Articles
The influence of the magnetic field on the plasticity of Al–Fe–Si–Mn aluminum alloy is reported. Measurements of the magnetic moment of the alloy revealed the presence of magnetic hysteresis inherent in microinclusions detected by electron microscopy. According to the mössbauer spectra and chemical shift, the inclusions are FeAl alloy with increased magnetostriction. Micro-inclusions formed by aggregation of iron impurities or instrumental treatment of samples before measurement. The apparent «randomness» of the formation of micro-inclusions in the matrix of non-magnetic metal is offset by the systematic detection of magnetic hysteresis in all technical alloys of aluminum, copper, etc. in our experiments. The results show that the controlled introduction of microparticles having magnetostrictive properties, can be the basis of new technologies plasticizing aluminum and reduce energy consumption during processing of aluminum and other soft «non-magnetic» metals. The opposite effect is also reported, which manifests itself as the occurrence of a non-zero coercive force of microinclusions under the action of plastic deformation of aluminum, despite the fact that prior to plastic deformation, the coercive force was zero. The reverse effect of plastic deformation on the coercive force of FeAl microinclusions is observed. Plastic deformation increases the coercive force of inclusions, which can be caused by an increase in their size and a corresponding increase in magnetic anisotropy.
The detected phenomena can be used to control the mechanical properties of aluminum products in the process of their machining, especially in conditions of controlled controlled introduction of microinclusions of a predetermined concentration and with an increased value of the magnetostriction coefficient.
2. Skvortsov A.A., Morgunov R.B., Pshonkin D.E., Piskorskii V.P., Valeev R.A. Magnetic Memory in Plasticity of an Aluminum Alloy with Iron Inclusions // Physics of the Solid State. 2019. Vol. 61. No. 6. P. 1023–1029.
3. Morgunov R.B. Spinovaya mikromekhanika v fizike plastichnosti [Spin micromechanics in the physics of plasticity] // Uspekhi fizicheskikh nauk. 2004. T. 174. S. 131–153. DOI: 10.3367/UFNr.0174.200402c.0131.
4. Morgunov R.B., Buchachenko A.L. Magnetic field response of NaCl:Eu crystal plasticity due to spin-dependent Eu2+ aggregation // Physical Review B. 2010. Vol. 82. P. 014115.
5. Beaugnon E. 3D physical modeling of anisotropic grain growth at high temperature in local strong magnetic force field // Science Technology of Advanced Materials. 2008. Vol. 9. P. 024201. DOI: 10.1088/1468-6996/9/2/024201.
6. Molodov D.A., Bollmann C., Gottstein G. Impact of a magnetic field on the annealing behavior of cold rolled titanium // Materials Science and Engineering A. 2007. Vol. 467. P. 71. DOI: 10.1016/j.msea.2007.02.084.
7. Bhaumik S., Molodova X., Molodov D.A., Gottstein G. Magnetically enhanced recrystallization in an aluminum alloy // Scripta Materialia. 2006. Vol. 55. P. 995. DOI: 10.1016/j.scriptamat.2006.08.018.
8. Tournier R.F., Beaugnon E. Texturing by cooling a metallic melt in a magnetic field // Science Technology of Advanced Materials. 2009. Vol. 10. P. 014501. DOI: 10.1088/1468-6996/10/1/014501.
9. Li H., Liu S., Jie J. et al. Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting // International Journal of Advanced Manufacturing Technology. 2017. Vol. 93. P. 3033. DOI: 10.1007/s00170-017-0724-0.
10. Li C.J., Yang H., Ren Z.M. et al. On Nucleation Temperature of Pure Aluminum in Magnetic Fields // Progress in Electromagnetics Research Letters. 2010. Vol. 15. P. 45. DOI: 10.2528/PIERL10041412.
11. Bustos O., Ordoñez S., Colás R. Rheological and microstructural study of A356 alloy solidified under magnetic stirring // International Journal of Cast Metals Research. 2013. Vol. 7. No. 1. P. 29–37.
12. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
13. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
14. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabilnyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
15. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. Termodinamicheskiy analiz magnitoplasticheskikh effektov v «nemagnitnykh» metallakh [Thermodynamics analysis of magnetoplastic effects in «non-magnetic» metals] // trudy viam: elektron. nauch.-tekhnich. zhurn. 2018. №12 (72). St. 09. Available at: http://www.viam-works.ru (accessed: September 20, 2019). DOI: 10.18577/2307-6046-2018-0-12-79-87.
On the example of titanium alloy Ti-6Al-4V structural features were determined and defects characteristic of α+β titanium alloys obtained by selective laser melting were identified.
Studies of the structure have shown that in the process of synthesis formed elongated in the direction of cultivation of the former β-grain. In the synthesis plane, the structure is represented by square structural components with a cell size corresponding to the distance between the tracks. The material has a plate microstructure identical to two-phase titanium alloys in the cast state.
As a result of the synthesis, a phase transition texture from the high-temperature beta phase is formed similar to the texture formed in the classical precipitation technologies in the β-region. Annealing at 840°C for 2 hours has no significant effect on the microstructure and texture.
In SLS defects are formed in the form of pores and non-fusion, which form a grid with a cell size of 1 mm in the synthesis plane. This is due to the shift of Islands on each subsequent synthesis layer by 1 mm, and the pores themselves are formed along the boundaries of the Islands.
Also, a characteristic defect is discontinuity in the form of bowls along the boundaries of the granules, oriented convex surface in the direction of the substrate. This leads to the formation of sharp concentrators in the synthesis plane.
A specific defect for titanium alloys obtained by SLS method are separate granules or fragments of powder granules, which retained their shape as a result of synthesis. These defects are distributed chaotically in the volume and have on their surface a rim of the alphanumeric layer. The formation of an alpha layer is due to the formation of a thin layer of scale on i
2. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaytsev D.V., Prager S.M. Evolyutsiya struktury i svoystv vysokokhromistogo zharoprochnogo splava VZh159, poluchennogo metodom selektivnogo lazernogo splavleniya. Ch. I [The evolution of the structure and properties of the high-chromium heat-resistant alloy VZh159, obtained by selective laser fusion. Part I] // Materialovedeniye. 2019. №3. S. 9–17.
3. Kablov E.N., Evgenov A.G., Mazalov I.S., Shurtakov S.V., Zaytsev D.V., Prager S.M. Evolyutsiya struktury i svoystv vysokokhromistogo zharoprochnogo splava VZh159, poluchennogo metodom selektivnogo lazernogo splavleniya. Ch. II [The evolution of the structure and properties of the high-chromium heat-resistant alloy VZh159, obtained by selective laser fusion. Part II] // Materialovedeniye. 2019. №4. S. 9–15.
4. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
5. Dynin N.V., Zavodov A.V., Oglodkov M.S., Khasikov D.V. Vliyaniye parametrov protsessa selektivnogo lazernogo splavleniya na strukturu alyuminiyevogo splava sistemy Al–Si–Mg [ The influence of process parameters of selective laser melting on the structure of aluminum alloy Al–Si–Mg system] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 01. Available at: http://www.viam-works.ru (accessed: June 20, 2019). DOI: 10.18577/2307-6046-2017-0-10-1-1.
6. Ryabov D.K., Antipov V.V., Korolev V.A., Medvedev P.N. Vliyanie tehnologicheskih faktorov na strukturu i svojstva silumina, poluchennogo s ispolzovaniem tehnologii selektivnogo lazernogo sinteza [Effect of technological factors on structure and properties of Al–Si alloy obtained by selective laser melting] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 44–51. DOI: 10.18577/2071-9140-2016-0-S1-44-51.
7. Bogachev I.A., Sulyanova E.A., Sukhov D.I., Mazalov P.B. Issledovaniye mikrostruktury i svoystv korrozionnostoykoy stali sistemy Fe–Cr–Ni, poluchennoy metodom selektivnogo lazernogo splavleniya [ Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №3 (75). St. 01. Available at: http://www.viam-works.ru (accessed: June 26, 2019). DOI: 10.18577/2307-6046-2019-0-3-3-13.
8. Aloshin N.P., Murashov V.V., Evgenov A.G., Grigorev M.V., Shchipakov N.A., Vasilenko S.A., Krasnov I.S. Klassifikatsiya defektov metallicheskikh materialov, sintezirovannykh metodom selektivnogo lazernogo splavleniya, i vozmozhnosti metodov nerazrushayushchego kontrolya dlya ikh obnaruzheniya [Classification of defects in metallic materials synthesized by selective laser fusion, and the possibility of non-destructive testing methods for their detection] // Defektoskopiya. 2016. №1. S. 48–55.
9. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
10. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Struktura i svoystva listovykh polufabrikatov iz deformiruyemykh intermetallidnykh titanovykh splavov raznykh klassov [Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
11. Nochovnaya N.A. Issledovaniye vliyaniya parametrov izotermicheskoy deformatsii i termicheskoy obrabotki na strukturu i mekhanicheskiye svoystva shtampovki iz splava VT6ch. [Research of the influence of parameters of isothermal deformation and heat treatment on structure and mechanical properties punchings from alloy VT6ch] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 03. Available at: http://www.viam-works.ru (accessed: July 10, 2019). DOI: 10.18577/2071-9140-2017-0-10-3-3.
12. Antonysamy A.A., Meyer J., Prangnell P.B. Effect of build geometry on the b-grain structure and texture in additive manufacture of Ti/6Al/4V by selective electron beam melting // Materials characterization. 2013. Vol. 84. P. 153–168.
13. Carter L.N., Martin C., Withers P.J., Attallah M.M. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy // Journal of Alloys and Compounds. 2014. Vol. 615. P. 338–347.
14. Cao L., Wan Y., Yang S., Pu J. The Tribocorrosion and Corrosion Properties of Thermally Oxidized Ti6Al4V Alloy in 0.9 wt. % NaCl Physiological Saline // Coatings. 2018. No. 8. P. 285. DOI: 10.3390/coatings8080285.
15. Voronin N.V., Kutlubayev R.G., Mikhaylov E.A., Astanin V.V., Kayumova E.Z. Vliyaniye gazonasyshchennogo sloya na parametry akusticheskoy emissii pri nagruzhenii titanovogo splava VT1-0 [The effect of a gas-saturated layer on the parameters of acoustic emission during loading of a VT1-0 titanium alloy] // Ekspertiza promyshlennoy bezopasnosti i diagnostika opasnykh proizvodstvennykh obektov. 2015. №5. S. 165–167.
