Articles
Microstructure investigations of Fe–Cr–Ni stainless steel’s sintered samples manufactured by selective laser melting on Concept Laser M2 facility using atomized metallic powder were held. Mechanical properties (tensile strength and plasticity) and corrosion resistance of the samples at the initial state and after hot isostatic pressing and heat treatment were estimate.
It is shown that initial state material’s structure is quite inhomogeneous and consists of fine grain sells oriented along the crystallization direction which is due to selective laser melting process features and large heat flow from melting point. Application of hot isostatic pressing and heat treatment allows to achieve 0,02 % residual porosity and transition electron microscopy analysis shows that microstructure becomes more homogeneous consisting in recrystallization process, appearing of equiaxed grains and precipitation hardening. It is revealed that sintered microstructure after treatment takes the form of identical one of the casting material. Corrosion resistance test shows satisfactory results and estimates that high solidification velocity during selective laser melting process prevent carbide formation applied as well as heat treatment promotes carbide’s dissolution in the case of their formation. It has a positive effect on the overall corrosion resistance of sintered material.
Due to results of mechanical tests anisotropy of the mechanical properties intrinsic to the sintered state is not observed. This allows to use the material in responsible details of fasteners and brackets, without taking into account the orientation of the sintered part during selective laser melting process.
2. Kablov E.N. Additivnyye tekhnologii – dominanta natsional'noy tekhnologicheskoy initsiativy [Additive technologies – the dominant of the national technology initiative] // Intellekt i tekhnologii. 2015. №2 (11). S. 52–55.
3. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
4. Voznesenskaya N.M., Kablov E.N., Petrakov A.F., Shalkevich A.B. Vysokoprochnyye korrozionnostoykiye stali austenitno-martensitnogo klassa [High-strength corrosion-resistant steels of austenitic-martensitic class] // Metallovedeniye i termicheskaya obrabotka metallov. 2002. №7. S. 34–37.
5. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Martensitostareyushhie stali ‒ novye perspektivnye materialy dlya valov GTD [Maraging became ‒ new perspective materials for GTE shaft] // Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Li R., Shi Y., Wang Z. et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting // Applied Surface Science. 2010. Vol. 256. No. 13. P. 4350–4356.
8. Li R., Liu J., Shi Y. et al. 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting // Journal of Materials Engineering and Performance. 2009. Vol. 19. No. 5. P. 667–671.
9. Kempen K., Yasa E., Thijs L. et al. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel // Physics Procedia. 2011. Vol. 12. P. 255–263.
10. Tonysheva O.A., Voznesenskaya N.M., Shestakov I.I., Eliseyev E.A. Vliyaniye rezhimov vysokotemperaturnoy termomekhanicheskoy obrabotki na strukturu i svoystva vysokoprochnoy korrozionnostoykoy stali austenito-martensitnogo klassa 17KH13N4K6SAM3ch [Influence of modes of high-temperature thermomechanical processing on structure and properties of high-strength corrosion-resistant steel of austenitic-martensitic class 17Х13Н4К6САМ3ч] // Aviacionnyye materialy i tehnologii. 2017. №1 (46). S. 11–16. DOI: 10.18577/2307-6046-2017-0-1-11-16.
11. Kablov E.N., Krivonogov G.S. Legirovaniye i fazovaya nestabilnost vysokoprochnykh korrozionnostoykikh staley [Doping and phase instability of high-strength corrosion-resistant steels] // Metally. 2002. №2. S. 65–73.
12. Tonysheva O.A., Voznesenskaya N.M. Perspektivnye vysokoprochnye korrozionnostojkie stali, legirovannye azotom (sravnitelnyj analiz) [Perspective high-strength corrosion-resistant steels alloyed with nitrogen (comparative analysis] // Aviacionnye materialy i tehnologii. 2014. №3. S. 27–32.
13. Rafi H.K., Starr T.L., Stucker B.E. A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting // International Journal of Advanced Manufacturing Technology. 2013. Vol. 69. No. 5–8. P. 1299–1309.
14. Guan K., Wang Z., Gao M. et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel // Materials and Design. 2013. Vol. 50. P. 581–586.
15. Karpov D., Em V.T., Mazalov P.B., Sulyanova E.A. Characterization of residual stresses by neutron diffraction at the research reactor IR-8 of NRC «Kurchatov Institute» // Journal of Physics: Conference Series. 2018. DOI:10.1088/1742-6596/1109/1/012046.
16. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnyye pokrytiya dlya zashchity ot korrozii uglerodistykh staley [Perspective coatings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.
The article deals with VKNA type alloys doped with AL in the amount of 8–9% by weight. They are distinguished by lower density compared to JS type nickel alloys, stability of structural and phase characteristics, which provides creep resistance and performance at temperatures up to 1200°C for a long time, up to 1250°C short-term in aggressive oxidizing environments, used with (CLC) [111] and new ones intended for the manufacture of single-crystal turbine blades and other parts with CSC – alloy VIN3 and alloy VIN4.
The paper presents a comparative study of the influence of thermal conditions of the process of directional crystallization in plants of two types: with liquid metal cooling (UVNK-9A installation) – LMC process (Liquid Metal Cooling) and with radiation cooling (ALD installation) – HRS process (High Rate of Solidification) on the parameters of the VKNA-4U Mono alloy cast structure. A comparative quantitative analysis of the microstructure (interdendritic distance, microporosity), strength characteristics during short-term tensile tests of castings from VKNA-4Umono alloy with crystallographic orientation (CGO) [111], obtained by two schemes of the process of directional crystallization and analysis of fractures of samples after testing.
The results of the study of the influence of the crystallization temperature gradient on the structural-phase parameters of the VIN4 intermetallic alloy with CGO , with different temperature gradients of crystallization are shown (samples were obtained on UVNK-9A foundry installations with G=60–80°С/cm and UVNS-6 s G=150°C/cm.
Comparative studies of the microstructure of cast billets from VKNA-4U alloy obtained on UVNK-9A (with liquid metal cooling) and ALD (with radiation cooling) installations did
2. Kablov E.N., Buntushkin V.P., Bazyleva O.A., Gerasimov V.V., Timofeyeva O.B. Zharoprochnyye splavy na osnove intermetallida Ni3Al [Heat-resistant alloys based on the Ni3Al intermetallic compound] // Tr. Mezhdunar. nauch.-tekhn. konf. «Nauchnyye idei S.T. Kishkina i sovremennoye materialovedeniye». M.: VIAM, 2006. S. 71–75.
3. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
4. Buntushkin V.P., Kablov E.N., Kachanov E.B., Shalin R.E. Vysokotemperaturnyye konstruktsionnyye splavy na osnove intermetallida Ni3Al [High-temperature structural alloys based on the Ni3Al intermetallic compound] // Aviacionnyye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 278–284.
5. Harada H. Development of Superalloys for 1700°C ultra-efficient gas turbines // Proceedings of 9th Liege Conference «Materials for Advanced Power Engineering 2010». Belgium: University of Liège. 2010. P. 604–614.
6. Ospennikova O.G. Tendencii sozdaniya zharoprochnyh nikelevyh splavov nizkoj plotnosti s polikristallicheskoj i monokristallicheskoj strukturoj (obzor) [Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19.
7. Sharova N.A., Tikhomirova E.A., Barabash A.L., Zhivushkin A.A., Brauer V.E. K voprosu o vybore novykh zharoprochnykh nikelevykh splavov dlya perspektivnykh aviatsionnykh GTD [On the choice of new heat-resistant nickel alloys for promising aviation gas turbine engines] // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2009. №3 (19). S. 249−255.
8. Drozdov A.A., Povarova K.B., Morozov A.E. i dr. Dendritnaya likvatsiya v monokristallakh intermetallidnykh splavov na osnove Ni3Al, legirovannykh Cr, Mo, W, Ti, Co, Re [Dendritic segregation in single crystals of intermetallic alloys based on Ni3Al doped with Cr, Mo, W, Ti, Co, Re] // Metally. 2015. №4. S. 48–55.
9. Petrushin N.V., Elyutin E.S., Korolev A.V. Monokristallicheskiye zharoprochnyye splavy: sostav, tekhnologii, struktura i svoystva [Single-crystal superalloys: composition, technology, structure, and properties] // Materialy Vseross. nauch.-tekhnich. konf. «Fundamentalnyye i prikladnyye issledovaniya v oblasti sozdaniya liteynykh zharoprochnykh nikelevykh i intermetallidnykh splavov i vysokoeffektivnykh tekhnologiy izgotovleniya detaley GTD». M.: VIAM, 2017. S. 271–303.
10. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskiye zharoprochnyye splavy dlya gazoturbinnykh dvigateley [Monocrystalline superalloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2011. №SP2. S. 38–52.
11. Kablov E.N., Petrushin N.V., Morozova G.I., Svetlov I.L. Fiziko-khimicheskiye faktory zharoprochnosti nikelevykh splavov, soderzhashchikh reniy [Physico-chemical factors of heat resistance of nickel alloys containing rhenium] // Liteynyye zharoprochnyye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 116–130.
12. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraiya V.N., Gavrilin O.S. Monokristally nikelevykh zharoprochnykh splavov [Single crystals of nickel superalloys]. M.: Mashinostroyeniye, 1997. 336 s.
13. Skibin V.A., Solonin V.I. Aviatsionnoye dvigatelestroyeniye. Doroga v zavtrashniy den [Aviation engine building. Road to tomorrow] // Dvigatel. 2007. №5 (53). S. 1–4.
14. Kablov E.N. Lityye lopatki gazoturbinnykh dvigateley (splavy, tekhnologiya, pokrytiya) [Cast blades of gas turbine engines (alloys, technology, coatings)]. M.: MISiS, 2006. 632 s.
15. Gerasimov V.V., Petrushin N.V., Visik E.M. Usovershenstvovanie sostava i tehnologiya lit'ya monokristallicheskih lopatok iz zharoprochnogo intermetallidnogo splava [Improvement of casting technology and composition of single crystal blades made of heat-resistant intermetallic alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 01. Available at: http://www.viam-works.ru (accessed: August 10, 2018). DOI: 10.18577/2307-6046-2015-0-3-1-1.
16. Kolyadov E.V., Gerasimov V.V. Vliyanie privedennogo razmera otlivki na osevoj gradient temperatury i makrostrukturu otlivok pri napravlennoj kristallizacii na ustanovke UVNK-15 [The influence of the reduced size of the casting on the axial temperature gradient and the macrostructure of casting for directional solidification at the facility UVNK-15] // Aviacionnye materialy i tehnologii. 2014. №3. S. 3–9.
17. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: December 15, 2018).
18. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
19. Miller J.D., Pollock T.M. Development and Application of Optimization Protocol For Directional Solidification: Integration Fundamental Theory, Experimentation and Modeling Tools // Superalloys 2012. ТМS: Minerals, Metals & Materials Society, 2012. P. 653−662.
20. Esser W. Direction Solidification of Blades for Industrial Gas Turbines // Materials for Advanced Power Engineering. 1994. P. 641–659.
The article considers the technology of electric fusion welding of heat – resisting alloy VZh159-ID and the determination of optimal modes of heat – treated samples in the order to achieve a high – quality weldments that are maintaining heat – resisting properties and the age – hardening ability.
A welding seam and a heat – affected zone expand as the result of the heating process. Actions made at the side of the less heated part of the element and are directed to the high – heat area cause the compressive deformation that is turning into the inelastic one. The deformation arising with later cooling prevents the decreasing of the welding seam and leads to the emergence of the tension stress. The reduction of the level of residual stresses is performed by the heat treatment of the welding assembly. The temperature of the heat treatment leads to tension stress relieving and hardens the welding seam. It is necessary to provide the depression strengthening of the welding seam and the parent metal both taking into account specific properties and thermal actions.
In the case of age hardened details and weak welding seam the reduction of the level of residual stresses is better to perform using the local heat treatment in the heat – affected zone.
The local heat treatment like as isothermal one should provide the depression strengthening of the welding seam without thermal overload of the material and take a little time to prevent the age – hardening of the base metal.
The determination of the temperature ranges of the welding seam changing under the heat process and optimal modes of temperature level is performed using the method of X-ray photoelectron spectroscopy. The sample is heated by step – by – step method of election &
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i payka v aviakosmicheskoy promyshlennosti. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii [Welding and brazing in the aerospace industry. Materials of the All-Russian scientific-practical conference] // Svarka i bezopasnost. 2012. T. 1. S. 21–30.
4. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. mater. [Trends and benchmarks of innovative development of Russia: collection scientific-inform materials]. M.: VIAM, 2013. 543 s.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
8. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
9. Kablov E.N. Aviatsionnoye materialovedeniye: itogi i perspektivy [Aviation Materials: Results and Prospects] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
10. Lukin V.I., Ovsepyan S.V., Kovalchuk V.G., Samorukov M.L. Osobennosti rotatsionnoy svarki treniyem vysokozharoprochnogo nikelevogo splava VZh175 [The peculiarities of rotational friction welding of superalloy VG175] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №12 (60). St. 01. Available at: http://www.viam-works.ru (accessed: November 01, 2018). DOI: 10.18577/2307-6046-2017-0-12-1-1.
11. Likhachev V.A., Malinin V.G. Strukturno-analiticheskaya teoriya prochnosti [Structural and analytical failure theory]. L.: Nauka, 1992. 470 s.
12. Parshukov L.I. Issledovaniye svarnykh soyedineniy v usloviyakh kontroliruyemogo nagreva blizlezhashchikh oblastey [Research of welded joints under conditions of controlled heating of close areas] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St.06. Available at: http://www.viam-works.ru (accessed: November 01, 2018). DOI: 10.18577/2307-6046-2017-0-8-6-6.
13. Parshukov L.I., Gilmutdinov F.Z., Skupov A.A. Issledovaniye svarnykh shvov martensitostareyushchey stali tipa 03N18K9M5T posle lokalnoy termotsiklicheskoy obrabotki [Investigation of welding seals of martency steel steel type 03n18k9m5t after local thermocyclic treatment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №7 (55). St. 06. Available at: http://www.viam-works.ru (November 01, 2018). DOI: 10.18577/2307-6046-2017-0-7-6-6.
14. Parshukov L.I., Gilmutdinov F.Z. Elektronno-luchevaya svarka i lokal'naya termoobrabotka svarnykh shvov iz zharoprochnykh splavov [Electron beam bonding and local heat treatment welded seams from hot strength alloys] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №5 (53). St. 03. Available at: http://www.viam-works.ru (November 01, 2018). DOI: 10.18577/2307-6046-2017-0-5-3-3.
15. Nikitenkov N.N. Osnovy analiza poverkhnosti tverdykh tel metodami atomnoy fiziki [Fundamentals of analysis of the surface of solids by atomic physics]. Tomsk: Izd-vo Tomskogo politekh. un-ta, 2012. 203 s.
16. Sposob uprochneniya dispersionno-tverdeyushchikh splavov: pat. 2399684 Ros. Federatsiya [Method of hardening precipitation hardening alloys: Pat. 2399684 Rus. Federation]; opubl. 20.09.10.
17. Khimushin F.F. Nerzhaveyushchiye stali [Stainless steel]. M.: Metallurgiya, 1967. 800 s.
The article provides an overview of foreign and domestic publications in the field of magnesium alloys used for the manufacture of biodegradable and biocompatible materials for imlants, with a limited period of existence required for the restoration of damage. To this end, the article view 4 groups of materials: pure magnesium, alloys of system Mg-Al, alloys of Mg–REE alloys of Mg–Zn. The influence of alloying elements on the properties of magnesium alloys (strength and corrosion) is considered, the norms of the content of these elements in the human body are Given and the negative consequence of their excess for the human body is shown.
Magnesium-based alloys have the most preferred complex of mechanical properties (tensile strength, yield strength, density, modulus of elasticity) most close to the human bone relative to other biodegradable materials. In addition, magnesium ions are an important chemical component in the process of human metabolism, which explains their natural presence in bone tissue and, accordingly, the affinity of the magnesium implant to the natural chemical environment of the body. But, there are some restrictions on the use of magnesium alloys as implants. Corrosion processes occurring during the decomposition of magnesium in the body, lead to the formation of hydrogen, which is rapidly absorbed by the body and in contact with the blood can cause an embolism, leading to death. In addition, changes in pH in the area surrounding the corroding surface can adversely affect the process of tissue repair.
To achieve this goal, it is necessary to solve the problem of optimizing the number of alloying elements in accordance with the norms of the physiological environment in the areas of implantation and the creation of a protective coating to slow the process of biodegradation, thereby allowing to control the release of metal ions int
2. Mukhina I.Yu. Struktura i svoystva novykh liteynykh magniyevykh splavov [Structure and properties of new foundry magnesium alloys] // Liteynoye proizvodstvo. 2011. №12. S. 12–14.
3. Murugan R., Ramakrishna S. Development of nanocomposites for bone grafting // Composites Science and Technology. 2005. Vol. 65. P. 2385–2406.
4. Ye X., Tse Z.T.H., Tang G., Song G. Mechanical properties and phase transition of biomedical titanium alloy strips with initial quasi-single phase state under highenergy electropulses // Journal of the Mechanical Behavior of Biomedical Materials. 2015. Vol. 42. P. 100–115.
5. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
6. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] // Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
7. Rashmir-Raven A.M., Richardson D., Aberman H., De Young D.J. The response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods // Journal of Applied Bio Materials. 1995. Vol. 6. P. 237–242.
8. Nagels J., Stokdijk M., Rozing P.M. Stress shielding and bone resorption in shoulder arthroplasty // Journal of Shoulder and Elbow Surgery. 2003. Vol. 12. P. 35–39.
9. Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: a review // Biomaterials. 2006. Vol. 27. P. 1728–1734.
10. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
11. Song G. Control of biodegradation of biocompatible magnesium alloys // Corrosion Science. 2007. Vol. 49. P. 1696–1701.
12. Walker J., Shadanbaz S., Kirkland N.T. et al. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing // Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2012. Vol. 100. P. 1134–1141.
13. Wen Z., Wu C., Dai C., Yang F. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid // Journal of Alloys and Compounds. 2009. Vol. 488. P. 392–399.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Morozova G.I., Mukhina I.Yu. Nanostrukturnoye uprochneniye liteynykh magniyevykh splavov sistemy Mg–Zn–Zr [Nanostructural Hardening of Casting Mg Alloys of the Mg–Zn–Zr System] // MiTOM. 2011. №11. S. 3–7.
16. Mukhina I.Yu. Issledovaniye metallicheskikh sistem na osnove magniya i razrabotka printsipov sozdaniya korrozionnostoykikh magniyevykh splavov [Investigation of metallic systems based on magnesium and the development of principles for the creation of corrosion-resistant magnesium alloys] // MiTOM. 2014. №1. S. 8–10.
17. Volkova E.F., Mukhina I.Yu. Novyye materialy na magniyevoy osnove i vysokoresursnyye tekhnologii ikh proizvodstva [New materials based on magnesium and high-resource technologies for their production] // Tekhnologiya legkikh splavov. 2007. №2. S. 28–34.
18. Mukhina I. Yu., Uridiya Z.P. Magniy – osnova sverkhlegkikh materialov [Magnesium – the basis of ultralight materials] // Metallurgiya mashinostroyeniya. 2005. №6. S. 29–31.
19. Mukhina I.Yu., Bobryshev B.L., Antipov V.V., Koshelev A.O., Bobryshev D.B. Struktura i svoystva splavov sistemy Mg–Al–Zr pri litye v kokil' i formy iz KhTS [The structure and properties of alloys of the Mg – Al – Zr system during the casting of metal into molds and molds from HTS] // Liteynoye proizvodstvo. 2014. №8. S. 6–10.
20. Uridiya Z.P., Mukhina I.Yu. Zakonomernosti vzaimodeystviya legiruyushchikh elementov i formirovaniye nanostrukturirovannogo sostoyaniya liteynykh magniyevykh splavov sistemy Mg–Zn–Zr [Regularities interaction of the alloying elements and nanostructured condition formation of casting magnesium alloys Mg–Zn–Zr system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 01. Available at: http://www.viam-works.ru (accessed: December 16, 2018). DOI: 10.18577/2307-6046-2017-0-6-1-1.
21. Mukhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspektivnyye liteynyye magniyevyye splavy [Promising casting magnesium alloys] // Liteynoye proizvodstvo. 2013. №5. S. 2–5.
22. Mukhina I.Yu., Duyunova V.A., Frolov A.V., Uridiya Z.P. Vliyaniye legirovaniya RZM na zharoprochnost' liteynykh magniyevykh splavov [Effect of alloying of rare-earth metals on the heat resistance of cast magnesium alloys] // Metallurgiya mashinostroyeniya. 2014. №5. S. 34–38.
