Articles
At present, high-temperature nickel alloys are widely used in the modern aviation industry and engine-building, which experience enormous thermal and power loads during operation. Performance and reliability are key indicators of the quality of materials made from these alloys. For the design and production of modern aircraft it is necessary to create new types of high-temperature alloys with ever better properties.
An extremely important component in the success of the production of high-quality nickel alloys is the tight control of their chemical composition, in particular the content of harmful impurities (which include P, As, Se, Cd, Cu, Zn, Te, Sb), which even in trace amounts have a negative effect on various properties of metals and alloys.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is the preferred method of multiple element analysis. The positive characteristics of this method are - high sensitivity, the ability to simultaneously determine a large number of elements, the accuracy of the analysis. When using this method, you must take into account the presence of multiple spectral interferences affecting the results of the analysis. To overcome the spectral interferences, one can use the equations of mathematical correction, as well as special reaction-collisional cells, which are an integral part of modern ICP-MS spectrometers.
In the work, the determination of P, As, Se, Cd, Cu, Zn, Te, Sb was carried out in three certified standard samples (CO) of the composition of the alloy type VZhM-5, made in the FSUE «VIAM». The use of a reaction-collision cell (KED measurement mode with a gas mixture of 8% hydrogen-92% helium) significantly reduced the interfering influence of oxide ions on the determination of Cu, Zn and Cd, but did not improve the results of the determination of As, Se, P, Te Sb. The&
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Petrushin N.V., Parfenovich P.I. Konstruirovaniye liteynykh zharoprochnykh nikelevykh splavov s polikristallicheskoy strukturoy [Construction of foundry heat-resistant nickel alloys with polycrystalline structure] // Metallovedeniye i termicheskaya obrabotka metallov. 2018. №2 (752). S. 47–55.
4. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
5. Echin A.B., Bondarenko Yu.A. Osobennosti struktury i svojstva nikelevogo monokristallicheskogo splava, poluchennogo v usloviyah peremennogo temperaturnogo gradienta na fronte rosta [Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://www.viam-works.ru (accessed: July 07, 2018). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
7. Shein E.A. Tendentsii v oblasti legirovaniya i mikrolegirovaniya zharoprochnykh monokristallicheskikh splavov na osnove nikelya (obzor) [Tendencies in the field of alloying and microalloying of heat resisting single-crystal alloys on the basis of nickel (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №3. St. 02. Available at: http://viam-works.ru (accessed: 07 July, 2018). DOI: 10.18557/2307-6046-2016-0-3-2-2.
8. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS // Mikrochim. Acta. 2001. Vol. 137. P. 149–155.
9. Alekseev A.V., Yakimovich P.V., Min P.G. Opredelenie primesej v splave na osnove niobiya metodom ISP-MS. Chast II [Determination of impurity in alloy based on Nb by ICP-MS. Part II] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 03. Available at: http://www.viam-works.ru (accessed: April 01, 2019). DOI: 10.18557/2307-6046-2015-0-7-3-3.
10. Pupyshev A.A., Epova E.N. Spektralnyye pomekhi poliatomnykh ionov v metode mass-spektrometrii s induktivno svyazannoy plazmoy [Spectral noise of polyatomic ions in the method of mass spectrometry with inductively coupled plasma] // Analitika i kontrol. 2001. T. 5. №4. S. 335–369.
11. Gao Y., Liu R., Yang L. Application of chemical vapor generation in ICP-MS: A review // Chinese Science Bulletin 2013. Vol. 58. No. 8. P. 1980–1991.
12. Leykin A.Yu., Yakimovich P.V. Sistemy podavleniya spektra'nykh interferentsiy v mass-spektrometrii s induktivno svyazannoy plazmoy [Systems of suppression of spectral interferences in mass spectrometry with inductively coupled plasma] // Zhurnal analiticheskoy khimii. 2012. T. 67. №8. S. 752–762.
13. Nie X., Liang Y. Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry // Journal of Central South University 2012. Vol. 19. P. 2416–2420.
14. Jakubowski N., Prohaska T., Rottmann L., Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry // Journal of Analytical Atomic Spectrometry 2011. Vol. 26. P. 693–726.
15. Liu H., Chen S., Chang P. yet al. Determination of bismuth, selenium and tellurium in nickel-based alloys and pure copper by flow-injection hydride generation atomic absorption spectrometry with ascorbic acid prereduction and cupferron chelation extraction // Analytica Chimica Acta. 2002. Vol. 459. P. 161–168.
16. Yakubenko E.V., Voytkova Z.A., Chernikova I.I., Ermolayeva T.N. Mikrovolnovaya probopodgotovka dlya opredeleniya Si, P, V, Cr, Mn, Ni, Cu, W metodom AES-ISP v konstruktsionnykh stalyakh [Microwave sample preparation for the determination of Si, P, V, Cr, Mn, Ni, Cu, W by AES-ICP method in structural steels] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №1. S. 12–15.
Internal stresses (thermal internal stresses) appearing in polyester binders during their curing are considered.
The studies were carried out with the use of polyester maleate binder, cured at room temperature, and fiberglass on its base.
Internal stresses were determined by the cantilever method.
Properties were determined depending on the relative humidity of the air in the room during curing, storage and the mode of heat treatment of the samples.
Data shown on the effect of air humidity and duration of curing at room temperature on the breaking strength of free films, obtained on the basis of a binder.
It is shown that at a relative air humidity φ=30–60% the strength of the samples during curing is weakly reduced (~9%). Curing the binder at an air humidity of φ=98% leads to a decrease in strength of ~19% in comparison with samples cured in a dry atmosphere (relative humidity of air φ=0%).
Heat treatment of the samples cured at room temperature at temperatures of 60, 80 and 120°C leads to an increase in their break strength. In particular, heat treatment at 120°C increases strength by 20–33%. At the same time, higher strength values are observed for samples formed under conditions of lower air humidity.
Data shown on the effect of relative humidity of the air during curing, storage and subsequent heat treatment of samples of fiberglass on the base of polyester maleate binder and fiberglass on their break strength. It is shown that the production and storage of fiberglass at high relative humidity (φ=98%) leads to a decrease in its strength (290 MPa) compared with samples received in dry atmospheric conditions (325 MPa). Removing water from p
2. Muhametov R.R., Petrova A.P., Ponomarenko S.A., Ahmadieva K.R., Pavlyuk B.F. Vliyanie tkanyh voloknistyh napolnitelej razlichnyh tipov na svojstva otverzhdennogo svyazuyushchego VS-2526K [Influence of woven fibrous fillers of various types on properties of cured binder VS-2526K] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 04. Available at: http//www.viam-works.ru (accessed: April 12, 2019). DOI: 10.18577/2307-6046-2018-0-3-28-36.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
5. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
6. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 12, 2019). DOI 10.18577/2307-6046-2014-0-4-6-6.
7. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M., Chursova L.V., Babin A.N. Svyazuyushchiye dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binders for non-autoclaving molding products from polymer composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
8. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials] // Polimernyye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
9. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
10. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Issledovaniye epoksidno-polisulfonovykh polimernykh sistem na osnove vysokoprochnykh kleyev aviatsionnogo naznacheniya [Study of epoxy-polysulfone polymer systems based on high-strength aviation-grade adhesives] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 7–12.
11. Vorobev A.E. Poliefirnyye smoly [Polyester resins] // Komponenty i tekhnologii: elektron. nauch.-tekhnich. zhurn. 2003. №6. St. 23. Available at: https://www.kit-e.ru (accessed: April 12, 2019).
12. Dholakiya B. Unsaturated Polyester Resin for Specialty Applications // Intech open access publisher. 2012. Ch. 7. P. 167–202. DOI: 10.5772/48479.
13. Gooch J.W. Vinyl Ester Resin // Encyclopedic Dictionary of Polymers. Springer, Science+Business Media, LLC, 2011. 794 p.
14. Chursova L.V., Grebeneva T.A., Panina N.N., Tsybin A.I. Svyazuyushchiye dlya polimernykh kompozitsionnykh materialov stroitelnogo naznacheniya [Binders for polymeric composite materials for construction] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 13–17.
15. Sanzharovskiy A.T. Metody opredeleniya mekhanicheskikh i adgezionnykh svoystv polimernykh pokrytiy [Methods for determining the mechanical and adhesive properties of polymer coatings]. M.: Nauka, 1974. 116 s.
16. Illarionov V.A., Nanushyan S.R. Priroda vnutrennikh napryazheniy v zashchitnykh kompaundakh [The nature of internal stresses in protective compounds] // Komponenty i tekhnologii: elektron. nauch.-tekhnich. zhurn. 2004. №7. St. 25. Available at: https://www.kit-e.ru (accessed: April 12, 2019).
17. Muzhichenko O.G., Plis N. Termomekhanicheskiye napryazheniya v sborochnykh mikrouzlakh [Thermomechanical stresses in assembly micro-sites] // Elektronika: nauka, tekhnologiya, biznes. 2000. №6. S. 63–64.
18. Sorina T.G., Polyakov D.K., Korobko A.P., Penskaya T.V. Vinilefirnyye smoly dlya poltruzionnoy tekhnologii [Vinyl ether resins for poltrusion technology] // Elektronika. 2002. №4. S. 49–51.
19. Evtushenko G.N., Evtushenko Yu.I., Simonov D.V. Perspektivy razvitiya proizvodstva nenasyshchennykh poliefirnykh smol [Prospects for the development of the production of unsaturated polyester resins] // Dvoynyye tekhnologii. 2010. №4. S. 65–69.
