel composite with fibrous batting: pat. US 7078359, No. 10/034296; filed 21.12.01; publ. 18.07.06.
19. Advanced gel sheet production: pat. US 7780890, No. 11/762654; filed 13.06.07, publ. 24.08.10.
20. Hydrophobic Аerogel Мaterials: pat. US 9868843, No. 14/873753; filed 02.10.15; publ. 16.01.18.
21. Teploizolyatsiya s aerogelyami [Thermal insulation with airgel] // Kompaniya Aspen Aerogels Inc.: ofits. sayt. Available at: www.aerogel.com (accessed: March 27, 2019).
22. Thermal insulation assemblies and methods the fabrication the same: pat. US 8357258, №12/983918; filed 04.01.11; publ. 22.01.13.
23. Laminate Thermal Insulation Blanket for Aircraft Applications and Process thereof:
pat. 20120308369, No. 13/118867; filed 31.05.11; publ. 06.12.12.
24. Preparation method of fiber-reinforced Al2O3–SiO2 aerogel material with wave transmission and heat insulation integrated function: pat. CH 106630931, No. 20161885973; filed 10.10.16; publ. 10.05.17.
25. Ceramic composite material of high temperature insulation sandwich structure and method for preparing ceramic composite material: pat. CH 10264235, No. 20121120442; filed 24.04.12; publ. 22.08.12.
26. External thermal insulation material and preparation method thereof: pat. CH 106584942, No. 201611114754; filed 07.12.16; publ. 24.06.17.
27. Silicon dioxide aerogel with high specific surface area and fast preparation method thereof: pat. US 106672985, No. 20171005206; filed 04. 01.17; publ. 17.05.17.
28. Preparation system and preparation method of gel composites: pat. CH 108381949, No. 201810130441; filed 08. 02.18; publ.10.08.18.
29. Packaging method for aerogel felts, and aerogel felt packaged product: pat. CH 108910112, No. 201810901381; filed 09.08.18; publ. 30.11.18.
30. Teploizolyatsiya s aerogelyami (Rossiya) [Thermal insulation with aerogels (Russia)] // OOO «TIM»: ofits. sayt. Available at: www.tim-firm.ru (accessed: April 04, 2019).
31. Teploizolyatsiya s aerogelyami (KNR) [Thermal insulation with aerogels (PRC)] // Kompaniya Joda: ofits. sayt. Available at: www.joda-tech.ru (accessed: April 04, 2019).
32. Preparation method of high-zirconia aerogel: pat. CH 108483493, No. 201810522250; filed 28.05.18; publ. 04.09.18.
33. Method for preparing alumina aerogel: pat. CH 108328635, No. 201810234361; filed 21.03.18; publ. 27.07.18.
34. Preparation of a metastable tetragonal zirconia aerogel: pat. US 20190023581, No. 15/518599; filed 13.10.15; publ. 24.01.19.
The paper discusses the methods of detection, differentiation of the type of defects and their localization in polymer composite materials using embedded fiber-optic sensors using direct fiber-optic interrogation with an increased sampling rate of sensors. The types and stages of occurrence of defects are considered and the stages of their growth are described. The specific features of the response form from fiber-optic sensors are presented, which allow the analysis of formation mechanisms and the identification of defects types that occur in polymer composites under impact effects of different nature.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [Formation of domestic space materials science] // Vestnik RFFI. 2017. №3. S. 97–105.
4. Kablov E.N., Startsev O.V., Medvedev I.M., Shelemba I.S. Volokonno-opticheskiye datchiki dlya monitoringa korrozionnykh protsessov v uzlakh aviatsionnoy tekhniki (obzor) [Fiber optic sensors for monitoring corrosion processes in units of aviation engineering (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 26–34. DOI: 10.18577/2071-9140-2017-0-3-26-34.
5. Sorokin K.V., Murashov V.V. Mirovye tendencii razvitiya raspredelennyh volokonno-opticheskih sensornyh sistem (obzor) [Global trends in development of distributed fiber-optic sensor systems (review)] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 90–94. DOI: 10.18577/2071-9140-2015-0-3-90-94.
6. Kablov E.N., Sivakov D.V., Gulyayev I.N. i dr. Primeneniye opticheskogo volokna v kachestve datchikov defopmatsii v polimepnykh kompozitsionnykh matepialakh [The use of optical fibers as sensors of deformation in polymeric composite materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2010. №3. S. 10–15.
7. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58..
8. Beklemisheva K.A., Petrov I.B. Modelirovaniye razrusheniya gibridnykh kompozitov pod deystviyem nizkoskorostnogo udara [Simulation of the destruction of hybrid composites under the action of low-speed impact] // Matematicheskoye modelirovaniye. 2018. T. 3. №11. S. 27–43.
9. Kudrin A.M., Karayeva O.A., Gabriyels K.S., Solopchenko A.V. Opredeleniye predela prochnosti polimernogo kompozitsionnogo materiala na szhatiye posle udara v sootvetstvii so standartom ASTM D 7137 [Determination of the tensile strength of a polymer composite material in compression after impact in accordance with ASTM D 7137] // Vestnik Voronezhskogo gos. tekhn. un-ta, 2018. T. 14. №2. S. 164–169.
10. Zhao G., Li S., Hu H. et al. Impact localization on composite laminates using fiber Bragg grating sensors and a novel technique based on strain amplitude // Optical Fiber Technology. 2018. Vol. 40. P. 172–179. DOI: 10.1016/j.yofte.2017.12.001.
11. Rezayat A., De Pauw B., Lamberti A. et al. Reconstruction of impacts on a composite plate using fiber Bragg gratings (FBG) and inverse methods // Composite Structures. 2016. Vol. 149. P. 1–10. DOI: 10.1016/j.compstruct.2016.03.065.
12. Kim H., Shin H., Lee M., Kwac L. Impact Properties of Laminating Type in EVA and CFRP // Indian Journal of Science and Technology. 2015. Vol. 8 (26). P. 1–7. DOI: 10.17485/ijst/2015/v8i326/80679.
13. Ostré B., Bouvet C., Minot C., Aboissière J. Experimental analysis of CFRP laminates subjected to compression after edge impact // Composite Structures. 2016. Vol. 152. P. 767–778. DOI: 10.1016/j.compstruct.2016.05.068.