23. Frolov A.V., Muhina I.Yu., Leonov A.A., Uridiya Z.P. Vliyanie legirovaniya redkozemelnymi metallami na svojstva i strukturu litejnogo magnievogo splava eksperimentalnogo sostava sistemy Mg–Zr–Zn–Y–Nd [An influence of rare-earth metals doping on properties and structure of the experimental Mg–Zr–Zn–Y–Nd casting magnesium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 03. Available at: http://www.viam-works.ru (accessed: December 16, 2018). DOI: 10.18577/2307-6046-2016-0-3-3-3.
24. Kazakbayeva A.A. Formirovaniye i issledovaniye mikrodugovykh Sr-soderzhashchikh kal'tsiyfosfatnykh biopokrytiy na splave Mg-0.8 Ca [Formation and study of microarc Sr-containing calcium phosphate biocoatings on Mg-0.8 Ca alloy] // Perspektivy razvitiya fundamental'nykh nauk: sb. nauch. tr. XV Mezhdunar. konf. studentov, aspirantov i molodykh uchenykh (Tomsk, 24–27 aprelya 2018 g.) v 7 t. Tomsk: Izd. Dom Tomskogo gos. un-ta, 2018. T. 2: Khimiya. S. 129–131.
25. Wang D., Bierwagen G.P. Sol-gel coatings on metals for corrosion protection // Progress in Organic Coatings. 2009. Vol. 64. P. 327–338.
26. Agrawal C.M. Reconstructing the human body using biomaterials // The Journal of The Minerals, Metals & Materials Society. 1998. Vol. 50. P. 31–35.
Using the methods of light metallography, electron microscopy, the influence of the structural- phase state of ingots (volume fraction of eutectic excess phases, size and density of zirconium-containing secondary dispersoids b' (ZrAl3)) formed in the process of homogenization annealing in one- and two-step regimes on the resistance deformation and technological plasticity of flat ingots of aluminum-lithium alloy 1441 was studied.
By the method of differential thermal analysis (DTA) it was found that the temperature at which the alloy began to melt (solidus point) of the alloy 1441 is 573°C.
The efficiency of the homogenization regimes was assessed by the change after the homogenization heating of the volume fraction of the undissolved eutectic components arranged, mainly, at the boundaries of the dendritic cells.
It was revealing that the most complete dissolution of the excess primary eutectic phases in the ingot, occurs when the homogenization of the two-stage regime. The volume fraction of undissolved phases decreases from 4,2% in the non-homogenized ingot to 0,9–1,1% in the homogenized samples.
By the method of analytical transmission electron microscopy, it was revealing that that microparticles of the S phase are present in the structure of the non-homogenized ingot, and the zirconium-containing dispersoid (phase-β ') is not detected. In the structure of ingots from alloy 1441, after homogenization in different regimes, there are secondary microparticles of the phases: β '(Al3Zr), δ' (Al3Li) and S '(Al2CuMg). The particle size of these phases is from 5 to 50 nm.
As the temperature and duration of homogenization increase, the size increases and the number of spherical β '(Al3Zr) particles
2. Kablov E.N. VIAM: prodolzheniye puti [VIAM: the continuation of the path] // Nauka v Rossii. 2012. №11. S. 16–21.
3. Kablov E.N. Strategicheskiye napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda // Aviatsionnyye materialy i tekhnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
6. Antipov V.V., Serebrennikova N.Yu., Shestov V.V., Sidelnikov V.V. Sloistyye gibridnyye materialy na osnove listov iz alyuminiy-litiyevykh splavov [Laminated hybrid materials on basis of Al–Li alloy sheets] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 212–224. DOI: 10.18577/2071-9140-2017-0-S-212-224.
7. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z. Alyuminiyevyye splavy v aviakosmicheskoy tekhnike / pod obshch. red. E.N. Kablova [Aluminum alloys in aerospace / gen. ed. by E.N. Kablov]. M.: Nauka, 2001. 187 s.
8. Grushko O.E., Ovsyannikov B.V., Ovchinnikov V.V. Alyuminiyevo-litiyevyye splavy: metallurgiya, svarka, metallovedeniye [Aluminum-lithium alloys: metallurgy, welding, metallurgy]. M.: Nauka, 2014. 206 s.
9. Komarov S.B., Mozharovskiy S.M., Ovsyannikov B.V., Makarov G.S., Grushko O.E. Zashchita i rafinirovaniye alyuminiyevo-litiyevykh splavov flyusami [Protection and Refining of Aluminum-Lithium Alloys with Fluxes] // Tsvetnyye metally. 1995. №10. S. 57–60.
10. Novikov I.I. Teoriya termicheskoy obrabotki metallov [Theory of heat treatment of metals]. M.: Metallurgiya, 1978. 392 s.
11. Mondolfo L.F. Struktura i svoystva alyuminiyevykh splavov [Structure and properties of aluminum alloys]. M.: Metallurgiya, 1979. 639 s.
12. Altman M.B., Andreyev G.A., Balakhontsev G.A. i dr. Plavka i litye alyuminiyevykh splavov: spravochnik. 2-ye izd. pererab. i dop. [Melting and casting of aluminum alloys: a reference book. 2nd ed. recv and add.] M.: Metallurgiya, 1983. 351 s.
13. Vakhromov R.O., Tkachenko E.A., Lukina E.A., Selivanov A.A. Vliyaniye gomogenizatsionnogo otzhiga na strukturu i svoystva slitkov iz splava 1933 sistemy Al–Zn–Mg–Cu [Influence of homogenization annealing on structure and properties of ingots from 1933 alloy of Al–Zn–Mg–Cu system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 01. Available at: http://viam-works.ru (accessed: January 14, 2019) DOI: 10.18577/2307-6046-2015-0-11-1-1.
14. Belov N.A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminiyevykh splavov [Phase composition of industrial and advanced aluminum alloys]. M.: MISiS, 2010. 511 s.
15. Prasad N.E., Gokhale A.A., Wanhill R.J.H. Aluminum-Lithium Alloys, Processing, Properties, and Applications. Butterworth-Heinemann is an imprint of Elsevier, 2014. 531 p.
16. Dobatkin V.I., Gabidullin R.M., Kolachev B.A., Makarov G.S. Gazy i okisly v alyuminiyevykh deformiruyemykh splavakh [Gases and oxides in wrought aluminum alloys]. M.: Metallurgiya, 1976. 264 s.
One of key indicators of high technological effectiveness of constructional nodes, especially for nodes in which according to operational requirements it is necessary to provide tightness, simplicity of their assembly and disassembly is. The task of operation of such designs can be complicated by additional requirements - for example the operation temperature Wednesday from which it is necessary to seal nodes etc.
High technological effectiveness of constructive decisions is characterized also by opportunity quickly to replace, sort or collect nodes with use of the hi-tech materials providing the solution of functional tasks with separate nodes or products as a whole.
By the purpose of this work was to determine technological and operation capabilities of tape hermetic.
In the course of research four pilot lots of hermetic tape on installation developed by VIAM Federal State Unitary Enterprise are made. Experimental samples are made on compounding, modes of preparation of paste, operations of formation of pressurizing cloth on thickness, the speed of broach, time of curing and other parameters with deviations within possible deviations when manufacturing tape hermetic.
The analysis of properties of experimental samples of tape hermetic has shown that experimental samples completely correspond to requirements of tape hermetic.
On experimental samples technical characteristics on manufacturing of tape hermetic are confirmed, deformation of pressurizing layer is defined at controlled efforts of compression. It is established residual to deformation after compressive force removal. Degree of fit of tape hermetic on interfaced surfaces is established.
Influence of form of joint in pressurized layer on its durability is in
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in Aviation Materials Science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Shvetsov G.V., Akimova D.U., Baryshnikova M.D. Tekhnologiya pererabotki plasticheskikh mass [Plastics processing technology]. M.: Khimiya, 1988. 512 s.
5. Mak-Kelvi D.M. Pererabotka polimerov. Per. s angl. [Polymer processing. Trans. from Engl.]. M.: Khimiya, 1965. 444 s.
6. Koshelev F.F., Kornev A.E., Bukanov A.M. Obshchaya tekhnologiya rezin [General technology of rubber]. M.: Khimiya, 1978. S. 321–327.
7. Kryzhanovskiy V.K., Kerber M.L. Polimernyye kompozitsionnyye materialy: struktura, svoystva, materialy [Polymer composite materials: structure, properties, materials]. SPb.: Professiya, 2008. 560 s.
8. Kryzhanovskiy V.K., Kerber M.L., Burlov V.V., Panimatchenko A.D. Proizvodstvo izdeliy iz polimernykh materialov [Production of products from polymeric materials]. SPb.: Professiya, 2004. 464 s.
9. Savenkova A.V., Chursova L.V., Eliseev O.A., Glazov P.A. Germetiki aviacionnogo naznacheniya [Hermetics of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 40–43.
10. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Reziny, germetiki i ogne-teplozashhitnye materialy [Rubbers, sealants, fireproof and heat-shielding materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
11. Savenkova A.V., Chursova L.V., Eliseev O.A., Shragin D.I., Kopylov V.M., Glazov P.A. Vosstanovitelnye tehnologii izgotovleniya teplomorozostojkih germetikov na osnove kremnijorganicheskih kauchukov, sintezirovannyh po novym promyshlennym tehnologiyam [Recovery manufacturing techniques of heatcold-resistant hermetics on the basis of the organic silicon rubbers synthesized on new industrial technologies] // Aviacionnye materialy i tehnologii. 2012. №4. S. 25–31.
12. Baranovskaya N.B. Problema germetizatsii i germetiziruyushchiye materialy [The problem of sealing and sealing materials] // Germetizatsiya samoletnykh konstruktsiy. M.: VIAM, 1959. S. 5–11.
13. Venediktova M.A., Naumov I.S., Chajkun A.M., Eliseev O.A. Sovremennye tendencii v oblasti ftorsiloksanovyh i siloksanovyh kauchukov i rezin na ih osnove (obzor) [Current trends in fluorosiloxane and siloxane rubbers and rubber compounds based thereon (rеview)] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 17–24. DOI: 10.18577/2071-9140-2014-0-S3-17-24.
14. Eliseev O.A., Bryk Ya.A., Smirnov D.N. Modifikaciya polisulfidnyh germetikov ingibitorami korrozii [Polysulfide sealants modification by corrosion inhibitors] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 15–21. DOI: 10.18577/2071-9140-2016-0-S2-15-21.