The studies of the microstructure of the polymer matrix in organoplastic on the basis of aramid fabrics and multicomponent epoxy binding modified epoxy resins showed that the polymer matrix phase characteristic of heterogeneity: a single phase of the fine structure characteristic of the microstructure of the epoxy polymer in the zones with a dense package of textile fibers (inside threads); two-phase structure characteristic of the microstructure of epoxy resins, modified polysulfone, in areas with less dense packing of fibers (between the yarns and layers of fabric). The formation of such a phase structure of the polymer matrix can be explained by the peculiarities of the process of impregnation of aramid fabric with a molten multi-component epoxy binder in the manufacture of prepreg. The uniform distribution of epoxy binder components in the reinforcing filler depends on the structural and chemical parameters of the components themselves (molecular weight, steric parameters, adsorption to the fiber, etc.), as well as on the density of the aramid fiber packaging in various micro volumes of the reinforcing filler (yarn, fabric, interlayer space). The larger phase formations of the polysulfone present in the melt of the epoxy binder obviously do not penetrate into the inter-fiber space inside the filament, where the density of the fibers is high, but are concentrated between the strands or layers of tissue. Studies of the microstructure confirmed that in the manufacture of organoplasty on the basis of aramid tissue and a molten multi-component epoxy binder occurs redistribution of the binder components in the inter-fiber space of the reinforcing filler with a predominant arrangement of the polysulfone modifier between the threads and the layers of tissue, leading to the formation of a two-phase structure.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya // Redkiye zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – the basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
6. Tikhonov I.V., Tokarev A.V., Shorin S.V. et al. Russian aramid fibres: past–present–future // Fibre Chemistry. 2013. No. 5. P. 1–8.
7. Zimon A.D. Adgeziya plenok i pokrytiy [Adhesion of films and coatings]. M.: Khimiya, 1977. 352 s.
8. Summ B.D., Goryunov Yu.V. Fiziko-khimicheskiye osnovy smachivaniya i rastekaniya [Physico-chemical basis of wetting and spreading]. M.: Nauka, 1976. 232 s.
9. Derombise G., Chailleux E., Forest B. et al. Long-term mechanical behavior of aramid fibers in seawater // Polymer Engineering & Science. 2011. Vol. 51. No. 7. P. 1366–1375.
10. De Ruijter C., Jager W.F., Li L., Picken S.J. Lyotropic rod-coil poly (amide-block-aramid) alternating block copolymers: phase behavior and structure // Macromolecules. 2006. Vol. 39. No. 13. P. 4411–4417.
11. Derombise G., Vouyovitch Van Schoors L., Davies P. Degradation of aramid fibers under alkaline and neutral conditions: Relations between the chemical characteristics and mechanical properties // Journal of Applied Polymer Science. 2010. Vol. 116. No. 5. P. 888–898.
12. Deyev I.S., Kurshev Ye.V., Lonskiy S.L., Zhelezina G.F. Vliyaniye dlitel'nogo klimaticheskogo stareniya na mikrostrukturu poverkhnosti epoksidnykh organoplastikov i kharakter yeye razrusheniya v usloviyakh izgiba [The effect of long-term climatic aging on the microstructure of the surface of epoxy organic plastics and the nature of its destruction under bending conditions] // Voprosy materialovedeniya. 2016. №3 (87). S. 104–114.
13. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramidnye organoplastiki novogo pokoleniya dlya aviacionnyh konstrukcij [Aramide organic plastics of new generation for aviation designs] // Aviacionnye materialy i tehnologii. 2017. №S. S. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
14. Bielawski R. Composite materials in military aviation and selected problems with implementation // Review of the Air Force Academy. 2017. No. 1 (33). P. 11–16.
15. Voynov S.I., Zhelezina G.F., Solovyeva N.A., Yamshchikova G.A. Vliyaniye vneshney sredy na svoystva organoplastika, poluchennogo metodom propitki pod davleniyem (RTM) [Environmental effects on properties of aramid fiber reinforced plastic manufactured by RTM method] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 72–78. DOI: 10.18577/2071-9140-2015-0-4-72-78.
16. Shuldeshova P.M., Zhelezina G.F. Aramidnyj sloisto-tkanyj material dlya zashhity ot ballisticheskih i udarnyh vozdejstvij [The aramid layered and woven material for protection against impact and ballistic influences] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 06. Available at: http://www.viam-works.ru (accessed: March 04, 2019). DOI: 10.18577/2307-6046-2014-0-9-6-6.
17. Deyev I.S., Kobets L.P., Novikov V.U., Kozitskiy D.V. Vliyaniye nekotorykh parametrov tekhnologii na strukturoobrazovaniye polimernoy matritsy v kompozitakh [The influence of some technology parameters on the structure formation of the polymer matrix in composites] // Materialovedeniye. 2002. №9. S. 10–21.
18. Kulagina G.S., Korobova A.V., Ilichev A.V., Zhelezina G.F. Fizicheskiye i fiziko-mekhanicheskiye svoystva antifriktsionnogo organoplastika na osnove kombinirovannogo tkanogo napolnitelya i epoksidnogo svyazuyushchego [Physical and physico-mechanical properties of antifriction organoplastics based on combined fabric filler and epoxy binder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 08. Available at: http://www.viam-works.ru (accessed: March 11, 2019). DOI: 10.18577/2307-6046-2017-0-10-8-8.
19. Li C.S., Zhan M.S., Huag X.C. et al. Hydrothermal aging mechanisms of aramid fibers via synchrotron small-angle X-ray scattering and dynamic thermal mechanical analysis // Journal of Applied Polymer Science. 2013. Vol. 128. No. 2. P. 1291–1296.
20. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
21. Kablov E.N. Marketing materialovedeniya, aviastroyeniya i promyshlennosti: nastoyashcheye i budushcheye [Marketing materials, aviation and industry: present and future] // Direktor po marketingu i sbytu. 2017. №5–6. S. 40–44.
22. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: March 04, 2019). DOI: 10.18577/2307-6046-2014-0-7-6-6.
The work is devoted to recent developments in producing of fast cure resins and prepregs based on it. Such class of materials include systems that are capable to cure in less than 20 minutes.
The article reviews the possible ways in fast cure resins creation, the latest developments in catalysts for rapid curing of resins are given. Literature data analysis about catalysts for rapid cure resins showed they can be either encapsulated in core shell either latent hardener.
In work presents data about firms and area of application of fast cure prepregs. These include such major companies like Hexcel, TenCate, Solvay and so on. The best experience of successful introduction have foreign car concern such as BMW, Audi, Nissan and so on. Also presented domestic experience of producing fast cure resin.
In article showed, that VIAM has experience in creation of fast cure resins based on phenolic resin for prepreg technology (RC-N, VCPH-16M). Also FSUE «VIAM» is developer of SMC-materials, their can impute to material of fast cure. Duration of production product consists of SMC-materials is less 30 seconds on 1 mm of product thickness at 140–150°С.
The basic advantages of introduction fast cure resins and prepacks are rapidity of the technological cycle, increasing productivity, reducing energetic costs and consumables, absence requirement in additional specific equipment
It is necessary to notice that FSUE «VIAM» has all necessary material resources and experiences to development fast cure resins and based on it prepregs with hard time 2–5 minutes.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials] // Rossiyskiye nanotekhnologii. 2013. T. 8. №3–4. S. 24–42.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
5. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
6. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
7. Hayase S., Ito T., Suzuki S., Wada M. Polymerization of cyclohexene oxide with Al(acac)3–silanol catalyst // Journal of Polymer Science. Polymer Chemistry Edition. 1981. Vol. 19. No. 10. P. 2541–2550.
8. Hayase S., Ito T., Suzuki S., Wada M. Polymerization of cyclohexene oxide with aluminum complex-silanol catalysts. Part III. Dependence of catalytic activity on bulkiness of silanol and its intramolecular hydrogen bond // Journal of Polymer Science. Polymer Chemistry Edition. 1981. Vol. 19. No. 11. P. 2977–2985.
9. Kamiya K., Suzuki N. A low-temperature fast curing latent catalyst microencapsulated in a porous resin structure // International Journal of Adhesion & Adhesives. 2016. Vol. 68. P. 333–340.
10. Wang Y., Lakho D.A., Yao D. Effect of Additives on the rheological Properties of Fast Curing epoxy resins // Journal of Silicate Based and Composite Materials. 2015. Vol. 67. No. 4. P. 132–134.
11. Xu Y.-J., Wang J., Tan Y. et al. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing // Chemical Engineering Journal. 2018. Vol. 337. P. 30–39.
12. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
13. Dow Automotive Systems. VORAFORC 5300 ultra-fast cure composite epoxy system Available at: http://msdssearch.dow.com/ (accessed: October 22, 2018).
14. Hexion Responsible Chemistry. Epoxy Systems for Automotive Structural Components. Available at: https://www.hexion.com/en-US/applications/composites/automotive/ structural/ (accessed: October 24, 2018).
15. Solvay. Available at: https://www.solvay.com/en/press-release/solvay-launches-new-rapid-cure-resin-system-mtr-760-manufacture-new-bmw-m4-gts-hoods (accessed: October 26, 2018).
16. Malnati P. Ultra-thin, preformed laminate designs enable CFRP decklid manufacture at lower-than-expected mass and at cycle times approaching mass-production speed // Composites World. 2015. Vol. 1. No. 6. P. 62–64.
17. Kovalenko A.V., Tundaykin K.O., Lukina A.I., Sokolov I.I. Struktura i svoystva SMC-materialov na osnove epoksivinilefirnogo i poliefirnogo oligomerov [Structure and SMC-materials properties on the basis of epoxy blamed ethers and poly ethers oligomers] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1 (25). St. 05. Available at: http://materialsnews.ru (accessed: April 01, 2019).
18. Groh F., Kappel E., Hühne C., Brymerski W. Investigation of fast curing epoxy resins regarding process induced distortions of reinforced composites // Composite Structures. 2018. Vol. 207. P. 923–934.
19. Tyunina A.V. Kompozitnyye materialy: proizvodstvo, primeneniye, tendentsii rynka [Composite materials: production, application, market trends] // Polimernyye materialy. 2018. №2. S. 27–29.
One of the promising areas of materials science is the search for methods and technologies for obtaining effective anti-icing and highly hydrophobic coatings of constructional and functional materials. This problem is particularly acute in the new industry of materials science - Arctic Materials Science, aimed at developing new and adapting previously developed materials for their use in the arctic and subarctic climate, characterized by lower temperatures, high values of relative humidity, a significant amount of temperature transition through 0 °С, strong winds. The most vulnerable man-made objects in such conditions are offshore oil platforms and mobile devices, for example, associated with rescue operations during the evacuation of people from the accident zone, often accompanied by ignition of petroleum products. The creation of such means dictates the need to develop or improve a large amount of various materials, among which an important place is occupied by the coatings in direct contact with the arctic environment. They should possess not only highly hydrophobic properties, but also ensure minimum adhesion of snow and ice to the surface of such devices.