16. Davydov S.I., Ovchinnikov A.V., Shvartsman L.Ya. i dr. Sovershenstvovaniye protsessa polucheniya titanovykh splavov putem razrabotki tekhnologii proizvodstva titana gubchatogo s zadannym soderzhaniyem kisloroda [Improving the process for producing titanium alloys by developing a technology for the production of sponge titanium with a given oxygen content] // Titan. 2011. №4 (34). S. 21–27.
17. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem: spravochnik v 3 t. / pod obshch. red. N.P. Lyakisheva [Diagrams of the state of double metal systems: a reference book in 3 vol. / gen. ed. N.P. Lyakishev]. M.: Mashinostroyeniye, 2001. T. 3, kn. I. 872 s.
Rockwell hardness (HRC) and microstructure studies have been accomplished on samples cut from sheets of metastable b-titanium alloy VT47 after isothermal exposures (ageing) in the temperature range from 350 to 650°С and exposure durations from 10 minutes to 128 hours. A diagram and «C-shaped» hardness curves for the VT47 alloy have been plotted on the basis of experimental results, and a comparative assessment of the plotted curves with a «time-temperature-phase transformations» diagram for a metastable b-titanium alloy Beta-C, being one of the closest analogues, has been carried out.
In this project the «incubation period» has been determined for the VT47 alloy hardness increase (up to ≈28–30 HRC) during ageing, which occurred to be ≈32 hours at 350°С, ≈16 hours at 400°С, ≈2 hours at 450°С, ≈2–4 hours at 500°С, ≈4 hours at 550°С, and was not observed at 650°С.
It was revealed that isothermal ageing at a temperature of 650°С did not result in noticeable changes in hardness throughout the studied ageing durations, which was due to the predominant grain-boundary morphology and a small amount of secondary α-phase precipitates. Exposures at lower temperatures lead to a significant hardness increase owing to both the secondary α-phase volume fraction increase and its precipitation change towards the intragranular fine lamellar morphology as well as a more homogeneous distribution of α-phase precipitates over the initial β-grains volume. The lowering of the isothermal ageing temperature to 350°С results in both “incubation period” expansion and a significant slowdown in the process of alloy hardening together with lower maximum hardness values even after long-time exposures.
It h
2. Nyakana S.L., Fanning J.C., Boyer R.R. Quick Reference Guide for β Titanium Alloys in the 00s // Journal of Materials Engineering and Performance. 2005. Vol. 14 (6). P. 799–811.
3. Boyer R.R., Briggs R.D. The Use of β Titanium Alloys in the Aerospace Industry // Journal of Materials Engineering and Performance. 2005. Vol. 14 (6). P. 681–685.
4. Kablov E.N., Nochovnaya N.A., Gribkov Yu.A., Shiryayev A.A. Razrabotka vysokoprochnogo titanovogo psevdo-β-splava i tekhnologiy polucheniya polufabrikatov iz nego [Development of high-strength titanium pseudo-β-alloy and technologies for producing semi-finished products from it ] // Voprosy materialovedeniya. 2016. №3 (87). S. 23–31.
5. Ilin A.A., Skvortsova S.V., Dzunovich D.A., Panin P.V., Shalin A.V. Vliyaniye parametrov termicheskoy i termomekhanicheskoy obrabotki na teksturoobrazovaniye v listovykh polufabrikatakh iz titanovykh splavov [Influence of the parameters of thermal and thermomechanical processing on texture formation in sheet semi-finished products from titanium alloys] // Tekhnologiya mashinostroyeniya. 2012. №8. S. 8–12.
6. Nochovnaya N.A., Panin P.V., Alekseyev E.B., Novak A.V. Zakonomernosti formirovaniya strukturno-fazovogo sostoyaniya splavov na osnove orto- i gamma-alyuminidov titana v protsesse termomekhanicheskoy obrabotki [Patterns of formation of the structural phase state of alloys based on titanium ortho and gamma aluminides during thermomechanical processing] // Vestnik Rossiyskogo fonda fundamental'nykh issledovaniy. 2015. №1 (85). S. 18–26.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Vysokoprochnyy splav na osnove titana i izdeliye, vypolnennoye iz vysokoprochnogo splava na osnove titana: pat. 2569285 Ros. Federatsiya. №2014153690/02 [High-strength alloy based on titanium and a product made of high-strength alloy based on titanium: pat. 2569285 Rus. Federation. No. 2014153690/02]; zayavl. 29.12.14; opubl. 20.11.15.
9. Nochovnaya N.A., Shiryayev A.A., Dzunovich D.A., Panin P.V. Issledovaniye khimicheskogo sostava krupnogabaritnogo opytno-promyshlennogo slitka iz novogo vysokolegirovannogo psevdo-b-titanovogo splava VT47 [Study of chemical composition of large-dimensioned experimental-industrial ingot from a new high-alloyed metastable β-titanium alloy VT47] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №1 (61). St. 06. Available at: http://www.viam-works.ru (accessed: June 18, 2019). DOI: 10.18577/2307-6046-2018-0-1-6-6.
10. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
11. Shiryaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivaiushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of development of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
12. Skupov A.A., Panteleev M.D., Ioda E.N., Movenko D.A. Effektivnost primeneniya redkozemelnyh metallov dlya legirovaniya prisadochnyh materialov [The efficiency of rare earth metals for filler materials alloying] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 14–19. DOI: 10.18577/2071-9140-2017-0-3-14-19.
13. Lyasotskaya V.S. Termicheskaya obrabotka svarnykh soyedineniy titanovykh splavov [Heat treatment of welded joints of titanium alloys]. M.: Ekomet, 2003. 352 s.
14. Dehghan-Manshadi A., Dippenaar R.J. Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy // Material Science and Engineering A. 2011. Vol. 528. P. 1833–1839.
15. Tetyukhin V.V., Gribkov Yu.A., Moder N.I., Vodolazskiy V.F. Issledovaniye strukturnykh i fazovykh prevrashcheniy v splave VT35 pri izgotovlenii tonkikh listov [Study of structural and phase transformations in VT35 alloy in the manufacture of thin sheets] // Titan. 1996. №1 (9). S. 25–29.
16. Furuhara T., Maki T., Makino T. Microstructure control by thermomechanical processing in β-Ti-15-3 alloy // Journal of Materials Processing Technology. 2001. Vol. 117. P. 318–323.
17. Martin B., Samimi P., Collins P. Engineered, spatially varying isothermal holds: enabling combinatorial studies of temperature effects, as applied to metastable titanium alloy β-21S // Metallography, Microstructure, and Analysis. 2017. No. 6. P. 216–220.
18. Terlinde G., Fischer G. Beta titanium alloys // Proceedings of 8th World Conference on Titanium «Titanium 95: Science and technology». The Institute of Materials, UK. 1996. P. 2177–2194.
19. Zhanal P., Harcuba P., Hajek J. et al. Evolution of ɷ phase during heating of metastable β titanium alloy Ti–15Mo // Journal of Material Science. 2018. Vol. 53. P. 837–845.
20. Ivasishin O.M., Markovsky P.E., Matviychuk Yu.V., Semiatin S.L. Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment // Metallurgical and Materials Transactions A. 2003. Vol. 34A. P. 147–158.
21. Furuhara T. Role of defects on microstructure of beta titanium alloys // Metals and Materials. 2000. Vol. 6. No. 3. P. 221–224.
22. Clement N., Lenain A., Jacques P.J. Mechanical property optimization via microstructural control of new metastable beta titanium alloys // JOM. 2007. Vol. 1. P. 50–53.
23. Zhou Z., Fei Y., Lai M. et al. Microstructure and mechanical properties of new metastable β type titanium alloy // Transactions of Nonferrous Metals Society of China. 2010. Vol. 20. P. 2253–2258.
24. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. Izuchenie vliyaniya parametrov zakalki na strukturu i tverdost intermetallidnogo titanovogo orto-splava VTI-4 [The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June 18, 2019). DOI: 10.18577/2307-6046-2018-0-2-5-5.
25. Schmidt P., El-Chaikh A., Christ H.-J. Effect of Duplex Aging on the Initiation and Propagation of Fatigue Cracks in the Solute-rich Metastable β Titanium Alloy Ti 38-6-44 // Metallurgical and Materials Transactions A. 2011. Vol. 42A. P. 2652–2667.
26. Shiryayev A.A., Nochovnaya N.A. Issledovaniye formirovaniya struktury v protsesse stareniya vysokoprochnogo psevdo-b titanovogo splava VT47 [Investigation of the structure formation during aging of high-strength pseudo-β titanium alloy VT47] // Metallurg. 2019. №9. S. 76–84.
On the basis of the analysis of literary data it is established that strength characteristics of the samples received by the way FDM of printing depend on a number of parameters of technological process: orientations of thread of fusion, distances between threads, the choice of the mode of its laying, temperatures of a nozzle and the platform of creation. These parameters define diagrams of internal thermoelastic stresses, quality of a surface, adhesive communication between threads of fusion and, eventually, the strength and relative deformation of the printed models. Strength characteristics of the details made with use of optimum printing options come very close to properties of the products received by way of casting under pressure.
Use as initial materials of a poliefirimid, polifenilensulfid, polifenilensulfon, poliefirefirketon, liquid crystal aromatic polyair allows to receive in the way FDM of printing of a detail of irregular geometrical shape with strength more than 100 MPas and with the glass transition temperature more than 200 °C.
The technology of FDM printing gives a unique opportunity to receive details of irregular shape from the polymeric matrixes reinforced by continuous fiber. The developed modern industrial printers for printing of products on this technology allow to make samples with strength characteristics close to aluminum alloys, at the same time their weight characteristics are twice less.
The conducted researches allow to pass from prototyping which was a main objective of development of FDM printers, to production of real details, specific devices and constructions. However for achievement of this purpose it is necessary to solve a number of research problems, in particular:
– a research of influence of structure of a polymeric matrix and the techno
2. Kablov E.N., Semenova L.V., Petrova G.N. i dr. Polimernyye kompozitsionnyye materialy na termoplastichnoy matritse [Polymer composite materials on a thermoplastic matrix] // Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya. 2016. T. 59. №10. S. 61–71.
3. Kablov E.N., Yakovlev N.O., Kharitonov G.M., Mekalina I.V. Osobennosti relaksatsionnogo povedeniya polimernykh stekol na osnove polimetilmetakrilata i ikh uchet pri prochnostnom raschete aviatsionnogo ostekleniya [Features of the relaxation behavior of polymer glasses based on polymethyl methacrylate and their consideration in the strength calculation of aviation glazing] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №9. S. 2–9.
4. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii: sb. nauch.-informats. materialov. 3-ye izd. [Trends and guidelines for the innovative development of Russia: collection of scientific and information materials. 3rd ed. ]. M.: VIAM, 2015. 720 s.
5. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
6. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
7. Pavlyuk B.Ph. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
8. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] //Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
9. Huang S.H., Liu P., Mokasdar A., Hou L. Additive manufacturing and its societal impact: a literature review // The International Journal of Advanced Manufacturing Technology. 2013. Vol. 67. P. 1191–1203. DOI: 10.1007/s00170-012-4558-5.
10. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // The International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
11. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimizatsiya sostava polimernoy kompozitsii s ponizhennoy pozharnoy opasnostyu na osnove polikarbonata dlya tekhnologii 3D-pechati rasplavlennoy polimernoy nit'yu [Optimization of the composition of the polymer composition with reduced fire hazard based on polycarbonate for 3D printing technology with molten polymer thread] // Izvestiya vuzov. Ser.: Khimiya i khimicheskaya tekhnologiya. 2017. T. 60. №1. S. 87–94.
12. Petrova G.N., Larionov S.A., Sorokin A.E., Sapego Yu.A. Sovremennyye sposoby pererabotki termoplastov [Modern ways of processing of thermoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №11 (59). St. 07. Available at: http://www.viam-works.ru (accessed: September 14, 2019). DOI: 10.18577/2307-6046-2017-0-11-7-7.
13. Hill N., Haghi M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate // Rapid Prototyping Journal. 2014. Vol. 20 (3). P. 221–227. DOI: 10.1108/RPJ-04-2013-0039.
14. Fodran E., Koch M., Menon U. Mechanical and dimensional characteristics of fused deposition modeling build styles // International Solid Freeform Fabrication Symposium. 1996. P. 419–442.
15. Ziemian C., Sharma M., Ziemian S. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling // Mechanical engineering. InTechOpen, 2012. P. 159–180.
16. Ziemian S., Okwara M., Ziemian C. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene // Rapid Prototyping Journal. 2015. Vol. 21. No. 3. P. 270–278.
17. Es-Said O.S., Foyos J., Noorani R. et al. Effect of layer orientation on mechanical properties of rapid prototyped samples // Materials and Manufacturing Processes. 2000. Vol. 15. No. 1. P. 107–122.
18. Hernandez R., Slaughter D., Whaley D. et al. Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling // 27th Annual International Solid Freeform Fabrication Symposium. 2016. Vol. 10. P. 939–950.
19. Ahn S.H., Montero M., Odell D. et al. Anisotropic material properties of fused deposition modeling ABS // Rapid prototyping journal. 2002. Vol. 8. No. 4. P. 248–257.
20. Rodríguez J.F., Thomas J.P., Renaud J.E. Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation // Rapid Prototyping Journal. 2001. Vol. 7. No. 3. P. 148–158.
21. Fatimatuzahraa A.W., Farahaina B., Yusoff W.A.Y. The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts // 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). 2011. P. 22–27.
22. Raney K., Lani E., Kalla D.K. Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process // Materials Today: proceedings. 2017. Vol. 4. No. 8. P. 7956–7961.
23. Sun Q., Rizvi G.M., Bellehumeur C.T., Gu P. Effect of processing conditions on the bonding quality of FDM polymer filaments // Rapid Prototyping Journal. 2008. Vol. 14. No. 2. P. 72–80.
24. Onwubolu G.C., Rayegani F. Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process // International Journal of Manufacturing Engineering. 2014. Vol. 2014. P. 1–14.
25. Rankouhi B., Javadpour S., Delfanian F. et al. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation // Journal of Failure Analysis and Prevention. 2016. Vol. 16. No. 3. P. 467–481.
26. Wang J., Xie H., Weng Z. et al. A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling // Materials & Design. 2016. Vol. 105. P. 152–159.
27. Croccolo D., De Agostinis M., Olmi G. Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30 // Computational Materials Science. 2013. Vol. 79. P. 506–518.
28. Torrado A.R., Roberson D.A. Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns // Journal of Failure Analysis and Prevention. 2016. Vol. 16. No. 1. P. 154–164.
29. Cantrell J.T., Rohde S., Damiani D. еt al. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts // Rapid Prototyping Journal. 2017. Vol. 23. No. 4. С. 811–824.
30. Górski F., Wichniarek R., Kuczko W. et al. Experimental determination of critical orientation of ABS parts manufactured using fused deposition modelling technology // Journal of Machine Engineering. 2015. Vol. 15. No. 4. P. 121–132.
31. Górski F., Kuczko W., Wichniarek R. Impact strength of ABS parts manufactured using Fused Deposition Modeling technology // Archives of Mechanical Technology and Automation. 2014. Vol. 31. No. 1. P. 3–12.
32. Bertoldi M., Yardimci M.A., Pistor C.M. et al. Mechanical characterization of parts processed via fused deposition // International Solid Freeform Fabrication Symposium. 1998. P. 557–566.
33. Sood A.K., Ohdar R.K., Mahapatra S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts // Materials & Design. 2010. Vol. 31. No. 1. P. 287–295.
34. Sood A.K., Ohdar R.K., Mahapatra S.S. Experimental investigation and empirical modelling of FDM process for compressive strength improvement // Journal of Advanced Research. 2012. Vol. 3. No. 1. P. 81–90.
35. Lee B.H., Abdullah J., Khan Z.A. Optimization of rapid prototyping parameters for production of flexible ABS object // Journal of materials processing technology. 2005. Vol. 169. No. 1. P. 54–61.
36. Barvinskiy I.A., Barvinskaya I.E. Spravochnik po lit'yevym termoplastichnym materialam [Handbook of injection thermoplastic materials ]. Available at: http://www. barvinsky. ru (accessed: August 16, 2019).
37. Fernandez-Vicente M., Calle W., Ferrandiz et al. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing // 3D printing and additive manufacturing. 2016. Vol. 3. No. 3. P. 183–192.
38. Baich L., Manogharan G., Marie H. Study of infill print design on production cost-time of 3D printed ABS parts // International Journal of Rapid Manufacturing. 2015. Vol. 5. No. 3–4. P. 308–319.
39. Mahmood S., Qureshi A.J., Goh K.L. et al. Tensile strength of partially filled FFF printed parts: experimental results // Rapid Prototyping Journal. 2017. Vol. 23. No. 1. P. 122–128.
40. Tanikella N.G., Wittbrodt B., Pearce J.M. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing // Additive Manufacturing. 2017. Vol. 15. P. 40–47.
41. Ligon S.C., Liska R., Stampfl J. et al. Polymers for 3D printing and customized additive manufacturing // Chemical Reviews. 2017. Vol. 117. No. 15. P. 10212–10290.
42. Petrova G.N., Platonov M.M., Bolshakov V.A. i dr. Issledovaniye kompleksa kharakteristik bazovykh materialov dlya FDM-tekhnologii additivnogo sinteza. Fiziko-mekhanicheskiye i teplofizicheskiye svoystva [Study of the complex characteristics of basic materials for FDM-technology of additive synthesis. Physico-mechanical and thermophysical properties] // Plasticheskiye massy. 2016. №5–6. S. 53–58.
43. Gebisa A., Lemu H. Investigating effects of Fused-Deposition Modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment // Materials. 2018. Vol. 11. No. 4. P. 500.
44. Jiang S., Liao G., Xu D. et al. Mechanical properties analysis of polyetherimide parts fabricated by fused deposition modeling // High Performance Polymers. 2019. Vol. 31. No. 1. P. 97–106.
45. Gebisa A.W., Lemu H.G. Mechanical properties of ULTEM 9085 material processed by fused deposition modeling // Polymer Testing. 2018. Vol. 72. P. 335–347.
46. Fitzharris E.R., Watt I., Rosen D.W. et al. Interlayer bonding improvement of material extrusion parts with polyphenylene sulfide using the Taguchi method // Additive Manufacturing. 2018. Vol. 24. P. 287–297.
47. Slonov A.L., Khashirov A.A., Zhansitov A.A. et al. The influence of the 3D-printing technology on the physical and mechanical properties of polyphenylenesulfone // Rapid Prototyping Journal. 2018. Vol. 24. No. 7. P. 1124–1130.
48. Slonov A.L., Khashirov A.A., Zhansitov A.A. et al. Mechanical Properties of Samples of PolyphenyleneSulfone Obtained by the 3D-Printing Method // Materials Science Forum. Trans. Tech. Publications. 2018. Vol. 935. P. 21–26.
49. Rinaldi M., Ghidini T., Cecchini F. et al. Additive layer manufacturing of poly (ether ether ketone) via FDM // Composites Part B: Engineering. 2018. Vol. 145. P. 162–172.
50. Zhao F., Li D., Jin Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications // Materials. 2018. Vol. 11. No. 2. P. 288.
51. Gantenbein S., Masania K., Woigk W. et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures // Nature. 2018. Vol. 561. No. 7722. P. 226.
52. Fink J.K. Handbook of Engineering and Speciality Thermoplastics. 2010. Vol. 1. DOI: 10.1002/9780470881712.
53. Hmeidat N.S., Kemp J.W., Compton B.G. High-strength epoxy nanocomposites for 3D printing // Composites Science and Technology. 2018. Vol. 160. P. 9–20.
54. Dawoud M., Taha I., Ebeid S.J. Strain sensing behaviour of 3D printed carbon black filled ABS // Journal of Manufacturing Processes. 2018. Vol. 35. P. 337–342.
55. Hohimer C.J., Petrossian G., Ameli A. et al. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites // Behavior and Mechanics of Multifunctional Materials and Composites XII. 2018. Vol. 10596. P. 105960J.
56. Quill T.J., Smith M.K., Zhou T. et al. Thermal and mechanical properties of 3D printed boron nitride–ABS composites // Applied Composite Materials. 2018. Vol. 25. No. 5. P. 1205–1217.
57. Francis V., Jain P.K. Investigation on the effect of surface modification of 3D printed parts by nanoclay and dimethyl ketone // Materials and Manufacturing Processes. 2018. Vol. 33. No. 10. P. 1080–1092.
58. Paspali A., Bao Y., Gawne D.T. et al. The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites // Composites Part B: Engineering. 2018. Vol. 152. P. 160–168.
59. Sorokin A.E., Larionov S.A., Krayev I.D. i dr. Funktsionalizovannyye termoplastichnyye filamenty dlya dvumatrichnykh PKM, izgotovlennykh metodom 3D-pechati [Functionalized thermoplastic filaments for two-matrix PCMs made by 3D printing] // V Mezhdunar. konf. «Additivnyye tekhnologii nastoyashcheye i budushcheye» (Moskva, 22 marta 2019). M.: VIAM, 2019. S. 361–376.