15. Bolshoy spravochnik rezinshchika [Great reference rubberman]. M.: Tekhinform, 2012. Ch. 2 S. 179–180.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Konstruktivnyye osobennosti germeticheskikh kabin [Design features of hermetic cabs] // Studopediya [Elektronnyy resurs]. Available at: http://www.studopedia.su (accessed: July 18, 2018).
18. Edward M. Petrie Handbook of Adhesives and Seals. New York: McGraw-Hill, 2000. P. 14–23.
This article discusses the technological features of the formation of thick-walled materials from polymer composite materials. Thick-walled parts in structures are used in aviation for the manufacture of heavily loaded parts of the wing, fuselage, center section, in the railway industry, etc.
The quality of the manufactured thick-walled part is influenced by many factors: the temperature-time mode of curing, the method of molding, the pressure value, the equipment, the raw materials used, the choice of control method and analysis of process parameters, as well as personnel qualifications.
The peculiarity of manufacturing is that during the formation of the product, due to the exothermic effect, zones with uneven temperature distribution may occur. In areas with elevated temperature residual stresses may occur, which affects the occurrence of cracks and delamination. They may also be the destruction of the material or even its fire. Because of this, along with the lack of solidity of the part and the problem of choosing the correct molding mode, it is necessary to solve the problem of eliminating the above mentioned phenomena.
Due to the polymerization reaction occurring, intense heat generation occurs. Due to the fact that the polymer has a low thermal conductivity, the outflow of heat from the inner layers is difficult, which can lead to a sharp jump in temperature.
For thick-walled parts, increased porosity may be observed, since the release of gases released by the reaction may be difficult.
Thus, when forming a part, it is necessary to choose the optimal method of their manufacture. For example, a stepped temperature rise prevents the part from overheating. The method of blowing increases heat transfer and reduces the effect of heat exposure, which<
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Aviatsionnoye materialovedeniye v XXI veke. Perspektivy i zadachi [Aviation Materials in the XXI century. Perspectives and tasks] // Aviaсionnyye materialy. Izbrannyye trudy «VIAM» 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
4. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
5. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
6. Mikhaylin Yu.A. Konstruktsionnyye polimernyye kompozitsionnyye materialy [Structural polymer composites]. M.: NOT, 2010. 822 s.
7. Antyufeeva N.V., Aleksashin V.M., Pavlov M.R., Stolyankov Yu.V. Issledovanie vozmozhnosti ispolzovaniya ugleplastikov v usloviyah arkticheskogo klimata [Research of possibility of use carbon fiber reinforced polymers in the conditions of the Arctic climate] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 86–94. DOI: 10.18577/2071-9140-2016-0-4-86-94.
8. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
9. Donetskiy K.I., Karavayev R.Yu., Tsybin A.I., Veshkin E.A., Mikhaldykin E.S. Konstruktsionnyy stekloplastik dlya izgotovleniya elementov shpuntovykh ograzhdeniy [Constructional fiberglass plastic for manufacturing of enclosing sheeting elements] // Aviatsionnyye materialy i tekhnologii. 2017. №3 (48). S. 56–64. DOI: 10.18577/2071-9140-2017-0-3-56-64.
10. Dmitriyev O.S., Kirillov V.N., Kavun N.S., Dmitriyev A.O. Raschet i analiz optimalnykh rezhimov otverzhdeniya izdeliy iz stekloplastikov v zavisimosti ot ikh tolshchiny [Calculation and analysis of the optimal modes of curing products made of fiberglass, depending on their thickness] // Plasticheskiye massy. 2011. №10. S. 21–27.
11. Lipatov Yu.S. Fiziko-khimicheskiye osnovy napolnitelya polimerov [Physico-chemical bases of polymer filler]. M.: Khimiya, 1991. 260 s.
12. Shut N.I., Sichkar T.G., Voznyy P.A. Vliyaniye struktury granichnogo sloya na teploperenos i molekulyarnuyu podvizhnost napolnennykh epoksidnykh polimerov [Effect of boundary layer structure on heat transfer and molecular mobility of filled epoxy polymers] // Kompozitsionnyye polimernyye materialy. 1985. №24. S. 18–21.
13. Dmitriyev A.O. Problemy razrabotki tekhnologii i organizatsii proizvodstva tolstostennykh izdeliy iz polimernykh kompozitov [Problems of technology development and organization of production of thick-walled products from polymer composites] // Razvitiye sovremennoy nauki: teoreticheskiye i prikladnyye aspekty. 2016. №7. S. 8–10.
14. Dmitriyenko Yu.I., Zakharova Yu.V., Sborshchikov S.V. Modelirovaniye protsessa otverzhdeniya tolstostennykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Modeling the process of curing thick-walled structures made of polymer composite materials] // Innovatsionnaya nauka. 2016. №12–4. S. 31–36.
15. Spravochnik po kompozitsionnym materialam v 2-kh kn. [Handbook of composite materials in 2 books]. M.: Mashinostroyeniye, 1988. Kn. 2. 448 s.
16. Sposob izgotovleniya tolstostennykh sloistykh izdeliy iz polimernykh kompozitsionnykh materialov: pat. 2271928 Ros. Federatsiya. №2004124281/12 [A method of manufacturing a thick-walled laminated products from polymer composite materials: pat. 2271928 Rus. Federation. No. 2004124281/12]; zayavl. 09.08.04; opubl. 20.03.06.
17. Sposob polimerizatsii tolstostennykh stekloplastikovykh izdeliy: pat. 505572 SSSR. №1938854/23-5 [Method of polymerization of thick-walled fiberglass products: pat. 505572 USSR. No. 1938854/23-5]; zayavl. 06.07.73; opubl. 05.03.76.
18. Apparatus for molding and solidifying a resinous composite structure: pat. US 4828472A USA. No. B29C 33/02; field 16.12.83; publ. 09.05.89.
19. Sposob izgotovleniya krupnogabaritnykh tolstostennykh polimernykh kompozitsionnykh detaley metodom rtm (resin transfer molding): pat. 2376140 Ros. Federatsiya. №2008114728/12 [A method of manufacturing large-sized thick-walled polymer composite parts using the rtm method (resin transfer molding): pat. 2376140 Rus. Federation. No. 2008114728/12]; zayavl. 02.07.08; opubl. 20.12.09.
20. Sposob izgotovleniya krupnogabaritnykh tolstostennykh polimernykh kompozitnykh detaley: pat. 2301148 Ros. Federatsiya. №2005130459/12 [A method of manufacturing large-sized thick-walled polymer composite parts: pat. 2301148 Rus. Federation. №2005130459/12]; zayavl. 30.09.05; opubl. 20.06.07.
21. Sposob formovaniya tolstostennykh obolochechnykh konstruktsiy na osnove polimernykh kompozitsionnykh materialov: pat. 2634446 Ros. Federatsiya. №2015156879 [Method of forming thick-walled shell structures based on polymer composite materials: pat. 2634446 Rus. Federation. No. 2015156879]; zayavl. 30.12.15; opubl. 30.10.17.
22. Dmitriyev O.S., Khudyakov V.V., Dmitriyev A.O. Tekhnologicheskiye problemy proizvodstva tolstostennykh izdeliy iz konstruktsionnykh stekloplastikov [Technological problems of the production of thick-walled products from structural fiberglass] // Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Ser.: Fiziko-khimicheskiye problemy i vysokiye tekhnologii stroitel'nogo materialovedeniya. 2014. №2 (9). S. 32–40.
23. Barinov D.Ya., Mayorova I.A., Marakhovskiy P.S., Zuyev A.V., Kutsevich K.E., Lukina N.F. Matematicheskoye modelirovaniye temperaturnykh poley pri otverzhdenii tolstostennoy plity stekloplastika [Mathematical modeling of temperature fields during curing of thick-walled fiberglass plates] // Perspektivnyye materialy. 2015. №4. S. 5–14.
24. Sposob izgotovleniya tolstostennykh sloistykh izdeliy iz polimernykh kompozitsionnykh materialov: pat. 2424115 Ros. Federatsiya. №2009139775/05 [A method of manufacturing a thick-walled laminated products from polymer composite materials: Pat. 2424115 Rus. Federation. No. 2009139775/05]; zayavl. 28.10.09; opubl. 20.07.11.
25. Sposob izgotovleniya tolstostennykh sloistykh izdeliy iz polimernykh kompozitsionnykh materialov: pat. 2286253 Ros. Federatsiya. №2005112423/12 [A method of manufacturing a thick-walled laminated products from polymer composite materials: Pat. 2286253 Rus. Federation. №2005112423/12]; zayavl. 25.04.05; opubl. 27.10.06.
26. Sokolov V.V., Gusev S.A., Sidorov O.I., Lunkina G.V. Osobennosti temperaturno-vremennogo rezhima otverzhdeniya tolstostennogo organoplastika [Features of the temperature-time mode of curing thick-walled organoplasty] // V Mezhdunar. konferentsiya-shkola po khimicheskoy tekhnologii: sb. tez. dokl. satellitnoy konferentsii XX Mendeleyevskogo yezda po obshchey i prikladnoy khimii. Volgograd: VGTU, 2016. T. 1. S. 568–570.
27. Tyukov N.I., Dautov A.I., Zakurdayeva Ye.A. Matematicheskaya model upravleniya protsessom razogreva avtoklava pri proizvodstve izdeliy iz kompozitsionnykh materialov [Mathematical model of control of the heating process of the autoclave in the manufacture of products from composite materials] // Vestnik UGATU. 2008. T. 10. №2 (27). S. 159–163.
The developed methods of determining the fiber-matrix adhesive strength include approaches in which the loading of single fibers in the matrix or composite block is carried out, and methods in which the load acts on a model sample or a standard sample of a fibrous composite. The first group includes the following methods: pull-out test, microbond test; various options of push-out test. The second group includes the method of fiber fragmentation, methods of testing samples for interlayer shear and interlaminar fracture toughness.
Currently, a large number of works are devoted to theoretical and experimental aspects of the method of pushing the fiber out of the matrix. This approach makes it possible to measure the adhesive strength on real fibrous composites.
In the load-displacement diagram, when a single fiber is pushed out, several characteristic areas are distinguished, which differ in the state of the interface. The diagram includes the linear growth of stress due to elastic deformation of the boundary layer at the beginning of loading, the deviation from the linear dependence associated with the beginning of the matrix detachment from the fiber, the maximum stress and its drop when the fiber slides under conditions of complete destruction of the interface.