The properties of hydrophobized samples of high-porous ceramic material of the type TZMK based on quartz fibers are analyzed, and the influence of the method of applying hydrophobic coatings on the contact angle and their surface profilometry is evaluated. Structural features have been studied and the uniformity of hydrophobic coating application based on low molecular weight fluoroligomer brand PPU-90 has been shown.
2. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Grashchenkov D.V., Solntsev S.S., Yermakova G.V., Prokopchenko G.M., Kablov E.N., Kuznetsov N.T. Polucheniye nitevidnykh kristallov karbida kremniya s primeneniyem zol-gel metoda v obeme SiC-keramiki [Preparation of whiskers of silicon carbide using the sol-gel method in the bulk of SiC ceramics] // Kompozity i nanostruktury. 2014. T. 6. №4. S. 198–211.
3. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Issledovaniye okislitelnoy stoykosti vysokotemperaturnogo pokrytiya na SiC-materiale pod vozdeystviyem vysokoentalpiynogo potoka [Investigation of the oxidative resistance of a high-temperature coating on a SiC material under the influence of a high-enthalpy flow] // Teplofizika vysokikh temperatur. 2017. T. 55. №6. S. 704–711.
4. Padgurskas Yu., Rukuyza R., Tsezyulis KH. i dr. Tribotekhnicheskiye kharakteristiki sistemy stal (zhelezo)–foleoks [Tribological characteristics of the system steel (iron) -foleox] // Treniye i iznos. 2006. T. 27. №3. S. 299–303.
5. Shelestova V.A., Zhandarov S.F., Danchenko S.G., Grakovich P.N. Modifitsirovaniye poverkhnosti uglerodnykh volokon ftorpolimerom v nizkotemperaturnoy plazme [Modifying the surface of carbon fibers with a fluoropolymer in a low-temperature plasma] // Fizika i khimiya obrabotki materialov. 2014. №4. S. 12–19.
6. Kiryukhin D.P., Bespalov A.S., Buznik V.M., Grashchenkov D.V. i dr. Primeneniye nizkotemperaturnoy postradiatsionnoy privivochnoy polimerizatsii politetraftoretilena dlya gidrofobizatsii poristykh keramicheskikh materialov na osnove oksidnykh volokon [Use of low-temperature post-radiation graft polymerization of polytetrafluoroethylene for the hydrophobization of porous ceramic materials based on oxide fibers] // Perspektivnyye materialy. 2018. №10. S. 54–62.
7. Kondrashov E.K., Nefedov N.I., Vereninova N.P., Kushch P.P., Kichigina G.A., Kiryukhin D.P., Buznik V.M. Modification of fluorocopolymer coatings by telomers to improve their hydrophobicity // Polymer Science. Series D. 2016. Vol. 9. No. 2. P. 212–218.
8. Bespalov A.S., Buznik V.M., Grashchenkov D.V. i dr. Gidrofobizatsiya poristykh keramicheskikh materialov s primeneniyem tekhnologii sverkhkriticheskogo dioksida ugleroda [Hydrophobization of porous ceramic materials using supercritical carbon dioxide technology] // Neorganicheskiye materialy. 2016. T. 52. №4. S. 431–437.
9. Smirnov M.A. Issledovaniye poroshkov politetraftoretilena i kompozitov na yego osnove metodom YAMR tverdogo tela: dis. … kand. fiz.-mat. nauk [nvestigation of polytetrafluoroethylene powders and composites based on it using solid state NMR: thesis, Cand. Sc. (Phys.&Math)]. Chernogolovka, 2014. S. 56–71.
10. Nefedov N.I., Haskov M.A., Petrova A.P., Buznik V.M. Issledovanie termicheskih svojstv ftorparafinov i gidrofobnyh pokrytij na ih osnove [Study of the thermal properties of fluorinated paraffins and hydrophobic coatings on their base] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2017. №2. St. 11. Available at: http://www.viam-works.ru (accessed: March 11, 2019). DOI: 10.18577/2307-6046-2017-0-2-11-11.
11. Kitaygorodskiy A.I. Molekulyarnyye kristally [Molecular crystals]. M.: Nauka, 1971. 424 s.
12. Babashov V.G. Nekotoryye primeneniya teploizolyatsionnykh materialov v mashinostroyenii [Some applications of thermal insulation materials in mechanical engineering] // Globalny nauchnyy potentsial. 2015. №1. S. 67–70.
13. Balinova Yu.A., Buchilin N.V., Babashov V.G., Kolyshev S.G. Polucheniye i sravnitelny analiz dissipativnykh svoystv voloknistykh kompozitsionnykh materialov sostavov ZrO2–SiO2 i ZrO2–Al2O3–SiO2 [Preparation and comparative analysis of the dissipative properties of fibrous composite materials of ZrO2–SiO2 and ZrO2–Al2O3–SiO2 compositions] // Ogneupory i tekhnicheskaya keramika. 2018. №6. S. 9–16.
14. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 11, 2019). DOI: 10.18577/2307-6046-2015-0-1-3-3.
15. Babashov V.G., Basargin O.V., Lugovoy A.A., Butakov V.V. Osobennosti makrostruktury teploizolyatsionnykh materialov na osnove mullitokorundovogo sostava [Features of the macrostructure of thermal insulation materials based on mullite-corundum composition] // Steklo i keramika. 2017. №7. S. 22–28.
16. Buchilin N.V., Lyulyukina G.Yu., Varrik N.M. Vliyanie rezhima obzhiga na strukturu i svojstva vysokoporistyh keramicheskih materialov na osnove mullita [Influence of the mode of roasting on structure and property of high-porous ceramic mullite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 11, 2019). DOI: 10.18577/2307-6046-2017-0-5-4-4.
17. Kablov E.N., Shchetanov B.V., Ivakhnenko Yu.A., Balinova Yu.A. Perspektivnyye armiruyushchiye vysokotemperaturnyye volokna dlya metallicheskikh i keramicheskikh kompozitsionnykh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Aviatsionnyye materialy i tekhnologii. 2005. №2. S. 3–5.
18. Papilin N.M., Kapitanov A.F., Volkov V.A., Gladyshev A.Yu., Babashov V.G., Varrik N.M. Obosnovaniye retseptury voloknistoy suspenzii [Justification of the formulation of fibrous suspensions] // Khimicheskiye volokna. 2009. №5. S. 31.
19. Shchetanov B.V., Ivakhnenko YU.A., Babashov V.G. Teplozashchitnyye materialy [Heat-shielding materials] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 25.
20. Ivakhnenko Yu.A., Babashov V.G., Basargin O.V., Butakov V.V. Model povedeniya voloknistogo materiala pri izgibe [Bending model of fibrous material] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №12. S. 12–15.
21. Babashov V.G., Lugovoy A.A., Karpov Yu.V. Vliyaniye plotnosti na teploizoliruyushchiye svoystva voloknistykh teploizolyatsionnykh vysokotemperaturnykh materialov [The effect of density on the insulating properties of fibrous heat-insulating high-temperature materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 08. Available at: http://www.materialsnews.ru (accessed: March 11, .2019).
22. Basargin O.V., Shcheglova T.M., Kolyshev S.G., Nikitina V.Yu., Maksimov V.G., Babashov V.G. Opredeleniye vysokotemperaturnykh prochnostnykh kharakteristik materialov iz oksidnoy keramiki [Determination of high-temperature strength characteristics of materials from oxide ceramics] // Steklo i keramika. 2013. №2. S. 6–9.
23. Bouznik V.M., Kirik S.D., Solovyov L.A., Tsvetnikov A.K. A crystal structure of ultra-dispersed form of polytetrafluoroethylene based on X-ray powder diffraction data // Powder Diffraction. 2004. Vol. 19. No. 2. P. 135–141.
24. Lebedev Yu.A., Korolev Yu.M., Polikarpov V.M. i dr. Rentgenograficheskiy fazovyy analiz politetraftoretilena [X-ray phase analysis of polytetrafluoroethylene] // Kristallografiya. 2010. T. 55. №4. S.651–656.
25. Boynovich L.B., Domantovskiy A.G., Emelyanenko A.M. i dr. Protivoobledenitelnye svoystva supergidrofobnykh pokrytiy na alyuminii i nerzhaveyushchey stali [Anti-icing properties of superhydrophobic coatings on aluminum and stainless steel] // Izvestiya Akademii nauk. Ser.: Khimicheskaya. 2013. №2. S. 383–390.
26. Kashevarov A.V., Levchenko V.S., Miller A.B. i dr. K gidrotermodinamike obledeneniya profilya v vozdushno-kristallicheskom potoke [To hydrothermodynamics of icing of the profile in the air-crystalline flow] // Zhurnal tekhnicheskoy fiziki. 2018. T. 88. №6. S. 808–814.
A significant increase in the use of composite materials, including in aerospace technology, makes the task of monitoring the state of structures very relevant. One of the most promising approaches is the use of fiber optic sensors as part of the monitoring system.
Currently, fiber optic sensors of various types are used - primarily interferometric sensors, sensors based on fiber Bragg grating and distributed sensors.
Monitoring of mechanical starain and temperature inside structures is one of the most frequently solved tasks with the help of fiber optic sensors, both with the use of fiber optic sensors based on Bragg gratings, and with the use of distributed fiber optic sensors. Monitoring of acoustic emission with the use of fiber optic sensors allows to detect the appearance of internal FRP damage, analyzing the sound waves coming from them, as well as to identify the location of these damages.
Now there is a new type of devices or systems – so-called Lab-in-fiber or laboratory in fiber. This is due to the possibility of forming the elements of electronics, optoelectronics and micromechanics in a thin and flexible fiber. These systems provide new opportunities when used as sensors for monitoring the state of structures, in robotics, in the diagnosis of diseases, in communication systems, etc. The complex development of such systems can lead to the creation of a fiber optic sensor that does not require an interrogator or contains it inside the fiber. Such a sensor can be embedded in the material and have no physical connections with the outside world, which will improve the manufacturability and reduce the cost of using such sensors. Advanced integrated systems formed in optical fiber will radically change the ways of using fiber optic sensors in aircraft materials and structures.