60. Aslanzadeh S., Saghlatoon H., Honari M.M. et al. Investigation on electrical and mechanical properties of 3D printed nylon 6 for RF/microwave electronics // Additive Manufacturing. 2018. Vol. 21. P. 69–75.
61. Çanti E., Aydin M. Effects of micro particle reinforcement on mechanical properties of 3D printed parts // Rapid Prototyping Journal. 2018. Vol. 24. No. 1. P. 171–176.
62. Yamamoto B.E., Trimble A.Z., Minei B. et al. Development of multifunctional nanocomposites with 3D printing additive manufacturing and low graphene loading // Journal of Thermoplastic Composite Materials. 2019. Vol. 32. No. 3. P. 383–408.
63. Spoerk M., Sapkota J., Weingrill G. et al. Shrinkage and Warpage Optimization of Expanded Perlite Filled Polypropylene Composites in Extrusion Based Additive Manufacturing // Macromolecular Materials and Engineering. 2017. Vol. 302. P. 1700143.
64. Zhong W., Li F., Zhang Z. et al. Short fiber reinforced composites for fused deposition modeling // Materials Science and Engineering: A. 2001. Vol. 301. No. 2. P. 125–130.
65. Shofner M.L., Lozano K., Rodríguez-Macías F.J. et al. Nanofiber reinforced polymers prepared by fused deposition modeling // Journal of applied polymer science. 2003. Vol. 89. No. 11. P. 3081–3090.
66. Ning F., Cong W., Qiu J. et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling // Composites Part B: Engineering. 2015. Vol. 80. P. 369–378.
67. Papon E.A., Haque A. Fracture toughness of additively manufactured carbon fiber reinforced composites // Additive Manufacturing. 2019. Vol. 26. P. 41–52.
68. Tekinalp H.L., Kunc V., Velez-Garcia G.M. et al. Highly oriented carbon fiber–polymer composites via additive manufacturing // Composites Science and Technology. 2014. Vol. 105. P. 144–150.
69. Fonseca J., Ferreira I.A., de Moura M.F.S.F. et al. Study of the interlaminar fracture under mode I loading on FFF printed parts // Composite Structures. 2019. Vol. 214. P. 316–324.
70. Equbal A., Equbal M.A., Sood A.K. et al. A Review and Reflection on Part Quality Improvement of Fused Deposition Modelled Parts. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 455. P. 012072.
71. Wang X., Jiang M., Zhou Z. et al. 3D printing of polymer matrix composites: a review and prospective // Composites Part B. 2017. Vol. 110. P. 442–458.
72. Matsuzaki R., Ueda M., Namiki M. et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation // Scientific Reports. 2016. Vol. 6. P. 23058.
73. Van Der Klift F., Koga Y., Todoroki A. et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens // Open Journal of Composite Material. 2016. Vol. 6. No. 1. P. 18–27.
74. Mori K., Maeno T., Nakagawa Y. Dieless forming of carbon fibre reinforced plastic parts using 3D printer // Procedia Engineering. 2014. Vol. 81. P. 1595–1600.
75. Bettini P., Alitta G., Sala G. et al. Fused deposition technique for continuous fiber reinforced thermoplastic // Journal of Materials Engineering and Performance. 2017. Vol. 26. No. 2. P. 843–848.
76. Melenka G.W., Cheung B.K., Schofield J.S. et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures // Composite Structures. 2016. Vol. 153. P. 866–875.
77. Tian X., Liu T., Yang C. et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites // Composites. Part A: Applied Science and Manufacturing. 2016. Vol. 88. P. 198–205.
78. Li N., Li Y., Liu S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing // Journal of Materials Processing Technology. 2016. Vol. 238. P. 218–225.
79. Yang C., Tian X., Liu T. et al. 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance // Rapid Prototyping Journal. 2017. Vol. 23. No. 1. P. 209–215.
80. Oztan C., Karkkainen R., Fittipaldi M. et al. Microstructure and mechanical properties of three dimensional-printed continuous fiber composites // Journal of Composite Materials. 2019. Vol. 53. No. 2. P. 271–280.
The evolution of microstructure and oxidation in TBC’s bond coats, occurring at long-term high-temperature exposure, significantly affect the thermomechanical properties of TBC and, therefore, may affect their service life. MCrAlY coatings (where M–Ni or/and Co) provide excellent protection against high temperature oxidation and corrosion. Such coatings are considered two-phase and consist of a matrix based on γ-Ni (Co, Cr) and the second phase β-NiAl – «aluminum reservoir». In addition, other phases such as σ-phase enriched with cobalt and chromium, α-Cr phase and γ' (Ni3Al) phase may be present in the coating structure. The evolution of the microstructure depends on the composition of materials and temperature.
Based on the literature review, three criteria of TBC durability were estimated: β-depletion, Al-depletion and critical thickness of TGO, which can be used for different compositions of TBC’s bond coats. Corundum (α-Al2O3) is characterized by low growth rate and low diffusion capacity. Therefore, TGO, consisting of corundum, is considered preferable. For the MeCrAlY bond coat, the main source of aluminum for the formation of Al2O3 is the β-NiAl (β'-CoAl) phase. Other oxides, including Cr2O3, NiO, or various spinels, may form as aluminum concentrations decrease or temperatures rise.
Depending on the coating methods, the microstructure features, mechanical properties and bonding mechanisms of the coating layers may vary. The use of thermal methods of applying TBC’s bond coats leads to an increased initial content of oxides and, as a consequence, to a more intensive growth rate of TGO. The use of nanocrystallization coatings can reduce the grain size of the TBC’s bond coats, which con
2. Budinovskij S.A., Chubarov D.A., Matveev P.V. Sovremennye sposoby naneseniya teplozashhitnyh pokrytij na lopatki gazoturbinnyh dvigatelej (obzor) [Modern methods for deposition of thermal barrier coatings on GTE turbine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 38–44. DOI: 10.18577/2071-9140-2014-0-s5-38-44.
3. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
4. Kablov e.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunktsionalnye vysokotemperaturnye pokrytiya dlya nikelevykh splavov, uplotnitelnykh metallicheskikh voloknistykh materialov i berilliyevykh splavov [Modern multifunctional high-temperature coatings for nickel alloys, sealing metal fibrous materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 05. Available at: http://www. materialsnews.ru (accessed: July 10, 2019).
5. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
6. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60. DOI: 10.18577/2071-9140-2014-0-s5-56-60.
7. Naumenko D., Shemet V., Singheiser L., Quadakkers W.J. Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide // Journal of Materials Science. 2009. Vol. 44. P. 1687–1703.
8. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Mauer G., Sebold D., Vaßen R. et al. Impact of processing conditions and feedstock characteristics on thermally sprayed MCrAlY bondcoat properties // Surface and Coatings and Technology. 2017. Vol. 318. P. 114–121.
10. Ichikawa Y., Ogawa K. Critical deposition condition of CoNiCrAlY cold spray based on particle deformation behavior // Journal of Thermal Spray Technology. 2017. Vol. 26. P. 340–349.
11. Gavendová P., Čížek J., Čupera J. et al. Microstructure modification of CGDS and HVOF sprayed CoNiCrAlY bond coat Remelted by electron beam // Procedia Material Science. 2016. Vol. 12. P. 89–94.
12. Doleker K.M., Karaoglanli A.C. Comparison of oxidation behavior of shot-peened plasma spray coatings with cold gas dynamic spray coatings // Oxidation of Metals. 2017. Vol. 88. P. 121–132.
13. Tolpygo V.K., Clarke D.R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation // Acta Materialia. 2000. Vol. 48. Issue 13. P. 3283–3293.
14. Belzunce F.J., Higuera V., Poveda S. High temperature oxidation of HFPD thermal-sprayed MCrAlY coatings // Materials Science and Engineering: A. 2001. Vol. 297, Issues 1–2. P. 162–167.
15. Prieto-García E., Baldenebro-Lopez F.J., Estrada-Guel I. et al. Microstructural evolution of mechanically alloyed Ni-based alloys under high temperature oxidation // Powder Technology. 2015. Vol. 281. P. 57–64.
16. Richer P., Yandouzi M., Beauvais L., Jodoin B. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying // Surface and Coatings Technology. 2010. Vol. 204. P. 3962–3974.
17. Wei P., Wei Z., Zhao G. et al. The analysis of melting and refining process for in-flight particles in supersonic plasma spraying // Computer Material Science. 2015. Vol. 103. P. 8–19.
18. Poza P., Grant P.S. Microstructure evolution of vacuum plasma sprayed CoNiCrAlY coatings after heat treatment and isothermal oxidation // Surface and Coatings Technology. 2006. Vol. 201. P. 2887–2896.
19. Li Y., Li C.-J., Yang G.-J., Xing L.-K. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying // Surface Coatings and Technology. 2010. Vol. 205. P. 2225–2233.
20. Chen H. Microstructure characterization of un-melted particles in a plasma sprayed CoNiCrAlY coating // Materials Characterization. 2017. P. 1–8.
21. Shibata M., Kuroda S., Murakami H. et al. Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Bond Coatings Prepared by Different Thermal Spray Processes // Material Translations. 2006. Vol. 47 (7). P. 1638–1642.
22. Yilbas B.S., Al-Zaharnah I., Sahin A. HVOF Coating and Characterization // Flexural Testing of Weld Site and HVOF Coating Characteristics. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg, 2014. 176 p.
23. Mercier D., Gauntt B.D., Brochu M. Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings // Surface & Coatings Technology. 2011. Vol. 205. P. 4162–4168.
24. Tang F., Ajdelsztajn L., Schoenung J.M. Influence of Cryomilling on the Morphology and Composition of the Oxide Scales Formed on HVOF CoNiCrAlY Coatings // Oxidation of Metals. 2004. Vol. 61. Issue 3–4. P. 219–238.
25. Алхимов А.П., Клинков С.В., Косарев В.Ф., Фомин В.М. Холодное газодинамическое напыление. Теория и практика. М.: Физ.-мат. лит., 2010. 536 с.
26. Zhang Q., Li C.-J., Li C.X. et al. Study of Oxidation Behavior of Nanostructured NiCrAlY Bond Coatings Deposited by Cold Spraying // Surface and Coatings Technology. 2008. Vol. 202. Issue 14. P. 3378–3384.