The main methodological issues of this approach are the sample preparation, the influence of the indenter geometry and the indentation modes on the measurement results.
Sample preparation in most works involves cutting a sample about 1 mm thick perpendicular to the fiber axis, mechanical thinning and grinding, as well as final polishing with abrasive colloidal suspensions, after which the thickness of the polymer composite sample is from 20 to 40 microns.
The most used indenters are the three-sid
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally evrazii. 2015. №1. S. 36–39.
3. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. Vysokotemperaturnye metallomatrichnye kompozicionnye materialy, armirovannye chasticami i voloknami tugoplavkih soedinenij [High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds] // Aviacionnye materialy i tehnologii. 2017. №S. S. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
5. Hughes J.D.H. The carbon fibre/epoxy interface – a review // Composites Science and Technology. 1991. Vol. 41. P. 13–45.
6. Kim J.-K., Mai Y.-W. Engineered Interfaces in Fiber Reinforced Composites. Oxford: Elsevier, 1998. 486 р.
7. Kinlok E. Adgeziya i adgezivy: nauka i tekhnologiya [Adhesion and adhesives: science and technology]. M.: Mir, 1991. 484 s.
8. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.Ye., Rubtsova E.V., Petrova A.P. Issledovaniye epoksidno-polisul'fonovykh polimernykh sistem kak osnovy vysokoprochnykh kleyev aviatsionnogo naznacheniya [Study of epoxy-polysulfone polymer systems as the basis for high-strength aviation-grade adhesives] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 7–12.
9. Kuperman A.M., Gorbatkina Yu.A., Turusov R.A. Vysokoprochnyye armirovannyye plastiki [High-strength reinforced plastics] // Khimicheskaya fizika. 2012. №8. S. 50–59.
10. Yakhyayeva Kh.Sh., Zaikov G.Ye., Deberdeyev T.R., Ulitin N.V. i dr. Strukturnyye osnovy mezhfaznoy adgezii (nanoadgezii) v polimernykh kompozitakh [Structural fundamentals of interfacial adhesion (nanoadhesion) in polymer composites] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. №5. S. 68–70.
11. Kozlov G.V., Burya A.I., Aloyev V.Z., Yanovskiy Yu.G. Strukturnyy aspekt mezhfaznoy adgezii v ugleplastikakh [Structural aspect of interfacial adhesion in carbon plastics] // Fizicheskaya mezomekhanika. 2005. №2. S. 35–38.
12. Gulyayev A.I., Petrova A.P., Zaytsev D.V., Rayevskikh A.N. Mikrostrukturnyy i fraktograficheskiy analiz kleyevogo soyedineniya, vypolnennogo epoksidno-kauchukovym kleyem VK-27 s podsloyem fenolokauchukovogo kleya VK-25 [Microstructural and fractographic analysis of adhesive bonding made with epoxy-rubber glue VK-27 with a sublayer of phenocrystalline glue VK-25] // Klei. Germetiki. Tekhnologii. 2018. №6. C. 14–20.
13. Guigon M., Klinklin E. The interface and interphase in carbon fibre-reinforced composites // Composites. 1994. Vol. 25. P. 534–539.
14. Gao S.-L., Mader E., Zhandarov S.F. Carbon fibers and composites with epoxy resins: Topography, fractography and interphases // Carbon. 2004. Vol. 42. P. 515–529.
15. Garifullin A.R., Abdullin I.Sh. Sovremennoye sostoyaniye problemy poverkhnostnoy obrabotki uglerodnykh volokon dlya posleduyushchego ikh primeneniya v polimernykh kompozitakh v kachestve armiruyushchego elementa [The current state of the problem of surface treatment of carbon fibers for their subsequent use in polymer composites as a reinforcing element] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. №7. S. 80–85.
16. Nelyub V.A., Belov P.A. Metody povysheniya stoykosti ugleplastikov k delaminatsii za schet upravleniya adgeziyey volokna k matritse [Methods to improve the resistance of carbon fiber to delamination by controlling the adhesion of the fiber to the matrix] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №5. St. 03. Available at: http://www.materialsnews.ru (accessed: January 25, 2019).
17. Karger-Kocsis J., Mahmood H., Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites // Progress in Materials Science. 2015. Vol. 73. P. 1–43.
18. Liu L., Jia C., He J. et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites // Composites Science and Technology. 2015. Vol. 121. P. 56–72.
19. Kuznetsova V.A., Deev I.S., Semenova L.V. Vliyanie modifikacii epoksidnyh plenkoobrazuyushhih kompozicij na ih fazovuyu mikrostrukturu i adgeziyu k alyuminievomu splavu [Influence of modification of epoxy film-forming compositions on their phase microstructure and adgesion to aluminium alloy] // Aviacionnye materialy i tehnologii. 2016. №1. S. 72–78. DOI: 10.18577/2071-9140-2016-0-1-72-78.
20. Kobets L.P., Deyev I.S. Strukturoobrazovaniye v termoreaktivnykh svyazuyushchikh i matritsakh kompozitsionnykh materialov na ikh osnove [Structure formation in thermosetting binders and matrices of composite materials based on them] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 67–78.
21. Gulyaev A.I., Shurtakov S.V. Kolichestvennyj analiz mikrostruktury granichnogo sloya «volokno–matrica» v ugleplastikah [Quantitative analysis of fiber–matrix interface microstructure in carbon composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2016. №7. St. 08. Available at: http://www.viam-works.ru (accessed: January 25, 2019). DOI: 10.18577/2307-6046-2016-0-7-8-8.
22. Wu Q., Li M., Gu Y. et al. Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite // Composites: Part A. 2014. Vol. 56. P. 143–149.
23. Munz M., Sturm H., Schulz E., Hinrichsen G. The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers // Composites Part A. 1998. Vol. 29A. P. 1251–1259.
24. Downing T.D., Kumar R., Cross W.M. et al. Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation // Journal of Adhesion Science and Technology. 2000. Vol. 14. P. 1801–1812.
25. Gu Y., Li M., Wang J., Zhang Z. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique // Carbon. 2010. Vol. 48.
P. 3229–3235.
26. Niu Y.-F., Yang Y., Gao S., Yao J.-W. Mechanical mapping of the interphase in carbon fiber reinforced poly(ether-ether-ketone) composites using peak force atomic force microscopy: Interphase shrinkage under coupled ultraviolet and hydro-thermal exposure // Polymer Testing. 2016. Vol. 55. P. 257–260.
27. Afaghi-Khatibia A., Mai Y.-W. Characterisation of fibre/matrix interfacial degradation under cyclic fatigue loading using dynamic mechanical analysis // Composites: Part A. 2002. Vol. 33. P. 1585–1592.
28. Магомедов Г.М., Яхьяева Х.Ш., Козлов Г.В. Молекулярная подвижность и межфазные явления в композитах эпоксиполимер/стекловолокно // Известия ДГПУ. 2013. №4. С. 16–19.
29. Thomason J.L. Investigation of composite interphase using dynamic mechanical analysis: artifacts and reality // Polymer Composites. 1990. Vol. 11. P. 105–113.
30. Tsai H.C., Arocho A.M., Gause L.W. Prediction of fiber-matrix interphase properties and their influence on interface stress, displacement and fracture toughness of composite material // Materials Science and Engineering, 1990. Vol. A126. P. 295–304.
31. Gohil P.P., Shaikh A.A. Analytical investigation and comparative assessment of interphase influence on elastic behavior of fiber reinforced composites // Journal of Reinforced Plastics and Composites. 2010. Vol. 29. P. 685–699.
32. Turusov R.A., Manevich L.I. Contact layer method: Determining parameters of rigidity and true strength of an adhesion bond for a contact layer // Polymer Science. Series D. 2011. Vol. 4. P. 1–4.
33. Erasov V.S., Makarycheva A.I. Opredelenie modulya uprugosti mezhfaznoj zony v sloistom polimernom kompozicionnom material [Determination of the elastic modulus of the interphase zone in a layered polymer composite material] // Aviacionnye materialy i tehnologii. 2014. №2. S. 53–55. DOI: 10.18577/2071-9140-2014-0-2-53-55.
34. Williams J.G., Donnellan M.E., James M.R., Morris W.L. Properties of the interphase in organic matrix composites // Materials Science and Engineering. 1990. Vol. A126. P. 305–312.
35. Lee S.-H., Wang S., Pharr G.M., Xu H. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis // Composites: Part A. 2007. Vol. 38. P. 1517–1524.
36. Hardiman M., Vaughan T.J., McCarthy C.T. Fibrous composite matrix characterisation using nanoindentation: The effect of fibre constraint and the evolution from bulk to in-situ matrix properties // Composites: Part A. 2015. Vol. 68. P. 296–303.
37. Hardiman M., Vaughan T.J., McCarthy C.T. A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures // Composite Structures. 2017. Vol. 180. P. 782–798.
38. Herrera-Franco P.J., Drzal L.T. Comparison of methods for the measurement of fibre/matrix adhesion in composites // Composites. 1992. Vol. 23. P. 2–27.
39. Zhandarov S., Mader E. Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters // Composites Science and Technology. 2005. Vol. 65. P. 149–160.
40. Gorbatkina Yu.A., Sopotov R.I., Gorbunova I.Yu. i dr. Sravneniye razlichnykh metodov otsenki prochnosti soyedineniy modifitsirovannyy epoksidnyy polimer–tverdoye telo [Comparison of Different Methods for Assessing the Strength of Compounds, Modified Epoxy Polymer–Solid] // Klei. Germetiki. Tekhnologii. 2015. №1. S. 16–20.
41. Gorbatkina Yu.A. Adgezionnaya prochnost v sistemakh polimer–volokno [Adhesive strength in polymer–fiber systems]. M.: Khimiya, 1987. 192 s.
42. Akhmatova O.V., Gorbatkina Yu.A., Gorbunova I.Yu. i dr. Vliyaniye nanorazmernykh chastits gliny i termoplastichnogo modifikatora na adgezionnuyu prochnost' soyedineniy epoksiaminnogo svyazuyushchego s voloknami [The effect of nanoscale clay particles and a thermoplastic modifier on the adhesion strength of epoxy-amine binder compounds with fibers] // Plasticheskiye massy. 2012. №10. S. 31–35.
43. Gorbatkina Yu.A., Ivanova-Mumzhiyeva V.G., Kuperman A.M. Adgeziya modifitsirovannykh epoksidnykh matrits k armiruyushchim voloknam [Adhesion of modified epoxy matrices to reinforcing fibers] // Vysokomolekulyarnyye soyedineniya. Ser.: A. 2016. №5. S. 439–447.