2. Kablov E.N. Shestoy tekhnologicheskiy uklad [The sixth technological structure] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Aviatsionnoye materialovedeniye: itogi i perspektivy [Aviation Materials: Results and Prospects] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Kompozitsionnye materialy v avtomobilnoy promyshlennosti (obzor) [Composite materials in automotive industry (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №6 (54). St. 07. Available at: http://www.viam-works.ru (accessed: March 19, 2019). DOI: 10.18577/2307-6046-2017-0-6-7-7.
6. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 12. Available at: http://www.viam-works.ru (accessed: March 19, 2019). DOI: 10.18577/2307-6046-2016-0-7-12-12.
7. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
8. Guo H., Xiao G., Mrad N., Yao J. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms // Sensors. 2011. Vol. 11. P. 3687–3705.
9. Mesquita E., Antunes P., Coelho F. Global overview on advances in structural health monitoring platforms // Journal of Civil Structural Health Monitoring. 2016. Vol. 6. P. 461–475.
10. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] // Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
11. Zhu P., Xie X., Sun X., Sotoac M.A. Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites // Composites Part B: Engineering. 2019. Vol. 168. P. 267–273.
12. Sante D.R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications // Sensors. 2015. Vol. 15. P. 18666–18713.
13. Liokumovich L.B. Volokonno-opticheskiye interferometricheskiye izmereniya. Ch. 1. Volokonno-opticheskiye interferometry [Fiber optic interferometric measurements. Part 1. Fiber-optic interferometers]. SPb.: Izd-vo Politekhn. un-ta, 2007. 110 s.
4. Yu H., Wang Y., Ma J., Zheng Z., Luo Z., Zheng Y. Fabry-Perot Interferometric High-Temperature Sensing Up to 1200°C Based on a Silica Glass Photonic Crystal Fiber // Sensors. 2018. Vol. 18. 273 p.
15. Islam M.R., Ali M.M., Lai M.-H. et al. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review // Sensors. 2014. Vol. 14. P. 7451–7488.
16. Lee B.H., Kim Y.H., Park K.S. et al. Interferometric Fiber Optic Sensors // Sensors. 2012. Vol. 12. P. 2467–2486.
17. Yoshino T., Kurosawa K., Itoh K., Ose T. Fiber-optic Fabry-Perot interferometer and its sensor applications // IEEE Journal of Quantum Electronics. 1982. Vol. 4. P. 626–665.
18. Vasilev S.A., Medvedkov I.O., Korolev I.G. i dr. Volokonnyye reshetki pokazatelya prelomleniya i ikh primeneniye [Fiber gratings of the refractive index and their application] // Kvantovaya elektronika. 2005. T. 35. №12. S. 1085–1103.
19. Vyalyshev A.I., Dobrov V.M., Dolgov A.A. i dr. Volokonno-opticheskiye datchiki dlya kontrolya parametrov sostoyaniya obektov i okruzhayushchey sredy v zadachakh monitoringa // Prirodoobustroystvo. 2014. №3. S. 32–37.
20. Kablov E.N., Startsev O.V., Medvedev I.M., Shelemba I.S. Volokonno-opticheskiye datchiki dlya monitoringa korrozionnykh protsessov v uzlakh aviatsionnoy tekhniki (obzor) [Fiber optic sensors for monitoring corrosion processes in units of aviation engineering (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 26–34. DOI: 10.18577/2071-9140-2017-0-3-26-34.
21. Ganziy D., Bang O., Rose B. Technology for Polymer Optical Fiber Bragg Grating Fabrication and Interrogation // DTU Fotonik. 2017. 173 p.
22. Cui J., Hu Y., Feng K. et al. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme // Sensors. 2015. Vol. 15. P. 16516–16535.
23. Ganziy D., Rose B., Bang O. Compact multichannel high-resolution micro-electro-mechanical systems-based interrogator for Fiber Bragg grating sensing // Applied Optics. 2017. Vol. 56. P. 3622–3627.
24. Zhang W., Li Y., Jin B. et al. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm // Sensors. 2018. Vol. 18. P. 1140.
25. Njegovec M., Donlagic D. High-resolution spectrally-resolved fiber optic sensor interrogation system based on a standard DWDM laser module // Optics Express. 2010. Vol. 18. P. 24195–24205.
26. Hartog A.H. An introduction to distributed optical fibre sensors. CRC Press, 2017. 442 r. 27. Bao X., Chen L. Recent Progress in Distributed Fiber Optic Sensors // Sensors. 2012. Vol. 12. P. 8601–8639.
28. Motil A., Bergman A., Tur M. State of the art of Brillouin fiber-optic distributed sensing // Optics & Laser Technology. 2016. Vol. 78. P. 81–103.
29. Wei H., Zhao X., Kong X. et al. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures // Sensors. 2014. Vol. 14. Р. 431–442.
30. Chandarana N., Martinez-Sanchez D., Soutis C., Gresil M. Early Damage Detection in Composites by Distributed Strain and Acoustic Event Monitoring // Procedia Engineering. 2017. Vol. 188. P. 88–95.
31. Lan C., Zhou W., Xie Y. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer // Sensors. 2018. Vol. 18. Р. 1–16.
32. Sai Y., Zhao X., Hou D., Jiang M. Acoustic Emission Localization Based on FBG Sensing Network and SVR Algorithm // Photonic sensors. 2017. Vol. 7. No. 1. P. 48‒54.
33. Fu T., Zhang Z., Liu Y., Leng J. Development of an artificial neural network for source localization using a fiber optic acoustic emission sensor array // Structural Health Monitoring. 2015. Vol. 14 (2). P. 168–177.
34. Tian Z., Yu L., Sun X., Lin B. Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging // SAGE Publications Structural Health Monitoring. 2019. Vol. 17. Issue 1. P. 334–344.
35. Jiang M., Sai Y., Geng X. et al. Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures // Sensors. 2016. Vol. 16. P. 1770.
36. Yu F., Okabe Y. Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000°C Environment // Sensors. 2017. Vol. 17. Р. 1–14.
37. Dyshenko V.S., Raskutin A.E., Zuev M.A. Dorozhnyj detektor v sistemah bezostanovochnogo avtomaticheskogo vzveshivaniya [The road detector in systems of Weigh-In-Motion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 12. Available at: http://www.viam-works.ru (accessed: February 27, 2019). DOI: 10.18577/2307-6046-2016-0-5-12-12.
38. Makhsidov V.V., Yakovlev N.O., Ilichev A.V., Shiyenok A.M., Firsov L.L. Opredeleniye deformatsii materiala konstruktsii iz PKM s pomoshch'yu integrirovannykh optovolokonnykh sensorov [Determination of the deformation of the material of the construction of the PCM with the help of integrated fiber-optic sensors] // Mekhanika kompozitsionnykh materialov i konstruktsiy. 2016. T. 22. №3. S. 402–413.
39. Makhsidov V.V., Reznikov V.A. Proyekty, napravlennyye na razrabotku tekhnologii vstroyennogo kontrolya konstruktsiy iz PKM [Projects, aimed to development of structural health monitoring system for CFRP structures] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №5–6 (28). St. 04. Available at: http://materialsnews.ru/ru/ (accessed: January 28, 2019).
40. Isayev V.G., Seregin N.G., Grechanaya N.N. Izmereniye deformatsiy konstruktivnykh elementov tekhnicheskikh sistem letatelnykh apparatov volokonno-opticheskimi ustroystvami [Measurement of deformations of structural elements of technical systems of aircraft by fiber-optic devices] // Informatsionno-tekhnologicheskiy vestnik. 2018. №2 (16). S. 14–24.
41. Vaynshteyn E.F., Solodysheva E.S., Krivolutskaya I.I. Eksperimentalnoye issledovaniye deformatsionnykh kharakteristik polimernykh i kompozitsionnykh materialov pri zadannykh postoyannykh vneshnikh usloviyakh [Experimental study of the deformation characteristics of polymeric and composite materials under given constant external conditions] // Konstruktsii iz kompozitsionnykh materialov. 2014. №1 (133). S. 52–56.
42. Sarbayev B.S., Smerdov A.A., Tairova L.P., Selezenev V.A. Issledovaniye deformirovannogo sostoyaniya konstruktsiy iz kompozitsionnykh materialov s pomoshch'yu volokonno-opticheskikh datchikov [Investigation of the deformed state of structures made of composite materials using fiber-optic sensors] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroyeniye. 2011. №S1. S. 39–51.
43. Ramakrishnan M., Rajan G., Semenova Y., Farrell G. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials // Sensors. 2016. Vol. 16. R. 1–27.
44. Sierra-Perez J., Torres-Arredondo M.A., Guemes A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison // Composite Structures. 2016. Vol. 135 P. 156–66.
45. Makhsidov V.V., Shiyenok A.M., Ioshin D.V., Reznikov V.A. Izmereniye deformatsii materiala s pomoshchyu volokonnykh breggovskikh reshetok (obobshchayushchaya statya) [Measurement of material deformation using fiber Bragg gratings (generalizing article)] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 82. №3. S. 54–60.
46. Raskutin A.E., Makhsidov V.V., Smirnov O.I., Kasharina L.A. Monitoring nagruzhennosti kompozitnoy konstruktsii arochnogo mosta na osnove volokonno-opticheskikh datchikov [Monitoring of the deformability of the composite structure of the arch bridge based on fiber-optic sensors] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 06. Available at: http://www.viam-works.ru (accessed: January 28, 2019). DOI: 10.18577/2307-6046-2018-0-3-49-59.
47. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains // Smart Materials and Structures. 2013. Vol. 22. P. 1–9.
48. Zhelezina G.F., Sivakov D.V., Gulyayev I.N. Vstroyennyy kontrol: ot datchikov do informkompozitov [Built-in control: from sensors to information composites] // Aviatsionnaya promyshlennost. 2008. №3. S. 46–50.
49. Fedotov M.Yu., Sorokin K.V., Goncharov V.A., Shiyenok A.M., Zelenskiy P.V. Vozmozhnosti sensornykh sistem i intellektualnykh PKM na ikh osnove [Possibilities of sensor systems and intelligent PCM based on them] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №2. S. 18–23.