27. Ajdelsztajn L., Zuniga A., Jodoin B., Lavernia E. Cold gas dynamic spraying of a high temperature Al alloy // Surface and Coatings Technology. 2006. Vol. 201. Issue 6. P. 2109–2116.
28. Borchers C., Gärtner F., Stoltenhoff T. Microstructural and macroscopic proper-ties of cold sprayed copper coatings // Journal of Applied Physics. 2003. Vol. 93. Issue 12. P. 1063–1069.
29. Dykhuizen R.C., Smith M.F. Gas dynamic principles of cold spray // Journal of Thermal Spray Technology. 1998. Vol. 7. Issue 2. P. 205–212.
30. Stoltenhoff T., Kreye H., Richter H.J. An analysis of the cold spray process and its coatings // Journal of Thermal Spray Technology. 2002. Vol. 11. Issue 4. P. 542–550.
31. Wright P.K., Evans A.G. Mechanisms governing the performance of thermal bar-rier coatings // Current Opinion in Solid State and Materials Science. 1999. Vol. 4. Issue 3. P. 255–265.
32. Messaoudi K., Huntz A.M. Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys // Materials Science and Engineering: A. 1998. Vol. 247. Issues 1–2. P. 248–262.
33. Hesnawi A., Li H., Zhou Z. et al. Isothermal oxidation behaviour of EB-PVD MCrAlY bond coat // Vacuum. 2007. Vol. 81. Issue 8. P. 947–952.
34. Leyens C., Wright I.G., Pint B.A. Effect of Experimental Procedures on the Cy-clic, Hot-Corrosion Behavior of NiCoCrAlY-Type Bondcoat Alloys // Oxidation of Metals. 2000. Vol. 54. Issue 3–4. P. 255–276.
35. Wefer K., Misra C. Oxides and Hydroxides of Aluminum. New York: Wiley, 1987. 92 p.
36. Pint B., Treska M., Hobbs L. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl // Oxidation of Metals. 1997. Vol. 47. Issue 1–2. P. 1–20.
37. Pieraggi B., Rapp R.A. Stress generation and vacancy annihilation during scale growth limited by cation-vacancy diffusion // Acta Metallurgica. 1988. Vol. 36. Issue 5. P. 1281–1289.
38. Brumm M.W., Grabke H.J., Wagemann B. The oxidation of NiAl-III. Internal and intergranular oxidation // Corrosion Science. 1994. Vol. 36. Issue 1. P. 37–53.
39. Hejrani E., Sebold D., Nowak W.J. et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying // Surface and Coatings Technology. 2017. Vol. 313. P. 191–201.
40. Yuan K., Peng R.L., Li X.H. et al. Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation // Surface and Coatings Technology. 2015. Vol. 261. P. 86–101.
41. Movenko D.A., Medvedev P.N., Smirnov A.A. Issledovaniye izmeneniya struktury teplozashchitnogo pokrytiya posle ispytaniy na zharostoykost [Study of changes in the heat-resistant alloy coating structure after heat resistance tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №11 (71). St. 08. Available at: http://www.viam-works.ru (accessed: July 12, 2019). DOI: 10.18577/2307-6046-2018-0-11-64-73.
42. Rinaldi C., Mandelli M. The role of diffusion and oxidation kinetics in a coating life prediction code: application to components // ASME Turbo Expo 2009: Power for Land, Sea, and Air: Proceedings Series. 2009. Vol. 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine. P. 893–902.
43. Yuan K., Eriksson R., Lin Peng R. et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation // Surface and Coatings Technology. 2013. Vol. 232. P. 204–215.
44. Thoma M., Scrivani A. Prolonged MCrAlY coating lifetime by means of the LPPS process // Proceedings of Conference ASME Turbo Expo. 2013. P. 535–543.
45. Yi H.C., Guan S.W., Smeltzer W.W., Petric A. Internal oxidation of NiAl and NiAlSi alloys at the dissociation pressure of NiO // Acta Metallurgy Materials. 1994. Vol. 42. P. 981–990.
46. Reed R.C. The superalloys: fundamentals and applications. Cambridge University Press, 2006. 372 p.
47. Sato A., Harada H., Yokokawa T. et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys // Scripta Materialis. 2006. Vol. 54. P. 1679–1684.
48. Zhang P., Yuan K., Peng R.L. et al. Long-term oxidation of MCrAlY coatings at 1000°C and an Al-activity based coating life criterion // Surface & Coatings Technology. 2017. Vol. 36. P. 1–10.
49. Liu Y.Z., Zheng S.J., Zhu Y.L. et al. Microstructural evolution at interfaces of thermal barrier coatings during isothermal oxidation // Journal of European Ceramic Society. 2016. Vol. 36. P. 1765–1774.
50. Ahmadian S., Jordan E.H. Explanation of the effect of rapid cycling on oxidation, rumpling, microcracking and lifetime of air plasma sprayed thermal barrier coatings // Surface & Coatings Technology. 2014. Vol. 244. P. 109–116.
51. Cai J., Guan Q.F., Hou X.L. et al. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by highcurrent pulsed electron beam // Applied Surface Science. 2014. Vol. 317. P. 360–369.
52. Wang F., Lou H., Zhu S., Wu W. The mechanism of scale adhesion on sputtered microcrystallized CoCrAl films // Oxidation of Metals. 1994. Vol. 45. Issue 1–2. P. 39–50.
53. Wang F. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales // Oxidation of Metals. 1997. Vol. 48. Issue 3–4. P. 215–224.
54. Pint B.A., Alexander K.B. Grain boundary segregation of cation dopants in a-Al2O3 scales // Fundamental Aspects of High Temperature Corrosion. Electrochemical Society, Pennington, 1996. Vol. VI. 97 p.
55. Pint B.A., More K.L., Wright I.G. Characterization of thermally cycled alumina scales. Materials of High Temperature. 2000. Vol. 17. Issue 1. P. 165–171.
56. Subanovic M., Song P., Wessel E. et al. Effect of exposure conditions on the oxi-dation of MCrAlY-bondcoats and lifetime of thermal barrier coatings // Surface & Coatings Technology. 2009. Vol. 204. P. 820–823.
57. Yang L.X., Zou Z.H., Kou Z.D. et al. High temperature stress and its influence on surface rumpling in NiCoCrAlY bond coat // Acta Materialia. 2017. Vol. 139. P. 122–137.
58. Chen H., Si Y.Q., McCartney D.G. An analytical approach to the β-phase coars-ening behaviour in a thermally sprayed CoNiCrAlY bond coat alloy // Journal of Alloys Compounds. 2017. Vol. 704. P. 359–365.
59. Jiang J.S., Zou Z.H., Wang W.Z. et al. Effect of internal oxidation on the inter-facial morphology and residual stress in air plasma sprayed thermal barrier coatings // Surface & Coatings Technology. 2018. Vol. 334. P. 215–226.
60. Weng W.-X., Wang Y.-M., Liao Y.-M. et al. Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings // Surface & Coatings Technology. 2018. Vol. 352. P. 285–294.
61. Mercier D., Kaplin C., Goodall G. et al. Parameters influencing the oxidation behavior of cryomilled CoNiCrAlY // Surface & Coatings Technology. 2010. Vol. 205. P. 2546–2553.
The existing variety of methods for accelerated testing in climatic chambers often does not allow obtaining comparable results of material durability; However, the question of the possibility of predicting corrosion resistance according to the results of accelerated tests remains open and is the subject of research by many scientists around the world.
This paper presents the results of a study of the corrosion resistance of samples made of aluminum alloy 1163 and carbon steel 30HGSA when tested in a salt fog chamber and under accelerated cyclic testing according to the VDA 621-415 method compared with the results of full-scale exposure for 2 years in a moderately warm seaside climate zone.
The test results show the difference in the dynamics of local corrosion damage (depth of intergranular and pitting corrosion) of an aluminum alloy during accelerated tests compared to full-scale
ones, which makes it impossible to predict corrosion losses in atmospheric conditions according to the results of accelerated tests. The predominant tendency to pitting during accelerated testing compared with the prevailing tendency to MKC during full-scale exposure is due to some difference in the corrosion mechanism of aluminum alloys due to the presence of moisture films of different thicknesses on the surface of the samples. This demonstrates the need to develop accelerated testing methods that require greater compliance with full-scale tests, as well as the development of modes taking into account the corrosive aggressiveness of the atmosphere where the tested materials will be operated.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: VIAM, 2015. S. 458–464.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Avi-acionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Chesnokov D.V., Antipov V.V., Kulyushina N.V. Metod uskorennyh laboratornyh ispytanij alyuminievyh splavov s celyu prognozirovaniya ih korrozionnoj stojkosti v usloviyah morskoj atmosfery [The method of accelerated laboratory tests of aluminum alloys for determination of their corrosion resistance in conditions of the sea atmosphere] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 (41). St. 10. Available at: http://www.viam-works.ru (accessed: June 18, 2019). DOI: 10.18577/2307-6046-2016-0-5-10-10.
6. Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modelirovaniye vozdeystviya ispytatelnykh faktorov na korroziyu metallicheskikh materialov pri ispytanii na agressivnoye vozdeystviye komponentov promyshlennoy atmosfery v kamere solevogo tumana [The method of accelerated laboratory testing of aluminum alloys in order to predict their corrosion resistance in a marine atmosphere] // Materialovedeniye. 2015. №3. S. 7–15.
7. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: June 18, 2019).
8. GOST 9.913–90. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Alyuminiy, magniy i ikh splavy. Metody uskorennykh korrozionnykh ispytaniy [State Standard 9.913–90. Unified system of corrosion and ageing protection (USCAP). Aluminium, magnesium and their alloys. Methods of accelerated corrosion tests]. M.: Izd-vo standartov, 1990. 9 s.
9. ISO 9227:2012. Corrosion tests in artificial atmospheres – Salt spray tests Standards Policy and Strategy Committee. Switzerland, 2012. 26 p.
10. ISO 14993:2001. Corrosion of metals and alloys – Accelerated testing involving cyclic exposure to salt mist, «dry» and «wet» conditions. Netherlands Standards, 2001. 20 p.
11. ISO 16539:2013. Corrosion of metals and alloys – Accelerated cyclic corrosion tests with exposure to synthetic ocean water salt-deposition process – «Dry» and «wet» conditions at constant absolute humidity British Standards Institution, 2013. 30 p.