44. Gorbatkina Yu.A., Zhuravleva O.A., Ivanova-Mumzhiyeva V.G., Chebotarev V.P. Vliyaniye molekulyarnoy massy polisulfona na adgeziyu epoksipolisul'fonovykh svyazuyushchikh k voloknam [The effect of polysulfone molecular weight on the adhesion of epoxy-polysulfone binders to fibers] // Plasticheskiye massy. 2017. №5–6. S. 14–17.
45. Baurova N.I., Sergeyev A.Yu. Strukturnyye issledovaniya mekhanizma razrusheniya kleyevykh soyedineniy posle ispytaniy metodom pull-out [Structural studies of the mechanism of destruction of adhesive joints after pull-out tests] // Klei. Germetiki. Tekhnologii. 2014. №4. S. 24–28.
46. Sergeyev A.Yu., Turusov R.A., Baurova N.I. Opredeleniye adgezionnoy prochnosti soyedineniy na primere ispytaniy obraztsov metodom vydergivaniya volokon iz matritsy [Determination of adhesion strength of compounds by the example of sample testing by pulling fibers from the matrix] // Kompozity i nanostruktury. 2017. №1. S. 52–62.
47. Kotomin S.V. Otsenka prochnosti adgezionnoy svyazi volokno–termoplastichnaya matritsa metodom petli [Evaluation of the strength of the adhesive bond fiber–thermoplastic matrix by the loop method] // Inzhenernyy zhurnal: nauka i innovatsii. 2015. №12 (48). St. 05. Available at: http://engjournal.ru (accessed: January 25, 2019).
48. Tandon G.P., Pagano N.J. Micromechanical analysis of the fiber push-out and re-push test // Composites Science and Technology. 1998. Vol. 58. P. 1709–1725.
49. Bechel V.T., Sottos N.R. A comparison of calculated and measured debond lengths from fiber push-out tests // Composites Science and Technology. 1998. Vol. 58. P. 1727–1739.
50. Zidi M., Carpentier L., Chateauminois A., Sidoroff F. Quantitative analysis of the micro-indentation behaviour of fibre-reinforced composites: development and validation of an analytical model // Composites Science and Technology. 2000. Vol. 60. P. 429–437.
51. Zidi M., Carpentier L., Chateauminois A., Kapsa P., Sidoroff F. Development of a micro-indentation model simulating different mechanical responses of the fibre/matrix interface // Composites Science and Technology. 2001. Vol. 61. P. 369–375.
52. Chandra N., Ghonem H. Interfacial mechanics of push-out tests: theory and experiments // Composites: Part A. 2001. Vol. 32. P. 575–584.
53. Hardiman M., Vaughan T.J., McCarthy C.T. The effect of fibre constraint in the nanoindentation of fibrous composite microstructures: A finite element investigation // Computational Materials Science. 2012. Vol. 64. P. 162–167.
54. Hu Z., Farahikia M., Delfanian F. Fiber bias effect on characterization of carbon fiber-reinforced polymer composites by nanoindentation testing and modeling // Journal of Composite Materials. 2015. Vol. 49. P. 3359м72.
55. Wang S.-W., Khan A., Sands R., Vasudevan A.K. A novel nanoindentor technique for measuring fibre-matrix interfacial strengths in composites // Journal of Materials Science Letters. 1992. Vol. 11. P. 739–741.
56. Desaeger M., Verpoest I. On the use of the micro-indentation test technique to measure the interfacial shear strength of fibre-reinforced polymer composites // Composites Science and Technology. 1993. Vol. 48. P. 215–226.
57. Janczak J., Burki G., Rohr L. Interfacial characterisation of MMCs and CMCs using SEM-pushout technique // Key Engineering Materials. 1997. Vol. 127–131. P. 623–630.
58. Haeberle D.C. The use of nanoindentation to determine composite interfacial shear strength and the effects of environmental aging: Thesis for the degree of Master of Science in Engineering Science and Mechanics. Blacksburg, 2001. 112 p.
59. Chawla N., Chawla K.K., Koopman M. et al. Thermal-shock behavior of a Nicalon-fiber-reinforced hybrid glass-ceramic composite // Composites Science and Technology. 2001. Vol. 61. P. 1923–1930.
60. Kumar R., Cross W.M., Kjerengtroen L., Kellar J.J. Fiber bias in nanoindentation of polymer matrix composites // Composite Interfaces. 2004. Vol. 11. P. 431–440.
61. Urena A., Rams J., Escalera M.D., Sanchez M. Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique // Composites Science and Technology. 2005. Vol. 65. P. 2025–2038.
62. Tezcan J., Ozcan S., Gurung B., Filip P. Measurement and analytical validation of interfacial bond strength of PAN-fiber-reinforced carbon matrix composites // Journal of Materials Science. 2008. Vol. 43. P. 1612–1618.
63. Molina-Aldareguia J.M., Rodriguez M., Gonzalez C., LLorca J. An experimental and numerical study of the influence of local effects on the application of the fibre push-in test // Philosophical Magazine. 2011. Vol. 91. P. 1293–1307.
64. Mueller W.M., Moosburger-Will J., Sause M.G.R., Horn S. Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness // Journal of the European Ceramic Society. 2013. Vol. 33. P. 441–451.
65. Jager J., Sause M.G.R., Burkert F. et al. Influence of plastic deformation on single-fiber push-out tests of carbon fiber reinforced epoxy resin // Composites: Part A. 2015. Vol. 71. P. 157–167.
66. Zhang L., Ren C., Zhou C., Xu H., Jin X. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique // Applied Surface Science, 2015. Vol. 357. P. 1427–1433.
67. Gallo S.C., Li X., Zhang Z., Charitidis C., Dong H. Viscoelastic response of carbon fiber reinforced polymer during push-out tests // Composites Part A. 2018. Vol. 112. P. 178–185.
Silicon carbide has a number of unique physical and chemical properties, including significant hardness and mechanical strength at high temperatures, high thermal conductivity and low temperature coefficient of linear expansion, excellent wear resistance and resistance to aggressive environment. Silicon carbide–based ceramics is widely used in the automotive and aerospace industry as a structural, semiconductor, abrasive, as well as high-temperature material for the manufacture of engine parts, electronics, thermal installations. According to some researchers, the volume of ceramics produced on the basis of SiC, Al2O3, ZrO2 in the world market of structural materials will grow significantly in the near future.
Among the methods for producing silicon carbide–based ceramics are the most common reaction sintering, sintering without pressure, hot pressing and spark plasma sintering. Each method has its own characteristics and disadvantages, but the key are high sintering temperatures (about 2000 °C), which entail significant energy and resource consumption and unsatisfactory with the growing requirements of scientific and technological progress indicators of the basic properties of ceramics. Studies in the field of silicon carbide–based materials densification in the synthesis process have shown that a promising method of consolidation is liquid–phase sintering with the additives of different composition, contributing to reduction of the synthesis temperature to 1850 °C, intensification of diffusion processes, filling of intergranular pores and restructuring of silicon carbide grains. In addition, each additive makes an individual contribution to the characteristics of the synthesized material. Such additives are: Al2O3, Y2O3, ZrO2, CaO, MgO, La2O3, SiO2<
2. Kablov E.N., Folomeykin Yu.I., Stolyarova V.L., Lopatin S.I. Protsessy vzaimodeystviya niobiy-kremniyevogo rasplava s ogneupornoy keramikoy [Interaction processes of niobium-silicon melt with refractory ceramics] // Zhurnal obshchey khimii. 2016. T. 86. №9. S. 1542–1546.
3. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of a new generation of materials for complex technical systems] // Tez. dokl. XX Mendeleyevskogo syezda po obshchey i prikladnoy khimii. UrO RAN, 2016. S. 25–26.
4. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Issledovaniye okislitel'noy stoykosti vysokotemperaturnogo pokrytiya na SiC-materiale pod vozdeystviyem vysokoental'piynogo potoka [Investigation of the oxidative stability of a high-temperature coating on a SiC material under the influence of a high-enthalpy flow] // Teplofizika vysokikh temperatur. 2017. T. 55. №6. S. 704–711.
5. Zhitnyuk S.V. Keramika na osnove karbida kremniya, modifitsirovannaya dobavkami evtekticheskogo sostava: dis. … kand. tekhn. nauk [Ceramics based on silicon carbide, modified additives eutectic composition: thesis, Cand. Sc. (Tech.)]. M.: RKhTU im. D.I. Mendeleyeva, 2014. 174 s.
6. Berezovskij V.V., Shavnev A.A., Lomov S.B., Kurganova Yu.A. Poluchenie i analiz struktury dispersno-uprochnennyh kompozicionnyh materialov sistemy Al–SiC s razlichnym soderzhaniem armiruyushhej fazy [Receiving and the analysis of structure of the disperse strengthened composite materials of Al–SiC system with the different maintenance of the reinforcing phase] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 17–23. DOI: 10.185577/2071-9140-2014-0-S6-17-23.
7. Sorokin O.Yu., Solntsev S.St., Evdokimov S.A., Osin I.V. Metod gibridnogo iskrovogo plazmennogo spekaniya: princip, vozmozhnosti, perspektivy primeneniya [Hybrid spark plasma sintering method: principle, possibilities, future prospects] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 11–16. DOI: 10.18577/2071-9140-2014-0-s6-11-16.
8. Grishina O.I., Shavnev A.A., Serpova V.M. Osobennosti vliyaniya strukturnyh parametrov na mehanicheskie harakteristiki metallicheskogo kompozicionnogo materiala na osnove alyuminievyh splavov, uprochnennyh chasticami karbida kremniya (obzor) [Features of influence of structural parameters on mechanical properties of metallic composite material based on particle-reinforced aluminum alloys by silicon carbide] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 24–27. DOI: 10.18577/2071-9140-2014-0-s6-24-27.
9. Kurbatkina E.I., Kosolapov D.V., Hodykin L.G., Nigmetov M.S. Issledovanie vliyaniya dobavki kremniya na fazovyj sostav alyuminievyh kompozicionnyh materialov, armirovannyh chasticami karbida kremniya [Influence of the silicon addition on the phase composition of aluminum composite materials reinforced with silicone carbide particles] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 35–38. DOI: 10.18577/2071-9140-2014-0-s6-35-38.