50. Sun J., Guan Q., Liu Y., Leng J. Morphing aircraft based on smart materials and structures: A state-of-the-art review // Journal of Intelligent Material Systems and Structures. 2016. Vol. 27 (17). P. 2289–2312.
51. Sonnenfeld C., Sulejmani S., Geernaert T., Eve S. Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications // Sensors. 2011. Vol. 11. P. 2566–2579.
52. Yan W., Page A.G., Nguyen D.T. et al. Advanced Multi-Material Electronic and Optoelectronic Fibers and Textiles // Advanced materials. 2019. Vol. 31. Issue 1. P. 1–28.
53. Khudiyev T., Clayton J., Levy E. et al. Electrostrictive microelectromechanical fibres and textiles // Nature Communications. 2017. Vol. 8. Article number: 1435.
54. Haque M., Lee K., Ho S. et al. Chemical-assisted femtosecond laser writing of lab-in-fibers // Lab on Chip. 2014. Vol. 14. P. 3817–3829.
55. Danto S., Sorin F., Orf N. et al. Fiber Field-Effect Device Via In Situ Channel Crystallization // Advanced materials. 2010. Vol. 22. P. 4162–4166.
2. Kraev I.D., Popkov O.V., Shuldeshov E.M. i dr. Perspektivy ispolzovaniya kremniyorganicheskikh polimerov pri sozdanii sovremennykh materialov i pokrytiy razlichnykh naznacheniy [Prospects for the use of organosilicon elastomers in the development of modern polymer materials and coatings for various purposes] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №12. St. 05. Available at: http://www.viam-works.ru (accessed: September 28, 2018). DOI: 10.18577/2307-6046-2017-0-12-5-5.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Lakokrasochnyye pokrytiya. Istoriya aviatsionnogo materialovedeniya: VIAM – 75 let poiska, tvorchestva, otkrytiy / pod obshch. red. E.N. Kablov [Paint coatings. History of Aeronautical Materials Science: VIAM – 75 years of search, creativity, discoveries / gen. ed. by E.N. Kablov]. M.: Nauka, 2007. S. 326.
5. Kablov E.N., Semenova L.V., Eskov A.A., Lebedeva T.A. Kompleksnyye sistemy lakokrasochnykh pokrytiy dlya zashchity metallicheskikh polimernykh kompozitsionnykh materialov, a takzhe ikh kontaktnykh soyedineniy ot vozdeystviya agressivnykh faktorov [Complex systems of paint and varnish coatings for the protection of metal polymer composites, as well as their contact compounds from the effects of aggressive factors] // Lakokrasochnyye materialy i ikh primeneniye. 2016. №6. S. 34–37.
6. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
7. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
8. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Lakokrasochnye pokrytiya dlya zashhity metallicheskih i polimernyh kompozicionnyh materialov ot stareniya, korrozii i biopovrezhdeniya [Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration] // Aviacionnye materialy i tehnologii. 2017. №S. S. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
9. Eskov A.A., Lebedeva T.A., Belova M.V. Lakokrasochnye materialy s ponizhennym soderzhaniem letuchih veshhestv (obzor) [Paint-and-lacquer materials with lowered content of volatile organic compounds (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 08. Available at: http://www.viam-works.ru (accessed: September 28, 2018). DOI: 10.18577/2307-6046-2015-0-6-8-8.
10. Kuznetsova V.A., Semenova L.V., Kondrashov E.K., Lebedeva T.A. Lakokrasochnye materialy s ponizhennym soderzhaniem vrednyh i toksichnyh komponentov dlya okraski agregatov i konstrukcij iz PKM [Paint-and-lacquer materials with a low content of harmful and design of polymer composite materials] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2013. №8. St. 05. Available at: http://www.viam-works.ru (accessed: September 28, 2018).
11. Kuznetsova V.A., Zheleznyak V.G., Silayeva A.A. Vliyaniye mekhanicheskikh kharakteristik gruntovochnykh pokrytiy na ustoychivost sistem erozionnostoykikh dispersno-armirovannykh pokrytiy k tsiklicheskim mekhanicheskim nagruzkam [Influence of mechanical characteristics of priming coverings on stability to cyclic mechanical loads of systems of the erosion resistant disperse reinforced coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №6 (66). St. 07. Available at: http://www.viam-works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2018-0-6-59-67.
12. Kuznetsova V.A., Kuznetsov G.V. Tendentsii razvitiya v oblasti toplivostojkih lakokrasochnyh pokrytij dlya zashhity toplivnyh kesson-bakov letatelnyh apparatov (obzor) [Development trends in the field of fuel resistant paintwork coatings for protection of integral fuel tanks of aircrafts (review)] // Trudy VIAM: elektron. nauchn.-tehn. zhurn. 2014. №11. St. 08. Available at: http://www.viam works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2014-0-11-8-8.
13. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Osnovnyye napravleniya povysheniya ekspluatatsionnykh, tekhnologicheskikh i ekologicheskikh kharakteristik lakokrasochnykh pokrytiy dlya aviatsionnoy tekhniki [The main directions of improving the operational, technological and environmental performance of paint coatings for aircraft] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 96–102.
14. Klyukvina T.D., Vlasova K.A., Leonov A.A., Yashina S.A. Izuchenie mekhanizma obrazovaniya prochnosti v samotverdeyushchikh smesyakh s fenolnym svyazuyushchim (obzor) [Study of the mechanism of formation of strength in self-hardening mixtures with a phenolic binder (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3. St. 03. Available at: http://viam-works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2018-0-3-18-27.
15. Semyonova L.V., Bejder E.Ya., Petrova G.N., Nefedov N.I. Elektroizolyacionnye svojstva polimernyh pokrytij [Electro-insulative properties of polymer coatings] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2014. №8. St. 07. Available at: http://www.viam-works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2014-0-8-7-7.
16. Kuznetsova V.A., Kuznetsov G.V., Shapovalov G.G. Issledovanie vliyaniya molekulyarnoj massy epoksidnoj smoly na adgezionnye, fiziko-mehanicheskie svojstva i erozionnuyu stojkost pokrytij [Investigation of epoxy resin molecular mass influence by physiomechanical property and erosive resistant of coatings] // Trudy VIAM: elektron. nauchn.-tehnich. zhurn. 2014. №8. St. 08. Available at: http://www.viam-works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2014-0-8-8-8.
17. Kondrashov E.K. Termostoykiye kremniyorganicheskiye shpatlevki [Heat-resistant putties on base silicone resins] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 07. Available at: http://www.viam-works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2017-0-10-7-7.
The results of testing the paint coating system based on fluorine polyurethane enamel and primer with a reduced content of toxic pigments are presented. The kinetics of water absorption of fluorine polyurethane enamel was studied in comparison with serial polyurethane coating UR-1161 and coating based on Aеrodur C21 / 100UVR enamel. To confirm the possibility of using the coating system using a primer and fluorine polyurethane enamel as a finishing layer, studies of the properties of coating systems in the initial state and after exposure to aging factors, namely heat resistance and resistance to cyclical exposure to high humidity and temperature differences, were carried out. It was established that all the coating systems under study retain a high level of adhesion both in the initial state and after aging factors. At the same time, the impact strength of the coatings remains at the original level of 50 cm (5.0 J). However, a completely regular decrease in elasticity occurs, which is caused by a change in the chemical structure of the polymer matrix, breaking of macromolecular chains and the formation of additional bonds. The system of coatings based on fluorine polyurethane enamel is the most resistant to the effects of thermo-moisture aging; the reduction in elasticity does not exceed 15%, and for the coating system based on Aerodur C 21/100UVR enamel, the reduction in elasticity reaches 51%.
The use of the above system paintwork will reduce emissions of harmful substances during painting, as well as improve the weather resistance of coatings compared to the used enamels UR-1161 and Aerodur C 21/100 UVR. It should be noted that the use of matte primer will reduce the complexity of the painting process due to the lack of manual operation (sanding) of the outer surface, compared with the used primers EP-0215, VG-28 and Aerodur CF 37047.
2. Chebotarevskiy V.V., Kondrashov E.K. Tekhnologiya lakokrasochnogo pokrytiya v mashinostroyenii [Technology paintwork in engineering]. M: Mashinostroyeniye, 1978. 295 s.
3. Kuznetsova V.A., Semenova L.V., Kondrashov E.K., Lebedeva T.A. Lakokrasochnye materialy s ponizhennym soderzhaniem vrednyh i toksichnyh komponentov dlya okraski agregatov i konstrukcij iz PKM [Paint-and-lacquer materials with a low content of harmful and design of polymer composite materials] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2013. №8. St. 05. Available at: http://www.viam-works.ru (accessed: April 01, 2019).
4. Kablov E.N., Semenova L.V., Yeskov A.A., Lebedeva T.A. Kompleksnyye sistemy lakokrasochnykh pokrytiy dlya zashchity metallicheskikh i polimernykh kompozitsionnykh materialov, a takzhe ikh kontaktnykh soyedineniy ot vozdeystviya agressivnykh faktorov [Complex systems of paint and varnish coatings for protection of metal and polymer composite materials, as well as their contact compounds from the effects of aggressive factors] // Lakokrasochnyye materialy i ikh primeneniye. 2016. №6. S. 32–35.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Sistemy lakokrasochnyh pokrytij dlya vertoletnoj tehniki [Systems of paint coatings for helicopter equipment] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
7. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
8. Kuznecova V.A., Kuznecov G.V. Tendencii razvitiya v oblasti toplivostojkih lakokrasochnyh pokrytij dlya zashhity toplivnyh kesson-bakov letatelnyh apparatov (obzor) [Development trends in the field of fuel resistant paintwork coatings for protection of integral fuel tanks of aircrafts (review)] // Trudy VIAM: elektron. nauchn.-tehn. zhurn. 2014. №11. St. 08. Available at: http://www.viam works.ru (accessed: April 02, 2019). DOI: 10.18577/2307-6046-2014-0-11-8-8.