14. García-Moreno I., Caminero M.Á., Rodríguez G.P., López-Cela J.J. Effect of Thermal Ageing on the Impact Damage Resistance and Tolerance of Carbon-Fibre-Reinforced Epoxy Laminates // Polymers. 2019. Vol. 11. No. 160. DOI: 10.3390/polym11010160.
15. Li H., Wang Z., Forrest J., Jiang W. Low-Velocity Impact Localization on Composites Under Sensor Damage by Interpolation Reference Database and Fuzzy Evidence Theory // Access IEEE. 2018. Vol. 6. P. 31157–31168. DOI: 10.1109/ACCESS.2018.2844802.
16. Jiang M., Sai Y., Geng X., Sui Q. Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures // Sensors. 2016. Vol. 16. No. 1770. P. 1–12. DOI: 10.3390/s16101770.
17. Sai Y., Zhao X., Wang L., Hou D. Impact Localization of CFRP Structure Based on FBG Sensor Network // Photonic Sensors. 2019. DOI: 10.1007/s13320-019-0546-9.
18. Kasharina L.A., Mahsidov V.V., Smirnv O.I., Ruzakov I.A. Differintsirovanie defektov v PKM po otkliku volokonno-opticheskih sensorov (obzor). Chast I [Identification of defects in polymeric composite materials by fiber Bragg grating response (review). Part I] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №2 (74). St. 10. Available at: http://www.viam-works.ru (accessed: March 21, 2019) DOI: 10.18577/2307-6046-2019-0-2-97-104.
19. Takeda N., Minakuchi S. Recent development of structural health monitoring technologies for aircraft composite structures in japan // Smart materials structure. 2003. No. 6. P. 456–467.
20. Stukhlyak P.D., Buketov A.V., Panin S.V. i dr. Strukturnyye urovni razrusheniya epoksidnykh kompozitnykh materialov pri udarnom nagruzhenii [Structural destruction levels of epoxy composite materials under shock loading] // Fizicheskaya mezomekhanika. 2014. T. 17. №2. C. 65–83.
21. Han G., Guan Z., Li X., Du S. Failure analysis of carbon fiber reinforced composite subjected to low velocity impact and compression after impact // Journal of Reinforced Plastics and Composites. 2016. DOI: 10.1177/0731684415627381.
22. Ganesh Babu M., Velmurugan R., Gupta N.K. Heavy mass projectile impact on thin and moderately thick unidirectional fiber/epoxy laminates // Latin American Journal of Solids and Structures. 2007. No. 4. P. 247–265.
23. Dellicolli A. Development of self-diagnostic composite structures using embedded fiber-bragg graying sensors: master of science dissertation. Michigan State University, 2012. URL: https://d.lib.msu.edu/etd/434 (дата обращения: 11.04.2019). DOI: 10.25335/M5VB6J.
24. Brian Jenkins R., Joyce P., Mechtel D. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors // Sensors. 2017. Vol. 17. No. 251. P. 2–18. DOI: 10.3390/s17020251.
Protective properties of non-sealed oxide coatings on 1163 (Al–Cu–Mg), V-1461 (Al–Cu–Li–Zn), V96С3pch (Al–Zn–Mg–Cu) aluminum alloys were investigated using electrochemical impedance spectroscopy (EIS), coupled with equivalent electrical circuits (EECs) fitting. Aluminum oxide coatings on these alloys had a different protective ability due to the influence of alloying elements. Coatings were tested in 3% NaCl solution and in a neutral salt spray (NSS) chamber (5% NaCl solution). When immersed in 3% NaCl solution, 1163 and V-1461 coatings’ barrier properties rapidly degraded, while V96С3pch coating had high barrier properties even after 1440 h of immersion. When tested with NSS, significant degradation was observed only for 1163 coating, while V-1461 and V96С3pch coatings had high barrier properties. Partial sealing of the anodic oxide layer was observed for these coatings during NSS testing, which leads to an increase of impedance modulus and an emergence of second time constant in impedance spectra.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
4. Chesnokov D.V., Antipov V.V., Kulyushina N.V. Metod uskorennyh laboratornyh ispytanij alyuminievyh splavov s celyu prognozirovaniya ih korrozionnoj stojkosti v usloviyah morskoj atmosfery [The method of accelerated laboratory tests of aluminum alloys for determination of their corrosion resistance in conditions of the sea atmosphere] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 (41). St. 10. Available at: http://www.viam-works.ru (accessed: May 07, 2017). DOI: 10.18577/2307-6046-2016-0-5-10-10.
5. He C.C., Heslin T.M. Preventing cracking of anodized coatings: NASA Technical Memorandum 104622. 1995. 18 p.
6. Sheng X.Y., Klampfl B.F., Barrera E.V. Effects of vacuum and vacuum-ultraviolet radiation on sulfuric acid anodized aluminum oxide coatings // Scripta Materialia. 1996. Vol. 35. P. 205–210. DOI: 10.1016/1359-6462(96)00106-6.
7. Sheng X.Y., Callahan D.L., Barrera E.V. The degradation of optical properties in a sulfuric acid anodized aluminum coating system exposed to vacuum or vacuum-ultraviolet radiation // Materials and Manufacturing Processes. 1997. Vol. 12. P. 215–228. DOI: 10.1080/10426919708935137.
8. Ma Y., Zhou X., Thompson G.E. et al. Anodic Film Formation on AA 2099-T8 Aluminum Alloy in Tartaric–Sulfuric Acid // Journal of the Electrochemical Society. 2011. Vol. 158. P. 17. DOI: 10.1149/1.3523262.
9. Ma Y., Zhou X., Thompson G.E. et al. Anodic film growth on Al–Li–Cu alloy AA2099-T8, Electrochimica Acta. 2012. Vol. 80. P. 148–159. DOI: 10.1016/j.electacta.2012.06.126.
10. Yang K., Song L., Chen Y. et al. Corrosion Behavior of Anodized 2195 Al–Li Alloys with Different Sealing Methods // Corrosion Science and Technology. 2014. Vol. 26. P. 494–498. DOI: 10.11903/1002.6495.2013.347.
11. Li D., Deng Y.P., Guo B.L., Li G.Q. Investigation of cerium salt/sulfuric acid anodizing technology for 1420 aluminum alloy // Materials Science Forum. 2000. Vol. 331. P. 1695–1699. DOI: 10.4028/www.scientific.net/MSF.331-337.1695.