10. Fides M., Kovalcikova A., Hvizdos P. et al. Mechanical and tribological properties of electrically conductive SiC based cermets // International Journal of Refractory Metals and Hard Materials. 2017. No. 65. P. 76–82.
11. Lee K.N. Current status of environmental barrier coatings for Si-based ceramics // Surface and Coatings Technology. 2000. No. 133. P. 1–7.
12. Jianxin D., Lili L., Jianfeng L. et al. Development of SiC/(W, Ti)C gradient ceramic nozzle materials for sand blasting surface treatments // International Journal of Refractory Metals and Hard Materials. 2007. No. 25. P. 130–137.
13. Gupta S., Sharma S.K., Kumar B.V.M., Kim Y.-W. Tribological characteristics of SiC ceramics sintered with a small amount of yttria // Ceramics International. 2015. No. 41. P. 14780–14789.
14. Ji R., Liu Y., Zhang Y., Wang F. Machining performance of silicon carbide ceramic in end electric discharge milling // International Journal of Refractory Metals and Hard Materials. 2011. No. 29. P. 117–122.
15. Jianxin D., Lili L., Jinlong Z., Junlong S. Erosion wear of laminated ceramic nozzles // International Journal of Refractory Metals and Hard Materials. 2007. No. 25. P. 263–270.
16. Sharma S.K., Kumar B.V.M., Kim Y.-W. Tribological behavior of silicon carbide ceramics – a review // Journal of the Korean Ceramic Society. 2016. No. 53. P. 581–596.
17. Mettyuz F., Rolings R. Kompozitsionnyye materialy. Mekhanika i tekhnologiya. Per. s angl. [Composite materials. Mechanics and technology. Trans. from Engl.]. M.: Tekhnosfera, 2004. 408 s.
18. Low I.M., Sakka Y., Hu C.F. MAX phases and ultra–high temperature ceramics for extreme environments // Engineering Science Reference. 2013. 649 p.
19. Heimann R.B. Classic and Advanced Ceramics: From Fundamentals to Applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010. 553 p.
20. Perevislov S.N. Rol modifikatsii struktury spechennykh i goryachepresovannykh SiC-materialov [The role of modifying the structure of sintered and hot pressed SiC materials] // Ogneupory i tekhnicheskaya keramika. 2018. №10. S. 18–24.
21. Jang S.H., Kim Y.-W., Kim K.J. Electrical and thermal properties of SiC–Zr2CN composites sintered with Y2O3–Sc2O3 additives // Journal of the European Ceramic Society. 2017. Vol. 37. P. 477–484.
22. Balkevich V.L. Tekhnicheskaya keramika [Technical ceramics]. M.: Stroyizdat, 1984. 256 s.
23. Omori M., Takei H. Preparation of Pressureless Sintered SiC–Y2O3–Al2O3 // Journal of Materials Science. 1988. No. 23. P. 3744–3749.
24. Zhou Y., Hirao K., Toriyama M. et al. Effects of Intergranular Phase Chemistry on the Microstructure and Mechanical Properties of Silicon Carbide Ceramics Densified with Rare–Earth Oxide and Alumina Additives // Journal of the American Ceramic Society. 2001. Vol. 84. No. 7. P. 1642.
25. Liu D.-M. Oxidation of Polycrystalline–Silicon Carbide Ceramic // Ceramics International. 1997. Vol. 23. No. 5. P. 425.
26. Dijen F.K., Mayer E. Liquid Phase Sintering of Silicon Carbide // Journal of the European Ceramic Society. 1996. No. 16. P. 413–420.
27. Iwata H.P., Lindefelt U., Oberg S., Briddon P.R. Stacking faults in silicon carbide // Physica B Condensed Matter. 2003. Vol. 340–342. P. 165–170.
28. Kim Y.-W., Cho T.Y., Kim K.J. Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria // Journal of the European Ceramic Society. 2015. No. 35. P. 4137–4142.
29. Jang S.H., Kim Y.-W., Kim K.J. Electrical and thermal properties of SiC–Zr2CN composites sintered with Y2O3–Sc2O3 additives // Journal of the European Ceramic Society. 2017. No. 37. P. 477–484.
30. Gu J., Sang L., Pan B. et al. Thermal Conductivity and High–Frequency Dielectric Properties of Pressureless Sintered SiC–AlN Multiphase Ceramics // Materials. 2018. No. 11 (6). P. 969.
31. Virkar A.V., Jackson T.B., Culter R.A. Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride // Journal of the American Ceramic Society. 1989. No. 72. P. 2031–2042.
32. Nakano H., Watari K., Kinemuchi Y. et al. Microstructural characterization of high–thermal–conductivity SiC ceramics // Journal of the European Ceramic Society. 2004. No. 24. P. 3685–3690.
33. Kim Y.-H., Kim Y.-W., Lim K.-Y., Lee S.-J. Mechanical and thermal properties of silicon carbide ceramics with yttria–scandia–magnesia // Journal of the European Ceramic Society. 2019. Vol. 39 (2–3). P. 144–149.
Development of the materials preventing frosting of various designs is one of relevant tasks of the modern polymeric industry. In this work, we studied the adhesion characteristics of ice to coatings based on polyurethanes of various grades: polypropylene glycol, polybutylene adipate, polycaprolactone diol, fluorine-containing oligodiol of the MAOK brand, including those modified with carbon Taunit-MD nanotubes. Researches of dependence of the dynamic module of elasticity of polymeric matrixes on temperature are conducted. It is shown that the elastic modulus of the investigated coatings lies in the range from 116 to 297 MPa. The amount of adhesion of ice to the investigated coatings ranges from 40 to 210 kPa. Introduction to structure of initial polyurethane compositions of carbon nanotubes leads to decrease in glass transition temperature the coatings. It is established that the size of adhesion of ice to the studied coatings is defined by the coatings thickness, density of a grid of cross chemical stitchings and also structure of a physical grid of gearing.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Y. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Nanotechnologies in Russia. 2013. Vol. 8. No. 3–4. P. 163–185.
3. Kablov E.N. Konstruktsionnyye i funktsionalnyye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Structural and functional materials - the basis of economic and scientific-technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Yurkov G.Yu., Kondrashov S.V., Kraev I.D. Nanokompozity na osnove polijetilena vysokogo davleniya i nanochastic kobalta: sintez, struktura i svojstva [Nanocomposites based on high-density polyethylene and cobalt nanoparticles: synthesis, structure and properties] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 29–33. DOI: 10.18577/2071-9140-2014-0-S2-29-33.
5. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., Colncev S.St. Funkcionalnye kompozity na osnove steklo/steklokristallicheskih matric i diskretnyh napolnitelej: svojstva i oblasti primeneniya (obzor) [Functional composites based on glass/glass-ceramics matrixes and discrete fillers: properties and possible applications] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 52–58. DOI: 10.18577/2071-9140-2014-0-s6-52-58.
6. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
7. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
8. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] // Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
9. Laforte J.L., Allaire M.A., Laflamme J. State-of-the-art on power line de-icing // Atmospheric Research. 1998. Vol. 46. No. 1–2. P. 143–158.
10. Laakso T., Holttinen H., Ronsten G. et al. Baring-Gould State-of-the-art of wind energy in cold climates // IEA annex XIX. 2003. Vol. 24. P. 28–36.
11. Ryerson C.C. Ice protection of offshore platforms // Cold Regions Science and Technology. 2011. Vol. 65. No. 1. P. 97–110.
12. Dehghani-Sanij A.R., Dehghani S.R., Naterer G.F., Muzychka Y.S. Marine icing phenomena on vessels and offshore structures: Prediction and analysis // Ocean Engineering. 2017. Vol. 143. P. 1–23.
13. Cao Y., Tan W., Wu Z. Aircraft icing: an ongoing threat to aviation safety // Aerospace Science and Technology. 2018. Vol. 75. P. 353–383.
14. Wang Y., Xu Y., Huang Q. Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency // Renewable and Sustainable Energy Reviews. 2017. Vol. 79. С. 638–645.
15. Jiang W., Huang Y., Sha A. A review of eco-friendly functional road materials //Construction and Building Materials. 2018. Vol. 191. P. 1082–1092.
16. Fakorede O., Feger Z., Ibrahim H. et al. Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis // Renewable and Sustainable Energy Reviews. 2016. Vol. 65. P. 662–675.
17. Kreder M.J., Alvarenga J., Kim P., Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? // Nature Reviews Materials. 2016. Vol. 1. No. 1. P. 15003.
18. Solovyanchik L.V., Kondrashov S.V., Nagornaya V.S., Melnikov A.A. Osobennosti polycheniya antiobledenitelnykh pokrytiy (obzor) [Feature of receipt anti-icing coating (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №6 (66). St. 09. Available at: http://www.viam-works.ru (accessed: December 17, 2018). DOI: 10.18577/2307-6046-2018-0-6-77-98.
19. Liu Y., Ma L., Wang W. et al. An experimental study on soft PDMS materials for aircraft icing mitigation // Applied Surface Science. 2018. Vol. 447. P. 599–609.
20. Yeong Y.H., Milionis A., Loth E., Sokhey J. Self-lubricating icephobic elastomer coating (SLIC) for ultralow ice adhesion with enhanced durability // Cold Regions Science and Technology. 2018. Vol. 148. P. 29–37.
21. Liu J., Wang J., Mazzola L. et al. Development and evaluation of poly (dimethylsiloxane) based composite coatings for icephobic applications // Surface and Coatings Technology. 2018. Vol. 349. P. 980–985.
22. Li H., Li X., Luo C. et al. Icephobicity of polydimethylsiloxane-b-poly (fluorinated acrylate) // Thin Solid Films. 2014. Vol. 573. P. 67–73.
23. Wang H., He G., Tian Q. Effects of nano-fluorocarbon coating on icing // Applied surface science. 2012. Vol. 258. No.18. P. 7219–7224.
24. Li X., Li Y., Ren L., Zhu K. et al. Self-crosslinking coatings of fluorinated polysiloxanes with enhanced icephobicity // Thin Solid Films. 2017. Vol. 639. P. 113–122.
25. Wang Y., Mingzhen J.L., Qingjun L. et al. The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments // Applied Surface Science. 2016. Vol. 385. P. 472–480.
26. Valentini L. Bon S.B., Hernández M. et al. Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties // Composites Science and Technology. 2018. Vol. 166. Р. 109–114.
27. Golovin K., Kobaku S.R.P., Lee D.H. et al. Designing durable icephobic surfaces // Science Advances. 2016. Vol. 2. No. 3. P. 1–12.