9. Kuznetsova V.A., Semenova L.V., Shapovalov G.G. Tendentsii razvitiya v oblasti antikorrozionnykh polimernykh sostavov dlya zashchity ot korrozii krepezhnykh soyedineniy kontaktnykh par kombinirovannykh konstruktsiy (obzor) [Development trends in the field of anticorrosive polymeric systems for corrosion protection of fixing connections of contact couples of combined structures (review)] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 25–31. DOI: 10.18577/2071-9140-2017-0-1-25-31.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kondrashov E.K., Kozlova A.A., Malova N.E. Issledovanie kinetiki otverzhdeniya ftorpoliuretanovyh emalej alifaticheskimi poliizocianatami razlichnyh tipov [Study and curing kinetics of fluoropolyurethane enamels by the use of aliphatic polysocyanates of various types] // Aviacionnye materialy i tehnologii. 2013. №1. S. 48–49.
12. Mitrofanova S.E. Dinamika proizvodstva poliuretanovykh lakokrasochnykh materialov na mirovom i rossiyskom rynkakh [Dynamics of production of polyurethane paints and varnishes in the world and Russian markets] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. №14. S. 304–305.
13. Malova N.E., Kondrashov E.K., Vereninova N.P., Kozlova A.A. Termostoykaya atmosferostoykaya ftorpoliuretanovaya emal [Heat-resistant weatherproof fluoride polyurethane enamel] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 28–30. DOI: 10.18577/2071-9140-2014-0-S3-28-30.
14. Kablov E.N. Marketing materialovedeniya, aviastroyeniya i promyshlennosti: nastoyashcheye i budushcheye [Marketing materials, aviation and industry: present and future] // Direktor po marketingu i sbytu. 2017. №5–6. S. 40–44.
15. Voytovich V.A. Lakokrasochnyye materialy s ftorirovannymi komponentami [Paintwork materials with fluorinated components] // Lakokrasochnyye materialy: novinki otrasli. 2013. №4. S. 23–27.
16. Nefyodov N.I., Semyonova L.V. Nanesenie lakokrasochnyh pokrytij metodom «syroj po syromu» [The application of paint and varnish coatings by method «crude on crude»] // Aviacionnye materialy i tehnologii. 2013. №4. S. 39–42.
17. Semenova L.V., Rodina N.D., Nefedov N.I. Vliyanie sherohovatosti sistem lakokrasochnyh pokrytij na ekspluatacionnye svojstva samoletov [An effect of roughness of paint and varnish coating systems on service properties of aircraft] // Aviacionnye materialy i tehnologii. 2013. №2. S. 37–40.
Magnetic particle inspection is one of the most common methods of non-destructive testing of steel parts and at the same time has a high sensitivity. The detection of defects by the magnetic particle inspection method is influenced by many different factors: the magnetic characteristics of the material of the testing object, the method of control, the shape and size of the testing object, the types of magnetization and magnetizing current, the purity of processing and the surface roughness of the testing object, the presence on the surface of the testing object of contamination or coatings. The reliability of the inspection results directly depends on the reliability of the equipment and the quality of the flaw detection media.
To assess the performance of magnetic particle flaw detectors and media, test pieces are used-parts or special products with artificial or natural defects such as discontinuity of the material in the form of narrow flat grooves, cylindrical holes or cracks of different origin. The use of test pieces for magnetic particle inspection allows you to quickly and effectively assess the performance of flaw detectors and magnetic media. To check each type of magnetization, a specific type of test pieces is provided.
Ensuring the reliable operation of magnetic particle inspection means is possible only with the understanding and observance of the technology of application of control samples for the intended purpose it is unacceptable to use test pieces intended only for testing the performance of magnetic media, for testing the performance of magnetic flaw detectors, and vice versa.
In addition to the performance of the equipment and used indicator materials, one of the key factors affecting the detection of defects in magnetic particle testing are the magnitude and direction of the magnetizing field. Evaluatio
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Rossiya na rynke intellektualnykh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28 (951). S. 48–51.
4. Lutsenko A.N., Perov N.S., Chabina E.B. Novye etapy razvitiya Ispytatelnogo tsentra [The new stages of development of Testing Center] // Aviacionnye materialy i tehnologii 2017. №S. S. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
5. Murashov V.V. Ocenka stepeni nakopleniya mikropovrezhdenij struktury PKM v detalyah i konstrukciyah nerazrushayushhimi metodami [Assessment of accumulation degree of microdamages of PCM structure in structures determined by nondestructive methods] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 73–81. DOI: 10.18577/2071-9140-2016-0-3-73-81.
6. Boychuk A.S., Generalov A.S., Stepanov A.V. Nerazrushayushhij kontrol ugleplastikov na nalichie nesploshnostej s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [NDT monitoring of CFRP structural health by ultrasonic phased array technique] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 84–89. DOI: 10.18577/2071-9140-2015-0-3-84-89.
7. GOST R ISO 9934-2–2011. Kontrol nerazrushayushchiy. Magnitoporoshkovyy metod. Chast 2. Defektoskopicheskiye materialy [State Standard R ISO 9934-2-2011. Nondestructive control. Magnetic particle method. Part 2. Flaw detection materials]. M.: Standartinform, 2013. 20 s.
8. Nerazrushayushchiy kontrol: spravochnik v 7 t. / pod obshch. red. V.V. Klyuyeva [Non-destructive testing: a reference book in 7 vol. / gen. ed. by V.V. Klyuev]. M.: Mashinostroyeniye, 2004. T. 6. Kn. 1: Magnitnyye metody kontrolya / V.V. Klyuyev, V.F. Muzhitskiy, E.S. Gorkunov, V.E. Shcherbinin. 832 s.
9. Gerasimov V.G., Pokrovskiy A.D., Sukhorukov V.V. Nerazrushayushchiy kontrol v 5 kn. [Non-destructive testing in 5 books]. M.: Vysshaya shkola, 1992. Kn. 3: Elektromagnitnyy kontrol: prakt. posobiye / pod red. V.V. Sukhorukova. 312 s.
10. Bondareva V.S., Pavlova T.D. Trebovaniya k magnitoporoshkovomu kontrolyu v yevropeyskikh normakh i rossiyskikh standartakh [Requirements for magnetic particle inspection in European norms and Russian standards] // Kommentarii k standartam, TU, sertifikatam: yezhemesyachnoye prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2013. №11. S. 14–18.
11. Shelikhov G.S. Magnitoporoshkovaya defektoskopiya detaley i uzlov Magnetic particle inspection of parts and assemblies. M.: Gos. predpriyatiye Nauch.-tekhnich. tsentr «Ekspert», 1995. 224 s.
12. GOST R 56512–2015. Kontrol nerazrushayushchiy. Magnitoporoshkovyy metod. Tipovyye tekhnologicheskiye protsessy [State Standard R 56512–2015. Nondestructive control. Magnetic particle method. Typical technological processes]. M.: Standartinform, 2016. 56 s.
13. ASTM E1444/E1444M-16e1. Standart practive for magnetic particle testing. ASTM International, West Conshohocken, PA, 2016. 22 p
14. Pavlova T.D., Kadosov A.D., Stepanov A.V., Golovkov A.N. Vliyaniye kharakteristik magnitnykh indikatornykh materialov na chuvstvitelnost magnitoporoshkovogo kontrolya // Kommentarii k standartam, TU, sertifikatam: yezhemesyachnoye prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2016. №6. S. 12–15.
15. HELLING Rossiya. Available at: http://www.helling-russia.ru (accessed: March 26, 2019).
16. Reference block type 1 according to DIN EN ISO 9934-2. Available at: http://www.karldeutsch.de/PDF/Produktinformationen/PI%20FLUXA%20Vergleichskörper%201%206904.001%20d%20e%202017-09-06.pdf (accessed: March 26, 2019).
17. Reference block type 2 according to DIN EN ISO 9934-2. Available at: http://www.karldeutsch.de/PDF/Produktinformationen/PI%20FLUXA%20Vergleichskörper%202%20d%20e%202017-08-17.pdf (accessed: March 26, 2019).
18. NPTS «Kropus». Available at: http://www.kropus.com (accessed: March 26, 2019).
19. Magnaflux Non-Destructive Testing Product & Equipment. Available at: https://www.magnaflux.com/Magnaflux (accessed: March 26, 2019).
20. Magnetic Particle Test Bar Product Data Sheet. Available at: https://www.magnaflux.com/Files/Product-Data-Sheets/Accessories/Magnetic-Particle-Test-Bar_Product-Data-Sheet_English.pdf (accessed: March 26, 2019).
21. Tool Steel Ring Product Data Sheet. Available at: https://www.magnaflux.com/Files/Product-Data-Sheets/Accessories/Tool-Steel-Ring__Product-Data-Sheet_English.pdf (accessed: March 26, 2019).
22. Quantitative Quality Indicator Test Piece Shims. Available at: https://www.magnaflux.com/Files/Product-Data-Sheets/Accessories/Quantitative-Quality-Indicator-Test-Pieces_Product-Data-Sheet_English.pdf (accessed: March 26, 2019).
23. Laminated Magnetic Flux Indicator Strips. Available at: https://www.magnaflux.com/Files/Product-Data-Sheets/Accessories/Magnetic-Flux-Indicators_Product-Data-Sheet_English.pdf (accessed: March 26, 2019).
The paper analyzes the results of tests to assess the resistance of marine structural materials to biological growth and the effects of corrosive factors of the marine environment. Information about the influence of the corrosive environment on the mechanical properties of welded joints of steels under various conditions of contact with seawater is presented, and it is shown that the most aggressive in terms of corrosive wear is the zone of variable wetting. The main environmental factors affecting the corrosion processes of objects operating in the marine environment were determined: atmospheric moisture, corrosive agents of the marine atmosphere (carbon dioxide, hydrogen sulfide, sulfur dioxide, etc.), water flow rates and physicochemical water parameters (salinity, temperature, dissolved oxygen, pH, and ionic composition), which can vary depending on the location and depth of the reservoir. A number of marine metallic materials were analyzed to preserve their working capacity and durability at various flow rates of moving sea water. The work raises the question of the need to develop not only regulatory documents governing the conduct of tests in the marine environment, but also energy-saving and durable bench installations for conducting simulation tests. In addition, based on the conducted literary analysis of studies in seawater, the paper notes the problem of the heterogeneity of the results obtained and often the impossibility of comparing the results of experiments, due to the lack of uniform standards for testing. It is shown that in order to obtain reliable information about the durability of Russian-purpose materials, it is necessary to conduct research in the conditions that most fully and reliably imitate operational: materials testing, conjugation of sea water, tests at different depths of natural sea water, tests depending on the expected conditions of operation of the material in the product, including the simultaneou
2. Laptev A.B., Kolpachkov E.D., Kurs M.G., Lebedev M.P., Lutsenko A.N. Razrabotka metodiki opredeleniya resursa ekspluatatsii konstruktsiy iz polimernykh kompozitsionnykh materialov [Development of methods for determining the service life of structures made of polymer composite materials] // Plasticheskiye massy. 2018. №9–10. S. 36–40.
3. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57. DOI: 10.18577/2071-9140-2014-0-1-51-57.
7. Korogodova I.V., Boyko I.N. Aktualnye problemy zashchity dvigateley ot vozniknoveniya korrozii, ekspluatiruyemykh na samoletakh v morskikh usloviyakh i baziruyushchikhsya na pribrezhnykh aerodromakh [Actual problems of protecting engines against the occurrence of corrosion, operated on airplanes in marine conditions and based on coastal airfields] // Potentsial sovremennoy nauki. 2015. №1 (9). S. 25–31.
8. Varchenko E.A., Kurs M.G. Naturnyye ispytaniya metallicheskikh materialov v morskoy vode: klyuchevyye podkhody k otsenke stoykosti k korrozii i biopovrezhdeniyu [Natural tests of metal materials in sea water: key approaches to estimation of resistance to corrosion and biodeterioration] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №11 (59). St. 12. Available at: http://www.viam-works.ru (accessed: November 15, 2018). DOI: 10.18577/2307-6046-2017-0-11-12-12.
9. Laptev A.B., Lutsenko A.N., Kurs M.G., Bukharev G.M. Opyt issledovaniy biokorrozii metallov [Experience in the study of the biocorrosion of metals] // Praktika protivokorrozionnoy zashchity. 2016. №2 (80). S. 36–57.
10. Bukharev G.M., Laptev A.B., Yakovenko T.V., Bobyreva T.V. Rol otsenki biologicheskogo faktora v obespechenii bezopasnoy ekspluatatsii slozhnykh tekhnicheskikh sistem v techeniye zhiznennogo tsikla [The role of the assessment of the biological factor in ensuring the safe operation of complex technical systems during the life cycle] // Klimat-2017. Problemy otsenki klimaticheskoy stoykosti materialov i slozhnykh tekhnicheskikh sistem: sb. dokl. II Vseros. nauch.-tekhnich. konf. M.: VIAM, 2017. S. 21–30 (CD).
11. Kovalchuk Yu.L., Ilin I.N., Poltarukha O.P. O nekotorykh osobennostyakh raspredeleniya organizmov obrastaniya na sudakh i buykovykh stantsiyakh v morskoy srede [On some features of the distribution of fouling organisms on ships and buoy stations in the marine environment] // Voda: khimiya i ekologiya. 2012. №3. S. 59–64.
12. Morskaya korroziya: spravochnik. Per. s angl. / pod red. M. Shumakhera [Marine corrosion: a handbook. Line from Engl/ / ed. M. Schumacher]. M.: Metallurgiya, 1983. 512 s.
13. Nemtseva E.P., Suprun L.A., Feldman L.A. i dr. Spravochnik sudoremontnika-korpusnika [andbook of ship repairmen-corps]. M.: Transport, 1970. 320 s.
14. Arkhangorodskiy A.G., Rozendent B.YA., Semenov L.N. Prochnost i remont korpusov promyslovykh sudov [Durability and repair of hulls of fishing vessels]. L.: Sudostroyeniye, 1982. 272 s.
15. Mikheyev A.I. Vliyaniye obrastaniya i nizkikh temperatur na bezopasnuyu ekspluatatsiyu sudov [Influence of fouling and low temperatures on the safe operation of ships] // Vodnyy transport. 2013. Vyp. 3. S. 56–61.
16. Shkabara N.A. Ekologo-tekhnologicheskoye izucheniye pokrytiya bar'yernogo tipa dlya zashchity ot korrozii i morskogo obrastaniya neftegazoprovodov, plavuchikh sredstv i portovykh sooruzheniy (na primere Gelendzhikskoy bukhty): avtoref. dis. … kand. tekhn. nauk cological and technological study of barrier-type coatings for protection against corrosion and marine fouling of oil and gas pipelines, floating facilities and port facilities (using the example of Gelendzhik Bay): thesis, Cand. Sc. (Tech.). Krasnodar. 2015. 113 s.
17. Petrova N.E., Bayeva L.S. Biokorroziya korpusov sudov [Biocorrosion of ship hulls] // Vestnik MGTU. 2006. T. 9. №5. S. 890–892.
18. Laptev A., Kurs M., Lonskaya N., Davydov D., Averina A. Investigation of corrosion damage of hydration aluminium alloys at full-scale accelerated tests // International Journal of Engineering & Technology. 2018. Vol. 7 (4). P. 5061–5066.
19. Laptev A.B., Navalikhin G.P. Povysheniye bezpasnosti ekspluatatsii promyslovykh nefteprovodov [Improving the safety of operating oil pipeline] // Neftepromyslovoye delo. 2006. №1. S. 48–52.
20. Sadawy M.M., Heseinov R.Q., Shirinov T.I. Corrosion and electrochemical behavior of austenitic-ferritic stainless steel in sulfuric acid // Neftin, qazm geotexnoloji problemlari va kimya. ET§ Elmi asarlarig Bakig. 2009. P. 327–332.
21. Sharifov Z.Z. Ways of Increase of corrosion resistance provider materials // Journal of Metallurgy. 2002. Vol. 8. Is. 2. P. 7.
22. Sadawy M.M., Shirinov T.I., Heseinov R.Q. The effect of heat treatment on the corrosion and electrochemical properties of ferric-austenitic stainless steel in sulfuric acid soluteon // Tr. Mezhdunar. foruma «Nauka i inzhenernoye obrazovaniye bez granits». Almaty: KazNTU im. K.I. Satpayeva, 2009. T. 1. S. 496–499.
23. Sharifov Z.Z. Improvement of a corrosion stability of composite materials on the ferrum’s base. International valium of scientific lab our // Progressive Technology and Machine building systems. 2002. Vol. 19. P. 7.
24. Bashirov F.R. Korrozionnoye povedeniye svarnykh soyedineniy iz stali RSD32 v kaspiyskoy morskoy vode [Corrosion behavior of welded joints made of RSD32 steel in the Caspian sea water] // Vestnik MGU. Ser.: Sudostroyeniye i sudoremont. 2014. T. 64. S. 5.
25. Starokon I.V. O vliyanii korrozionnogo vozdeystviya na razvitiye ustalostnykh treshchin na morskikh neftegazovykh sooruzheniyakh (MNGS) [On the effect of corrosive effects on the development of fatigue cracks in offshore oil and gas structures (MNGS)] // Fundamentalnyye issledovaniya. 2012. №11-5. S. 1214–1219.
26. Markovich R.A., Kan M.K., Mikhaylov S.V. Korroziya i metody zashchity zony peremennogo smachivaniya metallokonstruktsiy gidrotekhnicheskikh sooruzheniy estakadnogo tipa [Corrosion and methods of protection of the zone of variable wetting of metal structures of hydraulic structures of an overpass type] // Gidrotekhnika. 2014. №4. S. 71.
27. Lyublinskiy E.Ya. Korroziya i zashchita sudov: spravochnik [Corrosion and protection of ships: a guide]. L.: Sudostroyeniye, 1987. 376 s.
28. RD31.28.10–97. Kompleksnyye metody zashchity sudovykh konstruktsiy ot korrozii [Guidance document 31.28.10–97. Complex methods of protection of ship structures against corrosion]. L.: TSNIIMF, 1997. 122 s.
29. Sorokin A.I. Issledovaniye protsessa razrusheniya alyuminiyevogo splava ot kontaktnoy korrozii v vysokoskorostnom potoke morskoy vody [Investigation of the process of destruction of aluminum alloy from contact corrosion in a high-speed flow of sea water] // Vísnik SevNTU. 2012. Ser.: Mekhaníka, energetika, ekologíya. Vip. 132. S. 135–141.
30. Sorokín A.Í. Parametri yelektrokhímíchnogo zakhistu sudnobudívnikh metalív víd kontaktnoí̈ korozíí̈ [Electric parametric parameters for shipwreck metal metals in contact corrosion] // Zb. nauk. prats SVMÍ. Sevastopol, 2006. Vip. 1 (9). S. 78–84.
31. Vaganov A.M. Proyektirovaniye skorostnykh sudov [Design of high-speed vessels]. L.: Sudostroyeniye, 1978. 279 s.
32. Podgornyy Yu.I., Sorokin A.I. Korrozionno-erozionnaya stoykost' i elektrokhimicheskoye povedeniye nekotorykh sudostroitelnykh splavov v bystrodvizhushcheysya morskoy vode [Corrosion-erosion resistance and electrochemical behavior of some shipbuilding alloys in high-speed seawater] // Sostoyaniye i perspektivy sozdaniya i vnedreniya korrozionnostoykikh materialov, sredstv i metodov protivokorrozionnoy zashchity sudov: tez. dokl. vtorogo nauch.-tekhn. soveshchaniya (Leningrad, dek. 1982 g.). L., 1982. S. 53–55.
33. Morrow S.J. Materials selection for seawater pumps // Proceedings of the 26 International Pump Users Symposium, 2010. P. 73–80.
34. Melchers R.E. Effect of temperature on the marine immersion corrosion of carbon steels // Corrosion (NACE). 2002. Vol. 58 (9). P. 768–782.
Currently, in the manufacture of complex cast parts, both in domestic and in foreign practice, the method of casting based on model compositions is used. This method is widely used due to the possibility of obtaining castings of finished parts of varying complexity without additional processing. The quality and technological characteristics of the compositions are determined by the components included in their composition. As a rule, these are organic compounds that are easily melted from the shell: thermopolymer resins, copolymers and oligomers, synthetic waxes, which are characterized by an increased rate of hardening and high physicomechanical and technological characteristics.