12. Shen Y.Z., Li H.G., Tao H.J. et al. Effect of anodic films on corrosion resistance and fatigue crack initiator of 2060-T8 Al–Li alloy // International Journal of Electrochemical Science. 2015. Vol. 10. P. 938–946.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Mansfeld F., Kendig M.W. Electrochemical Impedance Spectroscopy of protective coatings // Materials and Corrosion. 1985. Vol. 36. P. 473–483. DOI: 10.1002/maco.19850361102.
15. Mansfeld F. Evaluation of Anodized Aluminum Surfaces with Electrochemical Impedance Spectroscopy // Journal of the Electrochemical Society. 1988. Vol. 135. P. 828. DOI: 10.1149/1.2095786.
16. Mansfeld F., Kendig M.W. Technical Note: Impedance Spectroscopy as Quality Control and Corrosion Test for Anodized Al Alloys // Corrosion. 1985. Vol. 41. P. 490–492. DOI: 10.5006/1.3583832.
17. Siva Kumar C., Rao V.S., Raja V.S. et al. Corrosion behavior of solar reflector coatings on AA 2024T3 – An electrochemical impedance spectroscopy study // Corrosion Science. 2002. Vol. 44. P. 387–393. DOI: 10.1016/S0010-938X(01)00082-8.
18. Franco M., Anoop S., Uma Rani R., Sharma A.K. Porous Layer Characterization of Anodized and Black-Anodized Aluminium by Electrochemical Studies // ISRN Corrosion. 2012. P. 1–12. DOI: 10.5402/2012/323676.
19. Wang S., Peng H., Shao Z. et al. Sealing of anodized aluminum with phytic acid solution // Surface and Coatings Technology. 2016. Vol. 286. P. 155–164. DOI: 10.1016/j.surfcoat.2015.12.024.
20. García-Rubio M., De Lara M.P., Ocón P. et al. Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films // Electrochimica Acta. 2009. Vol. 54. P. 4789–4800. DOI: 10.1016/j.electacta.2009.03.083.
21. López V., Bartolomé M.J., Escudero E. et al. Comparison by SEM, TEM, and EIS of Hydrothermally Sealed and Cold Sealed Aluminum Anodic Oxides // Journal of the Electrochemical Society. 2006. Vol. 153. Issue 3. V75–V82. DOI: 10.1149/1.2163811.
22. Carangelo A., Curioni M., Acquesta A. et al. Application of EIS to In Situ Characterization of Hydrothermal Sealing of Anodized Aluminum Alloys: Comparison between Hexavalent Chromium-Based Sealing, Hot Water Sealing and Cerium-Based Sealing // Journal of the Electrochemical Society. 2016. Vol. 163. Issue 10. C619–C626. DOI: 10.1149/2.0231610jes.
23. Veys-Renaux D., Chahboun N., Rocca E. Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behaviour and oxide properties // Electrochimica Acta. 2016. Vol. 211. P. 1056–1065. DOI: 10.1016/j.electacta.2016.06.131.
24. García-Rubio M., Ocón P., Curioni M. et al. Degradation of the corrosion resistance of anodic oxide films through immersion in the anodising electrolyte // Corrosion Science. 2010. Vol. 52. P. 2219–2227. DOI: 10.1016/j.corsci.2010.03.004.
25. Ma Y., Zhou X., Thompson G.E. et al. Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy // Corrosion Science. 2011. Vol. 53. P. 4141–4151. DOI: 10.1016/j.corsci.2011.08.023.
In this work the analysis of researches of influence of the contents and time of plastikation of carboxylated butadiene nitrile rubber for properties of fuel resistant epoxy and rubber coatings is carried out. Researches of absorption process of free films and coatings on metal plates in water and in fuel were conducted, physicomechanical characteristics (tensile strength at break σр and relative lengthening εр) on the basis of what the optimum contents and time of plastikation of rubber for achievement of required properties was chosen. It is established that the content of rubber and way of its preparation influences the major indicators for fuel resistant coatings.
2. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnyye alyuminiyevyye splavy i tekhnologii ikh soyedineniya dlya izdeliy aviakosmicheskoy tekhniki [Perspective aluminum alloys and technologies of their connection for aerospace products] // Tez. dokl. 2-oj Mezhdunar. konf. «Alyuminiy-21. Svarka i payka». Spb, 2012. St. 08.
3. Kablov E.N. Na perekrestke nauki, obrazovaniya i promyshlennosti [At the crossroads of science, education and industry] // Ekspert. 2015. №15 (941). S. 49.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Metody soyedineniya alyuminiyevykh kompozitsionnykh materialov (obzor) [Methods for joining of aluminum composite materials (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 35–42. DOI: 10.18577/2071-9140-2017-0-3-35-42.
6. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Osnovnyye napravleniya povysheniya ekspluatatsionnykh, tekhnologicheskikh i ekologicheskikh kharakteristik lakokrasochnykh pokrytiy dlya aviatsionnoy tekhniki [The main directions of improving the operational, technological and environmental performance of paint coatings for aircraft] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 96–102.
7. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
8. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
9. Chebotarevskiy V.V., Kondrashov E.K. Tekhnologiya lakokrasochnykh pokrytiy v mashinostroyenii [The technology of paint coatings in mechanical engineering]. M.: Mashinostroyeniye, 1978. S. 214–220.
10. Vorobyev G.Ya. Khimicheskaya stoykost polimernykh materialov [Chemical resistance of polymeric materials]. M.: Khimiya, 1981. 296 s.
11. Zuyev Yu.S. Razrusheniye polimera pod deystviyem agressivnykh sred. 2-ye izd. [The destruction of the polymer under the action of aggressive media. 2nd ed.]. M.: Khimiya, 1972. 232 s.
12. Chertkov Ya.V., Spirkin V.G. Primeneniye reaktivnykh topliv v aviatsii [The use of jet fuels in aviation]. M.: Transport, 1974. 160 s.
13. Narisava I. Prochnost polimernykh materialov. Per. s yap. [Strength of polymeric materials. Trans. from Jap.] M.: Khimiya, 1987. 364 s.
14. Chalykh A.E. Diffuziya v polimernykh sistemakh [Diffusion in polymer systems]. M.: Khimiya, 1987. 312 s.
15. Eskov A.A., Lebedeva T.A., Belova M.V. Lakokrasochnye materialy s ponizhennym soderzhaniem letuchih veshhestv (obzor) [Paint-and-lacquer materials with lowered content of volatile organic compounds (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 08. Available at: http://www.viam-works.ru (accessed: February 01, 2019). DOI: 10.18577/2307-6046-2015-0-6-8-8.