28. Santamaria-Echart А., Fernandes I., Saralegi A. at al. Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media // Journal of Colloid and Interface Science. 2016. Vol. 476. P. 184–192.
29. Zou M., Beckford S., Wei R. et al. Effects of surface roughness and energy on ice adhesion strength // Applied Surface Science. 2011. Vol. 257. No. 8. P. 3786–3792.
30. Meuler A.J., Smith J.D., Varanasi K.K. et al. Relationships between water wettability and ice adhesion //ACS applied materials & interfaces. 2010. Vol. 2. No. 11. P. 3100–3110.
31. Bharathidasan T., Kumar S.V., Bobji M.S. et al. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces // Applied Surface Science. 2014. Vol. 314. P. 241–250.
32. Léger L., Creton C. Adhesion mechanisms at soft polymer interfaces // Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2008. Vol. 366. No. 1869. P. 1425–1442.
33. Chaudhury M.K., Kim K.H. Shear-induced adhesive failure of a rigid slab in contact with a thin confined film // The European Physical Journal E. 2007. Vol. 23. No. 2. P. 175–183.
This article is about to assess the influence of the type of loading on high-cycle fatigue of heat-resistant nickel alloys GS6U, EI698 and heat-resistant titanium alloy VT8M-1. Considered influence of the type of loading on high-cycle fatigue of heat-resistant nickel alloys GS6U, EI698 and heat-resistant titanium alloy VT8M-1. The study of resistance fatigue was carried out according to the «pure bending with rotation» and «tension-compression» loading conditions. Investigated loading conditions imply different stress states, so with the «pure bending with rotation» loading conditions the maximum stress concentration is on the surface of the cross section of the working part of the sample, and under the «tension-compression» loading conditions the maximum stresses are uniformly distributed over the entire cross-sectional area of the sample. Comparative tests for high-cycle fatigue were carried out at room and operating temperatures of the alloys. It was established that the values of the limits of high-cycle fatigue when testing smooth samples from heat-resistant nickel alloys GS6U, EI698 and heat-resistant titanium alloy VT8M-1 according to the «pure bend with rotation» loading conditions exceed the values of the limits of high-cycle fatigue obtained according to the «tension–compression» loading conditions. This excess of limits of a high-cycle fatigue follows from the fact that at tests according to the «tension-compression» loading conditions the bigger amount of material works at the maximum tension in comparison with the «pure bending with rotation» loading conditions. The coefficient of comparative evaluation of the results of tests for high-cycle fatigue under the «tension-compression» loading conditions with the results of the tests under the «pure bending with rotation» loading conditions (K) is intro
2. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
3. Inozemtsev A.A., Bashkatov I.G., Koryakovtsev A.S. Titanovyye splavy v izdeliyakh razrabotki OAO «Aviadvigatel» [Titanium alloys in products developed by Aviadvigatel OJSC] // Sovremennyye titanovyye splavy i problemy ikh razvitiya. M.: VIAM, 2010. S. 43–46.
4. Golynets S.A., Gorbovets M.A., Karanov V.A. Otsenka vliyaniya razmerov obraztsov na mekhanicheskiye svoystva pri rastyazhenii zharoprochnykh titanovykh i nikelevykh splavov [Effect of samples parameters on mechanical properties of heat-resistant titanium and nickel alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3 (63). St. 10. Available at: http://www.viam-works.ru (accessed: August 17, 2018). DOI: 10.18577/2307-6046-2018-0-3-86-94.
5. Davydov M.N., Gishvarov A.S., Rakhimov A.Kh. Modelirovaniye dolgovechnosti lopatok turbin v usloviyakh korrozionno-aktivnoy sredy [Modeling the durability of turbine blades in a corrosive environment] // Vestnik UGATU. 2018. T. 20. №1 (71). S. 71–80.
6. Gorbovets M.A., Slavin A.V. Dokazatelstvo sootvetstviya materiala trebovaniyam Chasti 33 Aviatsionnykh pravil [Proof of material compliance with the requirements to part No. 33 of JARs] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 89–94. DOI: 10.18577/2071-9140-2018-0-3-89-94.
7. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
8. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Sravnitelnyj analiz rossijskogo i zarubezhnyh standartov ispytanij na ustalost metallov [Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 11. Available at: http://www.viam-works.ru (accessed: September 20, 2018). DOI: 10.18577/2307-6046-2014-0-9-11-11.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye splavy novogo pokoleniya [Foundry superalloys of a new generation] // 75 let. Aviatsionnyye materialy. M.: VIAM, 2007. S. 27–44.
11. Sidorov V.V., Kablov D.E., Rigin V.E. Metallurgiya liteynykh zharoprochnykh splavov: tekhnologiya i oborudovaniye / pod obshch. red. E.N. Kablova [Metallurgy of casting superalloys: technology and equipment / gen.ed. by E.N. Kablov]. M.: VIAM, 2016. S. 10–11.
12. Goryunov A.V., Rigin V.E. Sovremennaya tehnologiya polucheniya litejnyh zharoprochnyh nikelevyh splavov [The modern technology of cast nickel base superalloys production] // Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7. DOI: 10.18577/2071-9140-2014-0-2-3-7.
13. Liteynyy zharoprochnyy splav na osnove nikelya: pat. 2153020 Ros. Federatsiya [Foundry superalloy based on nickel: Pat. 2153020 Rus. Federation]; opubl. 20.07.00.
14. Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlya lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] // Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
15. Geykin V.A. Razrabotka tekhnologiy dlya novykh materialov v dvigatelestroyenii [Development of technologies for new materials in engine-building] // Dvigatel. 2017. №3. S. 10–11.
16. Grinevich A.V., Erasov V.S., Yakusheva N.A., Terehin A.L. Ustalostnaya dolgovechnost stali VKS-9 v usloviyah simmetrichnogo nagruzheniya «rastyazhenie–szhatie» i «izgib s vrashheniem» [Fatigue life of steel VKS-9 in conditions of symmetric loading «tension–compression» and «bending with rotation»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9. St. 11. Available at: http://www.viam-works.ru (accessed: August 17, 2018.). DOI: 10.18577/2307-6046-2017-0-9-11-11.
Recently in the world the great attention is given to PKM creation on basis both epoxy, and tsianefirny binding which allow to receive the composite materials possessing high mechanical, dielectric and heatphysical characteristics, and also high stability of properties in different operating conditions, including at influence of elevated temperatures and humidity.
On example of fibreglass of aviation assignment research of influence of influence of set of climatic factors under natural conditions different types of climatic zones on keeping of their strength characteristics is conducted at normal and increased temperatures, and also impact assessment of impact on structural changes (glass transition temperature change) and saving of dielectric characteristics is carried out.
After assessment of physicomechanical and dielectric properties of samples of fibreglass, and also assessment of structural changes conclusions have been drawn on firmness of fibreglass on the basis of tsianefirny binding to influence of climates of different types. In article it is shown that wet and warm conditions of tropical and subtropical climates most influences falling of physicomechanical properties. The thermal resource of studied material high that is confirmed by rather high firmness in the conditions of tropical arid climate of Arizona. Weather conditions of cold and moderate climates of Russia to a lesser extent affect studied material during the whole period of exposure.
It has been noted that at carrying out assessment of changes of physicomechanical characteristics after exposure at climatic stations it is necessary to consider also what of characteristics is the most sensitive to change in specific conditions of operation, including temperatures.
2. Kurnosov A.O., Melnikov D.A. Kharakteristiki stekloplastikov na osnove vysokodeformativnykh rasplavnykh svyazuyushchikh v usloviyakh vozdeystviya ekspluatatsionnykh faktorov [Characteristics of glass-reinforced plastics on the basis of highly deformative melt binders under the influence of operational factors] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №11. S. 14–17.
3. Filatov M.Ya. Opticheskiye metody issledovaniya razrusheniya polimernykh materialov [Optical methods for studying the destruction of polymeric materials]. Kiev: Naukova dumka, 1989. 132 s.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
5. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
7. Klimaticheskiye ispytaniya [Climatic tests] // Istoriya aviatsionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshch. red. E.N. Kablova. M.: VIAM, 2012. S. 429–438.
8. Gurtovnik I.G., Sportsmen V.N. Stekloplastiki radiotekhnicheskogo naznacheniya [Fiberglass plastics]. M.: Khimiya, 1987. 160 s.
9. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
10. Valevin E.O., Andreyeva N.P., Pavlov M.R. Kompleksnyy podkhod k issledovaniyu protsessov stareniya polimernykh kompozitsionnykh materialov pri vozdeystvii klimaticheskikh faktorov [An integrated approach to the study of the aging process of polymer composite materials under the influence of climatic factors] // Sb. dokl. II Vseross. nauch.-tekhnich. konf. «Klimat-2017. Problemy otsenki klimaticheskoy stoykosti materialov i slozhnykh tekhnicheskikh sistem». Gelendzhik, 2017. S. 8–20.
11. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radioprozrachnyye izdeliya iz stekloplastikov [Fiberglass radioplastic products]. M.: Mir, 2002. 368 s.
12. Emanuel N.M., Buchachenko A.L. Khimicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov [Chemical physics of molecular destruction and stabilization of polymers]. M.: Nauka, 1988. 365 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Nikolayev E.V., Pavlov M.R., Andreyeva N.P., Slavin A.V., Skirta A.A. Issledovaniye protsessov stareniya polimernykh kompozitsionnykh materialov v naturnykh usloviyakh tropicheskogo klimata Severnoy Ameriki [Investigation of the aging processes of polymeric composite materials in natural conditions of tropical climate of North America] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4. St. 08. Available at: http://www.materialsnews.ru (accessed: May 23, 2018).
15. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: May 23, 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
16. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbi-rovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: September 20, 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
17. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Termodinamicheskiye kharakteristiki stareniya polimernykh kompozitsionnykh materialov v usloviyakh realnoy ekspluatatsii [Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
18. Valevin E.O., Laptev A.B., Nikolayev E.V., Pavlov M.R. Vliyaniye meteoparametrov na ekspluatatsiyu polimernykh kompozitsionnykh materialov v izdeliyakh aviatsionnoy i raketno-kosmicheskoy tekhniki [Influence of meteorological parameters on the operation of polymer composite materials in the products of aviation and rocket-space technology] // Modelirovaniye parametrov atmosfery v raketno-kosmicheskoy tekhnike: tr. po materialam nauch.-tekhnich. konf. Korolev, 2017. S. 91–94.