The determination of the rheological behavior of the material makes it possible to evaluate even at the stage of development and combining the components of its characteristics and its field of application. The study of the rheological properties of model compositions allows us to estimate the elastic, viscous and plastic properties of molding and core model melts. When a model is cast, a model melt in a viscous-plastic state flows through channels of complex geometric shape, therefore the fluidity of the composition when filling the cavities of a ceramic mold is an important technological factor. The rheological behavior of model compositions is the theoretical basis of the processes of their pressing in the manufacture of models of castings, as well as the defining method for studying their technological properties.
2. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskiye napravleniya razvitiya konstruktsionnykh materialov i tekhnologiy ikh pererabotki dlya aviatsionnykh dvigateley nastoyashchego i budushchego [Strategic directions of development of structural materials and technologies for their processing for aviation engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
4. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovleniya modelej iz modelnyh kompozicij na osnove sinteticheskih voskov [Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes] // Aviacionnye materialy i tehnologii. 2014. №3. S. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
5. Postizhenko V.K., Beregovaya O.S. Optimizatsiya tekhnologicheskikh parametrov modelnykh sostavov s pomoshch'yu matematicheskogo modelirovaniya [Strategic directions of development of structural materials and technologies for their processing for aviation engines of the present and the future] // Protsessy litya. 2009. №3. S. 43–47.
6. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and technologies of VIAM for Aviadvigatel] // Permskiye aviatsionnyye dvigateli. 2014. №31. S. 43–47.
7. Aslanyan I.R., Rassokhina L.I., Ospennikova O.G. Opredeleniye kolichestvennykh faktorov, sushchestvenno vliyayushchikh na tekhnologicheskiye kharakteristiki modelnykh kompozitsiy [Definition of quantitative factors, significantly influencing on technological characteristics of model compositions] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №12 (72). St. 01. Available at: http://www.viam-works.ru (accessed: March 21, 2019). DOI: 10.18577/2307-6046-2018-0-12-3-13.
8. Repyakh S.I. Klassifikatsiya vyplavlyayemykh modelnykh sostavov dlya tochnogo lit'ya // Informatsionnyy resurs po liteynomu proizvodstvu. Available at: http://www.lityo.com.ua (accessed: March 18, 2019).
9. Aslanyan I.R., Guseva M.A., Ospennikova O.G. Sravnitel'noye issledovaniye fiziko-mekhanicheskikh i reologicheskikh kharakteristik modelnykh kompozitsiy [Determination of quantitative factors that significantly affect the technological characteristics of model compositions] // Vse materialy. Entsiklopedicheskiy spravochnik. 2019. №6. S. 34–39.
10. Rassokhina L.I., Parfenovich P.I., Narskiy A.R. Problemy sozdaniya modelnykh kompozitsiy novogo pokoleniya na baze otechestvennykh materialov dlya izgotovleniya lopatok GTD [The issues of developing model compositions of new generation on the basis of domestic materials for the manufacture of gas turbine engine blades] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №3 (15). St. 07. Available at: http://www.materialsnews.ru (accessed: March 20, 2019).
11. Modelnaya kompozitsiya dlya vyplavlyayemykh modeley: pat. 2088370 Ros. Federatsiya [Model composition for smelted models: pat. 2088370 Rus. Federation]; zayavl. 07.04.95, opubl. 27.08.97.
12. Prokopchuk N.R., Klyuyev A.Yu., Kozlov N.G. i dr. Issledovaniye vozmozhnosti ispolzovaniya modifitsirovannoy kanifoli v modelnykh sostavakh dlya tochnogo litya [Investigation of the possibility of using modified rosin in model compositions for precision casting] // Trudy BGTU. 2012. №4. S. 106–118.
13. Modelnyy sostav: certificate of authorship 329949 SSSR. No. 1424395/22-2 [Model composition: a. with. 329949 USSR №1424395/22-2]; zayavl. 09.04.70; opubl. 24.11.72.
14. Babin A.N., Guseva M.A. Reologicheskiy metod issledovaniya rastvorimosti komponentov v polimernykh kompozitsiyakh [Rheological method for studying the solubility of components in polymer compositions] // Vse materialy. Kommentarii k standartam, TU, sertifikatam. 2016. №4. S. 17–20.
15. Ospennikova O.G. Issledovanie vliyaniya napolnitelej na svojstva i stabilnost modelnyh kompozicij, vybor optimalnyh sostavov [Influence research of fillers on properties and stability of modelling compositions, a choice of optimum structures] // Aviacionnye materialy i tehnologii. 2014. №3. S. 14–17. DOI: 10.18577/2071-9140-2014-0-3-14-17.
16. Guseva M.A. Ispolzovaniye reologicheskogo metoda ispytaniy pri razrabotke polimernykh materialov razlichnogo naznacheniya [The use of the rheological tests in the development of polymeric materials for various purposes] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №11 (71). St. 05. Available at: http://www.viam-works.ru (accessed: March 26, 2019). DOI: 10.18577/2307-6046-2018-0-11-35-44.
The paper discusses the results of climatic tests of fluoroplastic-epoxy coating, developed and certified in the FSUE “VIAM” and used for painting aircraft. This coating is a two-component material: the semi-finished of the coating is a suspension of pigments in a solution of a fluoroplast-epoxy binder, and the hardener is a silicone amine. The coating can be obtained by natural curing, and it is important for painting of products.
Coating was tested at domestic climate stations (Gelendzhik, Moscow), and at the foreign stations (Hoa Lac station and Dam Bai station, Republic of Vietnam). The change in coatings was studied using standard techniques adopted in the paint industry: appearance evaluation (GOST 9.407), adhesion using the lattice cuts method (GOST 15140), method for determining the gloss of coatings (GOST 31975-2013), method for determining color difference (GOST R 52490- 2005), a method for determining the degree of coating chalking (GOST 16976).
Studies have shown a high adhesive strength of coatings based on the coating under study throughout the exposure in all the considered climatic zones, the change in the decorative properties is insignificant. The durability of coating is much higher than other commercially used coatings
In the study of changes occurring on the surface of the coating during field tests in the tropical climate of Vietnam, an assessment of structural changes was carried out using IR-spectroscopy. In the approximation of the proportionality of the intensity of the absorption peaks and the amount of the substance, it was assumed that the content of the fluoroplastic component in the coating decreases during the exposure. Moreover, the higher the dose of solar radiation, the weathering processes are more intensive, and the content of fluorine-containing component decreases.
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk, 2012. T. 82. №6. S. 520–530.
4. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Slavin A.V. Vliyaniye klimaticheskikh faktorov tropicheskogo i umerennogo klimata na svoystva lakokrasochnykh pokrytiy na uretanovoy osnove [Influence of climatic factors of tropical and temperate climate on the properties of urethane-based paint and varnish coatings] // Lakokrasochnyye materialy i ikh primeneniye. 2018. №4. S. 24–28.
5. Kablov E.N., Semenova L.V., Yeskov A.A., Lebedeva T.A. Kompleksnyye sistemy lakokrasochnykh pokrytiy dlya zashchity metallicheskikh polimernykh kompozitsionnykh materialov, a takzhe ikh kontaktnykh soyedineniy ot vozdeystviya agressivnykh faktorov [Complex systems of paint and varnish coatings for the protection of metal polymer composites, as well as their contact compounds from the effects of aggressive factors] // Lakokrasochnyye materialy i ikh primeneniye. 2016. №6. S. 32–35.
6. Pavlov A.V., Merkulova Yu.I., Zelenskaya A.D., Zheleznyak V.G. Iznosostoykost lakokrasochnykh pokrytiy [Wear resistance of paint coatings] // Lakokrasochnyye materialy i ikh primeneniye. 2018. №1–2. S. 40–43.
7. Zelenskaya A.D., Fedyakova N.V. Epoksidnaya antistaticheskaya benzostoykaya grunt-emal dlya vnutrenney okraski neftetransporta [Epoxy antistatic petrol-resistant primer-enamel for internal painting of oil transport] // Mnogofunktsionalnyye lakokrasochnyye pokrytiya: materialy Vseros. nauch.-tekhnich. konf. (g. Moskva, 6 dek. 2018 g.) M.: VIAM, 2018. S. 122–127.
8. Malova N.E., Kondrashov E.K., Vereninova N.P., Kozlova A.A. Termostoykaya atmosferostoykaya ftorpoliuretanovaya emal [Heat-resistant weatherproof fluoride polyurethane enamel] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 28–30. DOI: 10.18577/2071-9140-2014-0-S3-28-30.
9. Semenova L.V., Novikova T.A., Nefedov N.I. Klimaticheskaya stojkost i starenie lakokrasochnogo pokrytiya [Climatic stability and ageing paint coating] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 31–34. DOI: 10.18577/2071-9140-2017-0-s3-31-34.
10. Voytovich V.A. Lakokrasochnyye materialy s ftorirovannymi komponentami [Paintwork materials with fluorinated components] // Promyshlennaya okraska. 2013. №4. S. 23–27.
11. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Lakokrasochnye pokrytiya dlya zashhity metallicheskih i polimernyh kompozicionnyh materialov ot stareniya, korrozii i biopovrezhdeniya [Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration] // Aviacionnye materialy i tehnologii. 2017. №S. S. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
12. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Sistemy lakokrasochnyh pokrytij dlya vertoletnoj tehniki [Systems of paint coatings for helicopter equipment] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
13. Nikolayev E.V., Pavlov M.R., Andreyeva N.P., Slavin A.V., Skirta A.A. Issledovaniye protsessov stareniya polimernykh kompozitsionnykh materialov v naturnykh usloviyakh tropicheskogo klimata Severnoy Ameriki [Investigation of the aging processes of polymeric composite materials in natural conditions of tropical climate of North America] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4 (30). St. 08. Available at: http://www.materialsnews.ru (accessed: April 30, 2019).
14. Karyakina M.I. Fiziko-khimicheskiye osnovy protsessov formirovaniya i stareniya pokrytiya [Physico-chemical bases of the processes of formation and aging of the coating]. M.: Khimiya, 1980. 216 s.
15. Prech E., Byulmann F., Affolter K. Opredeleniye stroyeniya organicheskikh soyedineniy. Tablitsy spektralnykh dannykh. Per. s angl. [Determination of the structure of organic compounds. Spectral data tables. Line from Engl.]. M.: Mir, 2006. 438 s.