12. GOST 9.308–85. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Pokrytiya metallicheskiye i nemetallicheskiye neorganicheskiye. Metody uskorennykh korrozionnykh ispytaniy [State Standard 9.308–85. Unified system of corrosion and ageing protection (USCAP). Metal and non-metal inorganic coatings. Methods for accelerated corrosion tests]. M.: Izd-vo standartov, 1985. 21 s.
13. GOST 9.311–87. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Pokrytiya metallicheskiye i nemetallicheskiye neorganicheskiye. Metod otsenki korrozionnykh porazheniy [State Standard 9.311–87. Unified system of corrosion and ageing protection (USCAP). Metal and non-metal inorganic coatings. Method of corrosion damage evaluation]. M.: Izd-vo standartov, 1987. 13 s.
14. Strekalov P.V., Panchenko Yu.M., Zhilikov V.P., Karimova S.A., Tararayeva T.I., Nikulina T.V. Uskorennyye ispytaniya splava D16 v solyanom tumane. Massa uderzhannykh khloridov, korroziya, mekhanicheskiye svoystva [Accelerated testing of D16 alloy in salt fog. The mass of retained chlorides, corrosion, mechanical properties] // Korroziya: materialy, zashchita. 2007. №10. S. 1–8.
15. Kurs M.G., Kutyrev A.E., Fomina M.A. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri laboratornyh i naturnyh ispytaniyah [Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 10. Available at: http://www.viam-works.ru (accessed: August 18, 2019). DOI: 10.18577/2307-6046-2016-0-8-10-10.
16. Kurs M.G. Prognozirovaniye prochnostnykh svoystv obshivki LA iz deformiruyemogo alyuminiyevogo splava V95o.ch.-T2 s primeneniyem integralnogo koeffitsiyenta korrozionnogo razrusheniya [Forecasting the strength properties of the skin cover of a deformable aluminum alloy В95о.ч.-Т2 with the use of the integrated corrosion reduction coefficient] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №5. St. 11. Available at: http://www.viam-works.ru (accessed: August 03, 2019). DOI: 10.18577/2307-6046-2018-0-5-101-109.
17. GOST 9.401–91. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Pokrytiya lakokrasochnyye. Obshchiye trebovaniya i metody uskorennykh ispytaniy na stoykost k vozdeystviyu klimaticheskikh faktorov [State Standard 9.401–91. Unified system of corrosion and ageing protection (USCAP). Paint coatings. General requirements and methods of accelerated tests on resistance to the action of climatic factors]. M.: Izd-vo standartov, 1991. 29 s.
18. GOST 9.104–79. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Pokrytiya lakokrasochnyye. Gruppy usloviy ekspluatatsii [State Standard 9.104–79. Unified system of corrosion and ageing protection (USCAP). Paint coatings. Groups of operation conditions]. M.: Standartinform, 1979. 16 s.
19. GOST 9.407–84. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Pokrytiya lakokrasochnyye. Metod otsenki vneshnego vida [Unified system of corrosion and ageing protection (USCAP). Paint coatings. Method of appearance rating]. M.: Standartinform, 1984. 40 s.
20. LeBozec N., Blandin N., Thierry D. Accelerated corrosion tests in the automotive industry: A comparison of the performance towards cosmetic corrosion // Materials and Corrosion. 2008. Vol. 59. No. 11. P. 889–894.
21. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovaniye korrozionnogo razrusheniya deformiruyemykh alyuminiyevykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Investigation of corrosion failure of wrought aluminum alloys during field accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
22. Kurs M.G. Metod rascheta integralnogo koeffitsiyenta korrozionnogo razrusheniya listov iz deformiruyemykh alyuminiyevykh splavov pri naturno-uskorennykh ispytaniyakh: avtoref. dis. ... kand. tekhn. nauk [The method of calculating the integral coefficient of corrosion failure of sheets of wrought aluminum alloys during field-accelerated tests: thesis abstracts, Cand. Sc. (Tech.)]. M., 2016. 22 s.
23. De Azevedo Alvarenga E., de Freitas Cunha Lins V. Atmospheric corrosion evaluation of electrogalvanized, hot-dip galvanized and galvannealed interstitial free steels using accelerated field and cyclic tests. // Surface & Coatings Technology. 2016. No. 306. P. 428–438.
24. Blanc C., Mankowsky G. Susceptibility to pitting corrosion of 6056 aluminium alloy // Corrosion science. 1997. Vol. 39. No. 5. P. 949–959.
25. Igonin T.N. Atmosfernaya korroziya uglerodistoy stali i tsinka (modelirovaniye i kartografirovaniye territorii Rossiyskoy Federatsii): avtoref. dis. … kand. khim. nauk [Atmospheric corrosion of carbon steel and zinc (modeling and mapping of the territory of the Russian Federation): thesis abstracts, Cand. Sc. (Chem.)]. M., 2012. 26 s.
26. Panchenko Y.M., Marshakov A.I. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function // Corrosion Science. 2016. Vol. 109. P. 217–229.
27. Kutyrev A.E., Chesnokov D.V. Analiz dannykh po naturnym ispytaniyam alyuminiyevykh splavov i razrabotka kontseptsii ikh kompleksnykh korrozionnykh ispytaniy [Analysis of data on full-scale tests of aluminum alloys and development of the concept of their comprehensive corrosion tests] // III Mezhdunar. nauch.-tekhnich. konf. «Korroziya, stareniye i biostoykost materialov v morskom klimate» (Gelendzhik, 07 sent. 2018 g.). M., 2018. C. 80–96. 1 elektron. opt. disk.
28. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Leshko S.S. Issledovaniye kinetiki mezhkristallitnoy korrozii alyuminiyevogo splava D16 pri yego anodnom rastvorenii [Investigation of the kinetics of intergranular corrosion of an aluminum alloy D16 during its anodic dissolution] // Fundamentalnye issledovaniya i posledniye dostizheniya v oblasti zashchity ot korrozii, stareniya i biopovrezhdeniy materialov i slozhnykh tekhnicheskikh sistem v razlichnykh klimaticheskikh usloviyakh: sb. dokl. nauch.-tekhnich. konf. (Gelendzhik, 14–15 iyul. 2016 g). M., 2016. S. 17. 1 elektron. opt. disk.
29. Evaluation of pitting corrosion // ASM Metals Handbook. Vol. 13A: Corrosion: Fundamentals, Testing, and Protection. 2003. P. 545–548.
30. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. Razrabotka rastvora dlya naneseniya korrozionnykh porazheniy na alyuminiyevykh splavakh v galvanostaticheskom rezhime [The development of a solution for promotion of corrosion attack on aluminium alloys in a galvanostatic mode] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №9 (69). St. 11. Available at: http://www.viam-works.ru (accessed: August 01, 2018). DOI: 10.18577/2307-6046-2018-0-9-105-118.
31. Tkachenko E.A., Fridlyander J.N., Valkov V.J., Baratov V.I. The properties and structure of high-strength aluminium 1933 alloy forgings // Materials Science Forum. 1996. Vol. 217– 222. Part 3. P. 1819–1822.
32. Semenychev V.V. Korrozionnaya stoykost i svoystva alyuminiyevykh splavov aviatsionnogo naznacheniya v usloviyakh morskogo subtropicheskogo klimata: avtoref. dis. … kand. tekh. Nauk [Corrosion resistance and properties of aluminum alloys for aviation purposes in a marine subtropical climate: thesis abstracts, Cand. Sc. (Tech.)]. M., 2006. 26 s.
33. Douglas M. Grossman. More realistic tests for atmospheric corrosion // ASTM Standartization news. 1996. No. 4. P. 32–39.
34. Zhuk N.P. Kurs teorii korrozii i zashchity metallov [The course of the theory of corrosion and metal protection]. M.: Metallurgiya, 1976. 472 s.
35. Simpson C.H., Ray C.J., Skerry B.S. Accelerated Corrosion Testing of Industrial Maintenance Paints Using a Cyclic Corrosion Weathering Method // Journal of Protective Coatings and Linings. 1991. Vol. 8. No. 5. P. 28–36.
36. Mikhaylovskiy Yu.N. Atmosfernaya korroziya metallov i metody ikh zashchity [Atmospheric corrosion of metals and methods for their protection]. M: Metallurgiya, 1989. 102 s.
The article considers the problem of evaluating the performance of bearing steels based on standard methods of mechanical testing. To ensure high performance of the rolling bearing, it is necessary to implement a minimum contact area of the ball or roller with the rings. Therefore, the material must have high resistance to collapse. Slipping of balls and rollers along the rings leads to their abrasion. To ensure high abrasion resistance of the mating surfaces of the bearing, it is necessary to achieve maximum hardness of the material. Strength characteristics determined during standard tensile tests can serve as indicative indicators of the performance of the bearing material. The tensile strength correlates with hardness and, therefore, determines abrasion. Evaluation of the tensile strength is also an assessment of the crushing strength. The ultimate strength indirectly characterizes contact fatigue. Tensile testing of standard samples are the basic tests for testing the alloy composition and heat treatment modes. The first series of tests established the impossibility of assessing strength indicators using standard samples. The exceptional brittleness of bearing steel led to failure in fillets, which are stress concentrators. The fabricated samples were finalized with the formation of corset thinning in the working part of the sample. Tests of the modified samples allowed us to correctly assess the tensile strength of bearing steel. When testing bearing steel samples, the destruction mostly occurred along two planes, one of which is a plane of static destruction, and the second is caused by a tensile wave, which leads to the separation nature of the destruction.
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Utkin V.M., Nikonov A.G., Proksha F.N. Sravneniye norm otechestvennykh i zarubezhnykh normativnykh dokumentov na kachestvo shariko- i rolikopodshipnikovoy stali [Comparison of the norms of domestic and foreign regulatory documents on the quality of ball and roller bearing steel]. M.: Chermetinformatsiya, 1975. 56 s.
4. Zaytsev A.M., Korostashevskiy R.V. Ekspluatatsiya aviatsionnykh podshipnikov kacheniya [Operation of aircraft rolling bearings]. M.: Transport, 1968. 224 s.
5. Spektor A.G., Zelbet B.M., Kiseleva S.A. Struktura i svoystva podshipnikovykh staley [The structure and properties of bearing steels]. M.: Metallurgiya, 1980. 264 s.
6. Korostashevskiy R.V., Zaytsev A.M. Aviatsionnyye podshipniki kacheniya [Aircraft rolling bearings]. M.: Oborongiz, 1963. 340 s.
7. Konter L.Ya. Stali dlya teplostoykikh podshipnikov (obzor) [Steel for heat-resistant bearings (overview)]. M.: NIINAvtoprom, 1978. Ser.: XII. 78 s.
8. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
9. Krylov S.A., Markova E.S., Shcherbakov A.I., Yakusheva N.A. Metallurgicheskiye osobennosti vyplavki vysokoprochnoy martensitostareyushchey stali VKS-180-ID [Metallurgical features of smelting process of high-strength maraging steel VKS180-ID microalloyed by REM] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 14–20. DOI: 10.18577/2071-9140-2015-0-4-14-20.
10. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 3-ye izd. M.: VIAM, 2015. S. 458–464.
11. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matritsa prochnostnykh kharakteristik dlya otsenki predelnykh sostoyanij konstruktsionnykh metallicheskikh materialov [Matrix strength characteristics for the assessment of limit states of structural metallic materials] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
12. Gromov V.I., Kurpyakova N.A., Korobova E.N., Sedov O.V. Novaya teplostoykaya stal dlya aviatsionnykh podshipnikov [New heat resistant steel for aircraft bearings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №2 (74). St. 02. Available at: http://www.viam-works.ru (accessed: August 16, 2019). DOI: 10.18577/2307-6046-2019-0-2-17-23.
13. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
14. Peterson R. Koeffitsiyenty kontsentratsii napryazheniy [Stress concentration factors]. M.: Mir, 1977. 302 s.
15. Zukas Dzh., A., Nikolas T., Svift Kh. F., Greshchuk L.B. [Impact dynamics] Dinamika udara. Per. s angl. M.: Mir, 1985. 296 s.
The paper presents the results of studies of operational fracture of single-row radial rolling bearings, in which cages of textolite and bronze alloy were used. The study of operational damage cases allows us to establish the cause of their occurrence and develop a set of recommendations and measures to eliminate adverse factors. To establish the causes of destruction, a comprehensive study was carried out using the methods of scanning electron and optical microscopy and X-ray spectral microanalysis. Studies of the chemical composition, microstructure and nature of the destruction of bearing parts have been carried out. It was established that the chemical composition of the material of the parts meets the requirements of regulatory documentation, there are no defects of metallurgical origin. In the steel parts of bearings, the content of non-metallic inclusions does not exceed 1 point, defects in the microstructure in the form of streakiness, carbide mesh and carbide segregation are not observed.
In bearings with PCB cages, as a result of cyclic loads, fatigue cracks formed in the rivets of the cage, which develop from surface damage. Under the influence of tensile stresses, the cross section was thinned and the rivets increased in length, which led to an increase in the gaps between the separator parts and the balls falling out of the separator cells. The displacement of the balls relative to the seats in the cage led to jamming of the bearing, heating of the parts and the final destruction of both rivets and textolite parts of the composite cage.
The destruction of the bearing with a bronze cage occurred as a result of uneven abrasive wear during operation. Uneven abrasion on the surface of the separator indicates a lack of lubricant and the effect of axial load resulting from slight misalignment during installation.
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: VIAM, 2015. S. 458–464.
4. Sprishevskiy A.M. Podshipniki kacheniya [Rolling bearings]. M.: Mashinostroyeniye, 1968. 632 s.
5. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Spektor A.G., Zelbert B.M., Kiseleva S.A. Struktura i svoystva podshipnikovykh staley [The structure and properties of bearing steels]. M.: Metallurgiya, 1980. 264 s.
7. Zaytsev A.M., Korostashevskiy R.V. Ekspluatatsiya aviatsionnykh podshipnikov kacheniya [Operation of aircraft rolling bearings]. M.: Transport, 1968. 224 s.
8. Orlov M.R., Grigorenko V.B., Morozova L.V., Naprienko S.A. Issledovanie ekspluatacionnyh razrushenij podshipnikov metodami opticheskoj, rastrovoj elektronnoj mikroskopii i rentgenospektralnogo mikroanaliza [Research of operational damages of bearings by methods of optical microscopy, scanning electron microscopy and Х-ray microanalysis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 09. Available at: http://viam-works.ru (accessed: August 12, 2019). DOI: 10.18577/2307-6046-2016-0-1-62-79.
9. Berkovich M.S. Dolgovechnost podshipnikov kacheniya v usloviyakh nesoosnosti ikh kolets [The durability of rolling bearings under conditions of misalignment of their rings] // Vestnik mashinostroyeniya. 1983. №10. S. 9–12.
10. Kunina P.S., Velichko E.I., Nizhnik A.E., Muzykantova A.V., Abessolo M. Analiz defektov opornykh elementov gazoperekachivayushchikh agregatov kompressornykh stantsiy magistralnykh gazoprovodov [Analysis of defects in the supporting elements of gas pumping units of compressor stations of gas pipelines] // Territoriya Neftegaz. 2016. №4. S. 68–75.
11. Chichinadze A.V., Braun E.D., Bushe I.A. i dr. Osnovy tribologii (treniye, iznos, smazka) [Fundamentals of tribology (friction, wear, lubrication)]. M.: Nauka i tekhnika, 1995. 778 s.
12. Gromov V.I., Kurpyakova N.A., Korobova E.N., Sedov O.V. Novaya teplostoykaya stal dlya aviatsionnykh podshipnikov [New heat resistant steel for aircraft bearings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №2 (74). St. 02. Available at: http://www.viam-works.ru (accessed: August 12, 2019). DOI: 10.18577/2307-6046-2019-0-2-17-23.
13. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: August 12, 2019).
16. Bronfin M.B., Alekseev A.A., Chabina E.B. Metallofizicheskiye issledovaniya. Vozmozhnosti i perspektivy [Metallophysical studies. Opportunities and prospects] // 75 let. Aviatsionnyye materialy. Izbrannyye trudy 1932–2007. M.: VIAM, 2007. S. 353–365.
Modern navigation devices require the use of magnetic materials with both magnetic and thermostable properties. The most promising such materials are alloys of REM–Fe–Co–B (REM – rare earth metals). These alloys are increasingly used for the manufacture of magnets used in the production of dynamically adjustable gyroscopes (DNG) and accelerometers and are characterized by wider temperature ranges than previously used materials.
The main properties of alloys of REM–Fe–Co–B systems directly depend on their chemical composition, both on the content of the main components of the system, and on the content of various impurities – nitrogen, oxygen, carbon and sulfur. Production of high-quality materials is not possible without precise control of the content of these impurities in the alloys.
Classical methods for the determination of sulfur, oxygen, nitrogen and carbon are extremely time-consuming, time-consuming and require the use of a large number of different reagents and equipment. Modern methods for the determination of sulfur and carbon in various objects is the method of burning the sample sample in an induction furnace of the gas analyzer, followed by detection in the infrared cell of the spectrometer, and for the determination of nitrogen and oxygen, reducing melting in a vacuum or in an inert carrier gas stream is used.
In this paper, the alloys of Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B systems were analyzed for the content of gas-forming impurities. The sulfur and carbon content was determined by combustion in the induction furnace of the LECO CS-444 gas analyzer with subsequent detection in the infrared cell of the spectrometer, and for the determination of oxygen and nitrogen, the method of reducing melting in the inert carrier ga
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeyev R.A. i dr. Nizkotemperaturnaya anomaliya namagnichennosti v splavakh (Pr, Dy, M)2(Fe, Co)14B (M = Gd, Sm, Nd) [Low-temperature magnetization anomaly in (Pr, Dy, M) 2 (Fe, Co) 14B (M = Gd, Sm, Nd) alloys] // Fizika tverdogo tela. 2016. T. 58. №3. S. 502–505.
4. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
5. Cherednichenko I.V., Ospennikova O.G., Piskorskiy V.P., Valeyev R.A., Buzenkov A.V. Ekonomicheskiye aspekty proizvodstva postoyannykh magnitov (obzor) [The economics aspects of manufacturing permanents magnets (review)] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №4 (22). St. 06. Available at: http://www.materialsnews.ru (accessed: June 06, 2019).
6. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabilnyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
7. Davydova E.A., Chabina E.B., Moiseeva N.S. Vliyanie gadoliniya, a takzhe sposoba ego vvedeniya na strukturu i fazovyj sostav magnitotverdogo spechennogo materiala sistemy Pr–Dy–Fe–Co–B [An influence of gadolinium and the method of its introduction on the structure and phase composition of sintered hard magnetic materials of Pr–Dy–Fe–Co–B series] // Aviacionnye materialy i tehnologii. 2015. №1. S. 56–59.
8. Cherednichenko I.V., Ospennikova O.G., Piskorskiy V.P., Valeyev R.A., Buzenkov A.V. Materialy dlya postoyannykh magnitov (obzor) [Materials for permanent magnets (review)] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №4 (22). St. 05. Available at: http://www.materialsnews.ru (accessed: June 08, 2019).
9. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
10. GOST 6689.10–92. Nikel, splavy nikelevyye i medno-nikelevyye. Metody opredeleniya ugleroda [Nickel, nickel and copper-nickel alloys. Methods for the determination of carbon]. M.: Izd-vo standartov, 1992. S. 4.
11. GOST 6689.18–92. Nikel, splavy nikelevyye i medno-nikelevyye. Metody opredeleniya sery [Nickel, nickel and copper-nickel alloys. Methods for the determination of sulphur]. M.: Izd-vo standartov, 1992. S. 4.
12. GOST 12359–99. Stali uglerodistyye, legirovannyye i vysokolegirovannyye. Metody opredeleniya azota [Carbon, alloyed and high-alloyed steels. Methods for determination of nitrogen]. M.: Izd-vo standartov, 1999. S. 3.
13. GOST 29006–91. Poroshki metallicheskiye. Metod opredeleniya kisloroda, vosstanovimogo vodorodom [Metallic powders. Method for determination of hydrogen-reducible oxygen]. M.: Izd-vo standartov, 1991. S. 3.
14. Alekseyev A.V., Rastegayeva G.Yu., Pakhomkina T.N., Razmakhov M.G. Opredeleniye sery, ugleroda, azota i kisloroda v splavakh sistem Ce–Fe–Co–B i Gd–Fe–Co–B [Determination sulfur, carbon, nitrogen and oxygen in alloys of system Co–Fe–Co–B and Gd–Fe–Co–B] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №8 (80). St. 10. Available at: http://www.viam-works.ru (accessed: June 08, 2019). DOI: 10.18557/2307-6046-2019-0-8-90-97.
15. Alekseev A.V., Rastegayeva G.Yu., Pakhomkina T.N. Opredeleniye kisloroda i azota v poroshkakh nikelevykh splavov [Determination of oxygen and nitrogen in nickel alloy powders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №8 (68). St. 11. Available at: http://www.viam-works.ru (accessed: June 08, 2019). DOI: 10.18557/2307-6046-2018-0-8-112-119.