16. Kuznetsova V.A., Kuznetsov G.V., Shapovalov G.G. Issledovanie vliyaniya molekulyarnoj massy epoksidnoj smoly na adgezionnye, fiziko-mehanicheskie svojstva i erozionnuyu stojkost pokrytij [Investigation of epoxy resin molecular mass influence by physiomechanical property and erosive resistant of coatings] // Trudy VIAM: elektron. nauchn.-tehnich. zhurn. 2014. №8. St. 08. Available at: http://www.viam-works.ru (accessed: Novenber 19, 2018). DOI: 10.18577/2307-6046-2014-0-8-8-8.
17. Pavlyuk B.Ph. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviacionnye materialy i tekhnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
18. Sosnina S.A., Kuleshova I.D. Regulirovaniye vzaimodeystviya komponentov v napolnennykh lakokrasochnykh kompozitsiyakh [Regulation of the interaction of components in the filled paint and varnish compositions] // Lakokrasochnyye materialy i ikh primeneniye. 2011. №1. S. 60–62.
19. Kuznecova V.A., Kuznecov G.V. Tendencii razvitiya v oblasti toplivostojkih lakokrasochnyh pokrytij dlya zashhity toplivnyh kesson-bakov letatelnyh apparatov (obzor) [Development trends in the field of fuel resistant paintwork coatings for protection of integral fuel tanks of aircrafts (review)] // Trudy VIAM: elektron. nauchn.-tehn. zhurn. 2014. №11. St. 08. Available at: http://www.viam works.ru (accessed: December 07, 2018). DOI: 10.18577/2307-6046-2014-0-11-8-8.
20. Kochnova Z.A., Zhavoronok E.S., Kotova A.V. Osobennosti polucheniya epoksidno-kauchukovykh kompozitsiy na osnove zhidkikh butadiyen-nitrilnykh kauchukov i epoksidnykh oligomerov [Features of obtaining epoxy-rubber compositions based on liquid nitrile-butadiene rubbers and epoxy oligomers] // Lakokrasochnyye materialy i ikh primeneniye. 1998. №11. S. 27–28.
21. Sostav dlya pokrytiya po metallu: pat. 2260610S1 Ros. Federatsiya [Composition for coating on metal: pat. 2260610С1 Rus. Federation]; zayavl. 13.05.04; opubl. 20.09.05.
22. Sorokin M.F., Kochnova Z.A., Zakharova A.A., Golova N.A. Otverzhdeniye epoksidnykh oligomerov aminoalkoksisilanami [Curing of epoxy oligomers with aminoalkoxysilanes] // Lakokrasochnyye materialy i ikh primeneniye. 1986. №5. S. 24–28.
23. Berlin A.A., Basin V.E. Osnovy adgezii polimerov [Basics of adhesion of polymers]. M.: Khimiya, 1969. 319 s.
24. Kuznetsova V.A., Deyev I.S., Kondrashov E.K., Kuznetsov G.V. Vliyaniye otverditeley na mikrostrukturu i svoystva modifitsirovannogo epoksidnogo svyazuyushchego dlya toplivostoykogo pokrytiya [The effect of hardeners on the microstructure and properties of the modified epoxy binder for fuel resistant coating] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №11. S. 38–41.
25. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
27. Kochnova Z.A. Modifitsirovannyye epoksidnyye lakokrasochnyye materialy dlya antikorrozionnoy zashchity: dis. … d-ra khim. nauk [Modified epoxy paints for anticorrosion protection: thesis, Dr. Sc. (Tech.)]. M.: MKhTI, 1990. 464 s.
28. Sorokin M.F., Kochnova Z.A., Zakharova A.A., Golova N.A. Otverzhdeniye epoksidnykh oligomerov aminoalkoksisilanami [Curing of epoxy oligomers with aminoalkoxysilanes] // Lakokrasochnyye materialy i ikh primeneniye. 1986. №5. S. 24–27.
Influence of modes of dispersion process of pigmental suspensions on dispersion degree, surface roughness, also physicomechanical, adhesive properties, erosion resistance and wear resistance of cured paint coatings received on their basis is studied.
As extenders of filled structures of paint and varnish materials zinc oxide with fibrous (needle) structure and also finely divided quasicrystal extender are investigated. The optimum modes of dispersion providing maximum level of properties of cured coverings are chosen.
2. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnyye alyuminiyevyye splavy i tekhnologii ikh soyedineniya dlya izdeliy aviakosmicheskoy tekhniki [Perspective aluminum alloys and technologies of their connection for aerospace products] // Tez. dokl. 2-y Mezhdunar. konf. «Alyuminiy-21. Svarka i payka». SPb., 2012. St. 08.
3. Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Metody soyedineniya alyuminiyevykh kompozitsionnykh materialov (obzor) [Methods for joining of aluminum composite materials (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 35–42. DOI: 10.18577/2071-9140-2017-0-3-35-42.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
5. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing are the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Pavlyuk B.Ph. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
8. Ermilov P.I. Dispergirovaniye pigmentov [Dispersing pigments]. M.: Khimiya, 1971. 299 s.
9. Orlova O.V., Fomicheva T.N., Okunchikov A.Z., Kurskiy G.V. Tekhnologiya lakov i krasok [Technology varnishes and paints]. M.: Khimiya, 1980. 392 s.
10. Gerasimova L.G., Skorokhodova O.N. Napolniteli dlya lakokrasochnoy promyshlennosti [Fillers for the paint industry]. M.: LKM-press, 2010. 224 s.
11. Lipatov Yu.S. Mezhfaznyye yavleniya v polimerakh [Interphase phenomena in polymers]. Kiyev: Naukova dumka, 1980. 260 s.
12. Sosnina S.A., Kuleshova I.D. Regulirovaniye vzaimodeystviya komponentov v napolnennykh lakokrasochnykh kompozitsiyakh [Regulation of the interaction of components in the filled paint and varnish compositions] // Lakokrasochnyye materialy i ikh primeneniye. 2011. №1. S. 60–62.
13. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Osnovnyye napravleniya povysheniya ekspluatatsionnykh, tekhnologicheskikh i ekologicheskikh kharakteristik lakokrasochnykh pokrytiy dlya aviatsionnoy tekhniki [The main directions of improving the operational, technological and environmental performance of paint coatings for aircraft] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 96–102.
14. Genkin A.E. Oborudovaniye khimicheskikh zavodov [Chemical plants equipment]. M.: Vysshaya shkola, 1978. 361 s.
15. Planovskiy A.N., Ramm V.M., Kagan S.Z. Protsessy i apparaty khimicheskoy tekhnologii [Processes and apparatuses of chemical technology]. M.: Khimiya, 1988. 844 s.
16. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
17. Vekilov Yu.Kh., Isayev E.I. Struktura i fizicheskiye svoystva kvazikristallov [Structure and physical properties of quasicrystals] // Sb. dokl. Pervogo Vseros. soveshchaniya po kvazikristallam. M., 2003. S. 5–12.
18. Rybin V.V., Ulin I.V., Farmakovskiy B.F., Yurkov M.A. Izucheniye vozmozhnosti prakticheskogo ispolzovaniya kvazikristallov v kachestve funktsionalnykh pokrytiy [Studying the possibility of practical use of quasicrystals as functional coatings] // Sb. dokl. Pervogo Vseros. soveshchaniya po kvazikristallam. M., 2003. S. 53–56.
19. Kuznetsova V.A., Deev I.S., Zheleznyak V.G., Silaeva A.A. Iznosostojkoe lakokrasochnoe pokrytie s kvazikristallicheskim napolnitelem [Anti wear coating with quasicrystal filler] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3. St. 08. Available at: http://www.viam-works.ru (accessed: March 19, 2019). DOI: 10.18577/2307-6046-2018-0-3-68-76.
20. Kuznetsova V.A., Kondrashov E.K., Vladimirskiy V.N., Kuznetsov G.V. Dispersno-armirovannyye erozionnostoykiye pokrytiya [Dispersion-reinforced erosion-resistant coatings] // Aviatsionnyye materialy i tekhnologii. 2003. Vyp.: Lakokrasochnyye materialy i pokrytiya. S. 53–56.
21. Kuznetsova V.A., Kondrashov E.K., Semenova L.V., Kuznetsov G.V. O vliyanii formy chastits oksida tsinka na ekspluatatsionnyye svoystva polimernykh pokrytiy [On the influence of the form of zinc oxide particles on the performance properties of polymer coatings] // Materialovedeniye. 2012. №12. S. 12–14.
22. Semenova L.V., Rodina N.D., Nefedov N.I. Vliyanie sherohovatosti sistem lakokrasochnyh pokrytij na ekspluatacionnye svojstva samoletov [An effect of roughness of paint and varnish coating systems on service properties of aircraft] // Aviacionnye materialy i tehnologii. 2013. №2. S. 37–40.
23. Fabulyak F.G. Molekulyarnaya podvizhnost polimerov v poverkhnostnykh sloyakh [Molecular mobility of polymers in the surface layers]. Kiyev: Naukova dumka, 1983. 144 s.
The paper presents the analysis of biofouling and corrosion of steel in the black sea water by methods of RSMA and profilometry after their exposure to the Gelendzhik center of climatic tests for 10, 30, 40 and 60 days. As a result of the work, it was found that the greatest influence on the corrosion destruction of the surface of steel 20 samples is exerted by organisms of the invertebrate species – marine sponges of Calcispongiae class. Marine sponges in the process of life emit a large amount of carbon dioxide, which causes a local decrease in the pH of sea water, loss of hardness salts, which leads to the formation of galvanopairs on the surface of the steel sample and accelerate its electrochemical corrosion.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Gerasimenko A.A. Zashchita ot korrozii, stareniya i biopovrezhdeniy mashin, oborudovaniya i sooruzheniy: spravochnik [Protection against corrosion, aging and biodeterioration of machinery, equipment and facilities: a handbook]. M.: Mashinostroyeniye, 1987. T. 1. 688 s.
4. Gerasimenko A.A. Biokorroziya i zashchita metallokonstruktsiy. 1. Osobennosti protsessa biokorrozii. Mikrobnaya korroziya v prirodnykh sredakh [Biocorrosion and protection of metal structures. 1. Features of the process of bio-corrosion. Microbial corrosion in natural environments] // Praktika protivokorrozionnoy zashchity. 1998. №4. S. 14–26.
5. Arabey T.I., Beloglazov S.M. Uluchsheniye zashchitnogo deystviya grunta-modifikatora rzhavchiny na stal, korrodiruyushchuyu v morskoy vode i pod deystviyem Aspergillus niger [Improving the protective effect of the soil-modifier rust on steel, corroding in sea water and under the action of Aspergillus niger] // Praktika protivokorrozionnoy zashchity. 2010. Vyp. 1 (55). S. 17–22.
6. Reformatskaya I.I., Podobayev A.N., Ashcheulova I.I. i dr. Lokalnaya korroziya staley v usloviyakh ekvipotentsialnosti poverkhnosti [Local corrosion of steels under conditions of surface equipotentiality] // Praktika protivokorrozionnoy zashchity. 2011. Vyp. 3 (61). S. 55–63.
7. Gerasimenko A.A. Biokorroziya i zashchita metallokonstruktsiy. 2. Mikrobnaya korroziya oborudovaniya neftyanoy promyshlennosti [Biocorrosion and protection of metal structures. 2. Microbial corrosion of oil industry equipment] // Praktika protivokorrozionnoy zashchity. 2001. №2. S. 35–36.
8. Akhiyarov R.Zh., Laptev A.B., Ibragimov I.G. Povysheniye promyshlennoy bezopasnosti ekspluatatsii obektov neftedobychi pri biozarazhenii i vypadenii soley metodom kompleksnoy obrabotki plastovoy vody [Increase of industrial safety of operation of oil production facilities with bioinfection and salt precipitation by the method of complex treatment of formation water] // Neftepromyslovoye delo. 2009. №3. S. 44–46.
9. Kablov E.N. Materialy – osnova lyubogo dela [Materials – the basis of any business] // Delovaya slava Rossii. 2013. №2. S. 4–9.
10. Akhiyarov R.Zh., Bugay D.E., Laptev A.B. Problemy podgotovki oborotnykh i stochnykh vod predpriyatiy neftedobychi [Problems of preparation of circulating and waste waters of oil production enterprises] // Neftepromyslovoye delo. 2008. №9. S. 61–65.
11. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Termodinamicheskiye kharakteristiki stareniya polimernykh kompozitsionnykh materialov v usloviyakh realnoy ekspluatatsii [Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
12. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Nomoto N., Hatamoto M., Ali M. et al. Characterization of sludge properties for sewage treatment in a practical-scale down-flow hanging sponge reactor: Oxygen consumption and removal of organic matter, ammonium, and sulfur // Water Science and Technology. IWA Publishing. 2018. P. 608–616.
15. Song J.E., Kim A.R., Lee C.J. et al. Effects of purified alginate sponge on the regeneration of chondrocytes: In vitro and in vivo // Carbohydrate Polymers. Polymer Edition, 2013. P. 1470–1476.
16. Lazzeri L., Cascone M.G., Danti S. et al. PLLA sponge-like scaffolds: Morphological and biological characterization // Journal of Materials Science: Materials in Medicine, 2007. P. 1399–1405. DOI: 10.1007/s10856-006-0594-8, 10.1007/s10856-007-0127-0.
17. Zdarta J., Antecka K., Frankowski R. et al. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds // Science of the Total Environment. 2018. P. 784–795.
18. Sun L., Li B., Jiang D., Hou H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material // Colloids and Surfaces B: Biointerfaces. 2017. P. 89–96.
19. Zhuk N.P. Kurs teorii korrozii i zashchity metallov [Course of the theory of corrosion and protection of metals]. M.: Metallurgiya, 1976. 476 s.
On the basis of results of measurement of thermal diffusivity the method of laser flash with the temperature range from 20 to 1100°C multilayer heat-protective coatings received by thermal spraying dusting has establishes essential increase (from 40 to 50%) efficiency of heat-protective properties of coverings of having two ceramic layers: one – ZrO2+7%Y2O3, of other – ZrO2+7%Y2O3+oxides REM in comparison with the heat-protective coverings having one ceramic layer of – ZrO2+7%Y2O3. The same effect is observed on the coverings having one ceramic layer of ZrO2+7%Y2O3 of bigger thickness, alloyed by ytterbium and gadolinium oxides. Thermal conductivity of ceramic layer of ZrO2+7%Y2O3 made on technologies of atmospheriс plasma spraying, equal 1,5 W/(m·K) and is determined by technology of the magnetron drawing, equal 2,4 W/(m·K).
2. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnyye pokrytiya s keramicheskim sloyem ponizhennoy teploprovodnosti na osnove oksida tsirkoniya dlya lopatok turbiny vysokogo davleniya perspektivnykh GTD // Sovremennyye dostizheniya v oblasti sozdaniya perspektivnykh nemetallicheskikh kompozitsionnykh materialov i pokrytiy dlya aviatsionnoy i kosmicheskoy tekhniki: sb. dokl. konf. M.: VIAM, 2015. Ch. 1. Doklad №3. URL: http://conf.viam.ru/conf/172/proceedings (data obrashcheniya: 25.03.2019).
3. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
4. Chubarov D.A., Budinovskij S.A. Vybor keramicheskogo materiala dlya teplozashhitnyh pokrytij lopatok aviacionnyh turbin na rabochie temperatury do 1400°C [Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №4. St. 07. Available at: http://viam-works.ru (accessed: March 26, 2019). DOI: 10.18577/2307-6046-2015-0-4-7-7.
5. Budinovskij S.A., Smirnov A.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlja rabochih i soplovyh lopatok turbiny iz zharoprochnyh i intermetallidnyh splavov [Development of thermal barrier coatings for rotor and nozzle turbine blades made of nickel-base super- and intermetallic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.viam-works.ru (accessed: March 26, 2019). DOI: 10.18577/2307-6046-2015-0-4-5-5.
6. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60. DOI: 10.18577/2071-9140-2014-0-s5-56-60.
7. Budinovskij S.A., Chubarov D.A., Matveev P.V. . Sovremennye sposoby naneseniya teplozashhitnyh pokrytij na lopatki gazoturbinnyh dvigatelej (obzor) [Modern methods for deposition of thermal barrier coatings on GTE turbine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 38–44.
8. Tamarin Yu.A., Kachanov E.B. Svoystva teplozashchitnykh pokrytiy, nanosimykh elektronnoluchevoy tekhnologiyey [Properties of heat-shielding coatings applied by electron-beam technology] // Novyye tekhnologicheskiye protsessy i nadezhnost GTD. M.: Izd-vo TSIAM, 2008. Vyp. 7. S. 125–144.
9. Gayamov A.M., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Vybor zharostojkogo pokrytija dlya zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Selection of heat-resistant coating with metalloceramic barrier layer for protection of Re-Ru nickel-based superalloy] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №1. St. 01. Available at: http://viam-works.ru (accessed: March 26, 2019).
10. Matveyev P.V., Budinovskiy S.A. Issledovaniye svoystv zashchitnykh zharostoykikh pokrytiy dlya intermetallidnykh nikelevykh splavov tipa VKNA dlya rabochikh temperatur do 1300°S // Aviatsionnyye materialy i tekhnologii. 2014. №3. S. 22–26. DOI: 10.18577/2071-9140-2014-0-3-22-26.
11. Popov P.A., Solomennik V.D., Lomonova E.E. i dr. Teploprovodnost' monokristallicheskikh tverdykh rastvorov ZrO2–Y2O3 v intervale temperatur 50–300 K [Selection of a heat-resistant coating for a heat-resistant nickel rhenium-ruthenium-containing alloy of the VZhM4 grade] // Fizika tverdogo tela. 2012. T. 54. Vyp. 3. S. 615–618.
12. Yakovchuk K.Yu. Teploprovodnost i termotsiklicheskaya dolgovechnost' kondensatsionnykh termobaryernykh pokrytiy [Thermal conductivity and thermocyclic durability of condensation thermal barrier coatings] // Sovremennaya elektrometallurgiya. 2014. №4. S. 25–31.
13. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Teploprovodnost teplozashchitnykh legirovannykh oksidami RZM pokrytiy ZrO2–Y2O3, poluchennykh magnetronnym naneseniyem [Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
14. Movchan B.A., Yakovchuk K.Yu. Advanced graded protective coatings, deposited by EB-PVD // Materials Science Forum. 2007. No. 546–549. P. 1681–1688.
15. Zhong X., Zhao H., Zhou X. et al. Thermal shock behaviour of toughened gadolinium zirconate / YSZ double-layered thermal barrier coating // Journal of Alloy and Compounds. 2014. No. 593. P. 50–55.
16. ASTM E 1461. Standard Test Method for Thermal Diffusivity of Solids by the Flash Method. West Conshohocken: ASTM International, 2001. P. 1–8.
17. Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskij P.S. Raschetno-eksperimentalnye issledovaniya teplofizicheskikh svojstv [Computational and experimental investigations of thermophysical properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595.
18. Slifka A.J., Filla B.J. Thermal conductivity measurement of an electron-beam physical-vapor-deposition coating // Journal of Research of the National Institute of Standards and Technology. 2003. Vol. 108. P. 147–150.
19. Ratzer-Scheibe H.-J., Schulz U., Krell T. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings // Surface and Coatings Technology. 2006. Vol. 200. P. 5636–5644.
20. Jang B.K., Yoshiya M., Yamaguchi N., Matsubara H. Evaluation of thermal conductivity of zirconia coating layers deposited by EB-PVD // Journal of Materials Science. 2004. Vol. 39. P. 1823–1825.
Opportunities, features and restrictions of atomic force microscopy and X-ray reflectometry methods for thin-film systems on firm substrates (silicate glass, Si) and polymeric materials key structural parameters determination are described. Possible approaches to model and experimental data deviation minimization are shown in case of films parameters (density, thicknes, surfaces and interfaces roughness) measurement by x-ray reflectometry. Research results of thin films Ag, Al and Ti obtained by magnetron reactive deposition of metal targets are shown.
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing are the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii: sb. nauchno-informatsionnykh materialov. 3-e izd. [Trends and benchmarks of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2015. 720 s.
4. Kablov E.N., Solovyanchik L.V., Kondrashov S.V., Buznik V.M., Yurkov G.Y., Kushch P.P., Kichigina G.A., Kiryukhin D.P., Dyachkova T.P. Electroconductive hydrophobic polymer composite materials based on oxidized carbon nanotubes modified with tetrafluoroethylene telomers // Nanotechnologies in Russia. 2016. Vol. 11. No. 11–12. P. 782–790.
5. Bogatov V.A., Kondrashov S.V., Hohlov Yu.A. Poluchenie gradientnogo pokrytiya oksinit-rida alyuminija metodom reaktivnogo magnetronnogo raspyleniya [Receiving gradient covering oxi-nitride aluminum method of reactive magnetron sputtering] // Aviacionnye materialy i tehnologii. 2010. №3. S. 19–21.
6. Khokhlov Yu.A., Berezin N.M., Bogatov V.A., Krynin A.G., Popkov O.V. Kontrol reaktivnogo osazhdeniya ITO pokrytiya po emissionnomu spektru plazmy magnetronnogo razryada [Control of reactive deposition of ITO coating on the emission spectrum of the plasma magnetron discharge] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 67–71. DOI: 10.18577/2071-9140-2015-0-4-67-71.
7. Dermel I.V., Shashkeev K.A. Osobennosti magnetronnogo raspyleniya metallov v prisutstvii reaktivnykh gazov [Peculiarities of magnetron sputtering of metals in the presence of reactive gases] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №11 (59). St. 11. Available at: http://www.viam-works.ru (accessed: February 11, 2019). DOI: 10.18577/2307-6046-2017-0-11-11-11.
8. Khokhlov Yu.A., Berezin N.M., Bogatov V.A., Krynin A.G. Reaktivnoe magnetronnoe osazhdenie oksida indiya, legirovannogo olovom, s kontrolem rabochego davleniya [Reactive magnetron deposition of indium oxide alloyed with tin with the use of operating pressure control] // Aviacionnye materialy i tehnologii. 2015. №3. S. 60–63. DOI: 10.18577/2071-9140-2015-0-3-60-63.
9. Bogatov V.A., Krynin A.G., Shchur P.A. Vliyaniye velichiny natekaniya v vakuumnoy kamere na parametry reaktivnogo magnetronnogo raspyleniya i svoystva pokrytiya oksida titana [Influence of the leakage value in the vacuum chamber on the parameters of reactive magnetron discharge and properties of titanium oxide coatings] // Aviaсionnye materialy i tehnologii. 2019. №1 (54). S. 17–22. DOI: 10.18577/2071-9140-2019-0-1-17-22.
10. Fewster P.F. X-ray analysis of thin films and multilayers // Reports on Progress Physics. 1996. Vol. 59. No. 11. P. 1339–1407. DOI: 10.1088/0034-4885/59/11/001.
11. Shcherbina M.A., Chvalun S.N., Ponomarenko S.A., Kovalchuk M.V. Sovremennyye podkhody k issledovaniyu tonkikh plenok i monosloyev: rentgenovskaya reflektometriya, rasseyaniye v skolzyashchikh uglakh otrazheniya i metod stoyachikh rentgenovskikh voln [Modern approaches to the study of thin films and monolayers: X-ray reflectometry, scattering in sliding reflection angles and the method of standing X-ray waves] // Uspekhi khimii. 2014. T. 83. №12. S. 1091–1119.
12. Stoev K., Sakurai K. Recent theoretical models in grazing incidence x-ray reflectometry // The Rigaku Journal. 1997. Vol. 14. No. 2. P. 22–37.
13. Chizhov P., Levin E., Mityayev A., Timofeyev A. Pribory i metody rentgenovskoy difraktsii [Devices and methods of x-ray diffraction]. Mozhaysk: Mozhayskiy poligraficheskiy kombinat, 2011. 151 s.
14. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High resolution X-ray diffractometry and topography]. SPb.: Nauka, 2002. 256 s.
15. Parratt L.G. Surface studies of solids by total reflection of X-rays // Physical Review. 1954. Vol. 95. P. 359–369.
16. Fewster P.F. X-Ray Scattering from Semiconductors. London: Imperial College Press, 2003. 299 p.
17. Belyayeva A.O., Sidorova S.V., Mironov YU.M., Panfilov Yu.V. Formirovaniye nanorazmernykh plenok titana na kremnii [Formation of nanoscale films of titanium on silicon] // Vestnik MGTU im. N.E. Baumana. Ser. Priborostroyeniye. 2010. Spetsvypusk. S. 169–177.
18. Protopopov V.V., Valiev K.A., Imamov R.M. Comparative study of rough substrates for x-ray mirrors by the methods of x-ray reflectivity and scanning probe microscopy // Crystallography Reports. 1997. Vol. 42. P. 686–694.
19. Vostokov N.V., Gaponov S.V., Mironov V.L. i dr. Opredeleniye effektivnoy sherokhovatosti podlozhek iz stekla v rentgenovskom diapazone dlin voln po dannym atomno-silovoy mikroskopii [Determination of the effective roughness of glass substrates in the X-ray wavelength range according to atomic force microscopy data] // Poverkhnost. 2001. T. 1. S. 38–42.
The description of theoretical researches of objectivity of determination of sensitivity is provided in article on the image quality indicators (IQI) regulated by the international system of standards (ISO).
It is established that the assessment of sensitivity on IQI of the step opening type is more objective, than on the wire. IQI of the step opening type are more technological, than wire and can be made independently by the organization which is carrying out radiation monitoring, with the subsequent certification by metrological service.
2. GOST 7512–82. Kontrol nerazrushayushchiy. Soyedineniya svarnyye. Radiograficheskiy metod [State standard 7512–82. Nondestructive control. Welded joints. Radiographic method]// Gosudarstvennyye i mezhdunarodnyye standarty v oblasti nerazrushayushchego kontrolya: sb. dokumentov. M.: Nauch.-tekhnich. tsentr po bezopasnosti v promyshlennosti Gosgortekhnadzora Rossii, 2004. Ser. 28. Vyp. 6. S. 9–26.
3. ISO 16371-1. Non-destructive testing – Industrial computed radiography with storage phosphor imaging plates. Part 1: Classification of systems. 2011. 25 p.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N. K 80-letiyu VIAM [For the 80th anniversary of VIAM] // Zavodskaya laboratoriya. Diagnostika materialov. 2012. T. 78. №5. S. 79–82.
6. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials are the basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 1015.
7. Kosarina E.I., Generalov A.S., Demidov A.A. Problemy v gosudarstvennoy sisteme standartizatsii RF v oblasti radiatsionnogo nerazrushayushchego kontrolya [Questions of x-ray non-destructive testing in Russian State Standardization System] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №11 (71). St. 10. Available at: http://www.viam-works.ru (accessed: March 22, 2019). DOI: 10.18577/2307-6046-2018-0-11-86-92.
8. Golovinskiy P.A. Matematicheskiye modeli [Mathematical models]. M.: Nauchnaya i uchebnaya literatura, 2011. S. 56–73.
9. Moiseyev N.N. Matematicheskiye zadachi sistemnogo analiza: ucheb. posobiye. 2-e izd. [Mathematical problems of system analysis: tutorial, 2nd ed.]. M.: Librokom, 2012. 488 s.
10. Kalman R., Farb P., Arbib M. Ocherki po matematicheskoy teorii system [Essays on the mathematical theory of systems]. M.: Librokom, 2012. 354 s.
11. Sukharev A.G. Minimaksnyye algoritmy v teorii chislennogo analiza [Minimax algorithms in the theory of numerical analysis]. M.: Nauchnaya i uchebnaya literatura, 2010. 281 s.
12. ISO 19232-3–2013. Nerazrushayushchiye ispytaniya. Kachestvo radiograficheskikh snimkov. Ch. 3: Klassy kachestva izobrazheniya [ISO 19232-3-2013. Non-destructive testing. The quality of radiographic images. Part 3: Image quality classes]. M.: Standartinform, 2013. 9 s.
13. Kosarina E.I., Stepanov A.V., Krupnina O.A., Demidov A.A. Obyektivnost otsenki chuvstvitelnosti radiatsionnogo kontrolya po etalonam chuvstvitel'nosti, reglamentirovannym GOST 7512 [Objectivity of the assessment of the sensitivity of radiation monitoring according to the sensitivity standards regulated by Sate Standard 7512] // Kommentarii k standartam, TU, sertifikatam: prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2016. №5. S. 2–10.
14. Dobromyslov V.A. Radiatsionnyye metody nerazrushayushchego kontrolya [Radiation methods of non-destructive testing]. M.: Mashinostroyeniye, 1999. 104 s.
15. Klyuyev V.V., Sosnin F.R. Teoriya i praktika radiatsionnogo kontrolya: ucheb. posobiye dlya studentov vuzov [Theory and practice of radiation monitoring: tutorial for university students]. M.: Mashinostroyeniye, 1998. 170 s.
16. Sosnin F.R. Nerazrushayushchiy kontrol: spravochnik v 7 t. / pod obshch. red. V.V. Klyuyeva [Non-destructive testing: a reference book in 7 tons / gen. ed. V.V. Klyuev]. M.: Mashinostroyeniye, 2006. Kn. 2: Radiatsionnyy kontrol. 560 s.
17. Sasanpur M., Savvina N.A. Modelirovaniye protsessov rentgenografii v tselyakh otsenki vyyavlyayemosti defektov v metallicheskikh otlivkakh [Modeling of X-ray processes in order to assess the detection of defects in metal castings] // Vestnik MEI. 2009. №5. S. 7477.
18. Demidov A.A., Stepanov A.V., Turbin Ye.M., Krupnina O.A. O rezhimakh rentgenovskogo kontrolya, obespechivayushchikh formirovaniye radiatsionnykh izobrazheniy s zadannym kontrastom [The х-ray testing modes providing with radiation imaging with predetermined contrast] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 80–85. DOI: 10.18577/2071-9140-2016-0-4-80-85.
19. ISO 11699-1. Kontrol nerazrushayushchiy. Rentgenograficheskiye plenki. Ch. 1. Klassifikatsiya plenochnykh sistem dlya promyshlennoy radiografii. izd. 2-e [ISO 11699-1. Nondestructive control. X-ray films. Part 1. Classification of film systems for industrial radiography. 2nd ed.]. M.: Standartinform, 2018. 9 s.
20. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Tsifrovoye opticheskoye izobrazheniye i yego zavisimost ot radiatsionnogo izobrazheniya pri nerazrushayushchem kontrole metodom tsifrovoy rentgenografii [Digital optical pattern and its dependence on the radiation image at non-destructive testing by method of digital radiography] // Aviacionnye materialy i tehnologii. 2019. №1. S. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.