Currently, the use of polymer structural composite materials (PCM) for the manufacture of aircraft components is constantly increasing. PCM have a number of advantages over traditionally used metal materials in terms of specific mechanical properties. However, unlike metal materials, PCM, due to the presence of a polymer matrix, are capable of combustion reactions and flame propagation on the surface.
In this paper, we continued research on the evaluation of carbon fibre reinforcement composite. The influence of the VKU-25 / SYT49S carbon-fibre reinforcement composite based on the VSE ‑ 1212 binder and SYT49S high-strength carbon rope on the combustibility characteristics determined in accordance with the requirements of aviation standards FAR‑25 Appendix F Part I has been studied. Fire tests were carried out according to the procedure set out in State Standard R 57924 (method 2).
To calculate the thermal conductivity of the material, an experimental determination of thermal conductivity (according to State Standard 57943), heat capacity (according to State Standard R 56754) and density (according to State Standard 20018) was carried out.
The significant effect of the reinforcement scheme on the value of the residual duration of combustion and the length of the burn-out is shown. It has been established that in the entire range of the studied material thicknesses (from 1 to 4 mm) the samples of unidirectional material with the orientation of the carbon filler [0] have significantly worse fire safety values compared to the samples with the orientation [90] or with an equally strong material (quasi-isotropic laying). The obtained results on the effect of the PCM reinforcement structure on the fire safety values can be explained by a significant difference in the thermal conductivity&
2. Gründer M. Immer mehr Kunststoffe // Flug Revue. 2009. Juni. P. 93–95.
3. Lyon R.E. Nongalogen Fire-Resistant Plastics for Aircraft Interiors // Technical Report DOT/FAA/AR TN08/5. 2008. 33 p.
4. Gründer M. Kunststoff oder Metall? // Flug Revue. 2011. September. P. 74–77.
5. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Kleyevyye prepregi – perspektivnyye materialy dlya detaley i agregatov iz PKM [Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
7. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
8. Giordano G. Plastics in Defense & Safety // Plastics Engineering. 2011. October. P. 28–31.
9. Decadal Survey of Civil Aeronautics: Foundation for the Future / Steering Committee for the Decadal Survey of Civil Aeronautics, National Research Council of the National Academies. Washington, D.C.: The National Academies Press, 2006. 212 p.
10. Sarkos G. Evolution of FAA Fire Safety R&D Over the Years: report of the Fifth Triennial Fire & Cabin Safety Research Conference (Atlantic City, Oct. 29 – Nov. 01, 2007). 2007. 56 p. Available at: http://www.fire.tc.faa.gov (accessed: September 30, 2019).
11. Sarkos G. Aircraft fire Safety R&D: Past, Present & Future: report of the 6th Triennial Fire & Cabin Safety Research Conference. (Atlantic City, Oct. 25–28, 2010). 2010. 26 p. Available at: http://www.fire.tc.faa.gov (accessed: September 30, 2019).
12. Barbotko S.L. Pozharobezopasnost polimernykh materialov aviatsionnogo naznacheniya i konstruktivnykh elementov na ikh osnove: avtoref. dis. … d-ra tekhn. nauk [Fire safety of polymer materials for aviation purposes and structural elements based on them: thesis, Dr. Sc. (Tech.)]. M.: VIAM, 2019. 47 s.
13. Terebnev V.V., Artem'yev N.S., Grachev V.A. Transport: nazemnyy, morskoy, rechnoy, vozdushnyy, metro. Protivopozharnaya zashchita i tusheniye pozharov [Transport: land, sea, river, air, metro. Fire protection and extinguishing fires]. M.: Pozhnauka, 2007. Kn. 6. 383 s.
14. Dzhafarov M.A., Lozovoy N.F., Lutsenko V.I., Fedorov V.K. Obespecheniye pozharnoy bezopasnosti na aerodromakh grazhdanskoy aviatsii [Ensuring fire safety at aerodromes of civil aviation]. M.: Transport, 1987. 263 s.
15. Webster H. Fuselage Burnthrough from Large Exterior Fuel Fires // Technical Report DOT/FAA/CT-90-10. 1994. 114 p.
16. Predvaritelny otchet po rezultatam rassledovaniya aviatsionnogo proisshestviya samoleta RRJ-95B RA-89098 / Mezhgosudarstvennyy aviatsionnyy komitet. Komissiya po rassledovaniyu aviatsionnykh proisshestviy [Preliminary report on the results of the investigation of the accident RRJ-95B RA-89098 / Interstate Aviation Committee. Accident Investigation Commission]. Available at: http://www.mak-iac.org (accessed: June 20, 2019).
17. Marker T.R. Shot Takes and Current Projects // International Aircraft Materials Fire Test Forum Meeting (Cologne, Germany. June 18, 2019). Available at: http://www.fire.tc.faa.gov (accessed: September 13, 2019).
18. Marker T.R. Full-Scale Test Evaluation of Aircraft Fuel Fire Burnthrough Resistance Improvements // Technical Report DOT/FAA/AR-98/52. US. 1999. 41 p.
19. Marker T.R., Speitel L.C. Evaluating the Decomposition Products Generated Inside an Intact Fuselage During a Simulated Postcrash Fuel Fire: Report DOT/FAA/AR-09/58. U.S. Department of Transportation FAA, 2011. 86 p.
20. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Postroyeniye matematicheskoy modeli i raschet temperatur obraztsov pri ispytaniyakh na ognestoykost [Creation of the mathematical model and calculation of sample temperatures at tests on fire resistance] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №7 (55). St. 12. Available at: http://www.viam-works.ru (accessed: May 01, 2019). DOI: 10.18577/2307-6046-2017-0-7-12-12.
21. Barbotko S.L., Volny O.S., Veshkin E.A., Goncharov V.A. Otsenka ognestoykosti materialov i konstruktivnykh elementov dlya aviatsionnoy tekhniki [Assessment of fire resistance of materials and structural elements for aircraft] // Aviatsionnaya promyshlennost. 2018. №2. S. 63–67.
22. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Otsenka pozharobezopasnosti polimernykh materialov aviatsionnogo naznacheniya: analiz sostoyaniya, metody ispytaniy, perspektivy razvitiya, metodicheskiye osobennosti / pod obshch. red. E.N. Kablova [Fire safety assessment of aviation polymer materials: state analysis, test methods, development prospects, methodological features / gen. ed. E.N. Kablov]. M.: VIAM, 2018. 424 s.
23. Rehn S. Vertical Bunsen Burner Testing of 3D-Printed Material // International Aircraft Materials Fire Test Forum Meeting (Cologne, Germany. June 18, 2019). Available at: http://www.fire.tc.faa.gov (accessed: September 13, 2019).
24. Green M. CHM014M – Flame Retardant Chemicals: Technologies and Global Markets. BCC Research, 2015. 164 p.
25. Polymer Green Flame Retardants / ed. C.D. Papaspyrides, P. Kiliaris. Elsevier, 2014. 943 p.
26. Lyon R.E., Gandhi S., Crowley S. Fire Properties of Heat-Resistant Polymers: Report DOT/FAA/TC-TN18/32. U.S. Department of Transportation FAA, 2019. 33 p.
27. Barbotko S.L., Volnyj O.S., Postnov V.I., Shurkova E.N. Issledovaniye vliyaniya struktury armirovaniya na kharakteristiki pozharnoy opasnosti stekloplastika [Investigation of the effect of reinforcement structures on fire hazard characteristics of the fiberglass] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №4 (76). St. 12. Available at: http://www.viam-works.ru (accessed: June 18, 2019). DOI: 10.18577/2307-6046-2019-0-4-108-120.
28. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
29. Kablov E.N. Na perekrestke nauki, obrazovaniya i promyshlennosti [At the crossroads of science, education and industry] // Ekspert. 2015. №15 (941). S. 49–53.
30. Kablov E.N. Iz chego sdelat' budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
31. Platonov A.A., Dushin M.I. Konstrukcionnyj ugleplastik VKU-25 na osnove odnonapravlennogo preprega [Carbon composites VKU-25 based on unidirectional prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 06. Available at: http://www.viam-works.ru (accessed: August 19, 2019). DOI: 10.18577/2307-6046-2015-0-11-6-6.
32. Normy letnoy godnosti samoletov transportnoy kategorii: AP-25 [Airworthiness standards for transport category aircraft: AP-25]: utv. Postanovleniyem 35-y sessii Soveta po aviatsii i ispolzovaniyu vozdushnogo prostranstva 23.10.2015. 5-e izd. s popravkami 1–8. M.: Aviaizdat, 2015. 290 s.
33. Horner A. Aircraft Materials Fire Test Handbook: Report DOT/FAA/AR-00/12. U.S. Department of Transportation, Federal Aviation Administration, 2012. 235 p.
34. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes. CS-25. Amendment 15. July 21, 2014. 921 p.
35. Federal Regulations. Part 25 – Airworthiness Standards: Transport Category Airplanes. Available at: http://www.ecfr.gov (accessed: June 21, 2019 ).
The express method of a comparative assessment of levels properties of two and more materials, provided in article, is directed on a choice of the material possessing preferential level of properties in the conditions of empirical uncertainty.
This method allows to build consistently if necessary compared materials in an objective order of increase (reduction) of values of levels of their characteristics, for example for priority of their possible application or modernization within the considered constructive decision.
Important feature of an offered method is that this method allows to carry out comparison of values of estimates of levels properties of the materials characteristics received experimentally both on small, and on big samples, i.e. regardless of the volume of experimental data. The main condition of correct comparison characteristics of materials is the equal quantity of experimental data according to each characteristic of each material. Thus this method does not extend on an order of receiving probabilistic estimates of levels of properties of materials. Compared characteristics thus have to be equivalent from the point of view of a preferential choice of a material. If separate characteristics of compared materials are not equivalent at a material choice on the importance for this or that design (conditions of operational loading etc., experience and the purposes of the researcher), this method allows introduction for such characteristics weight factors. The order of a choice and value of weight factors are an independent task and in this article are not considered.
At observance of a condition of equality of volume of the experimental data, the offered method allows to carry out comparison of unlimited number of materials on unlimited number of their characteristics. Thus, the more characteristics, an
2. Primeneniye konstruktsionnykh metallicheskikh materialov i opredeleniye iz raschetnykh kharakteristik: RTS-AP23(25, 27, 29)-613 / Mezhgosudarstvennyy aviatsionnyy komitet [The use of structural metal materials and the determination of the calculated characteristics: RC-AP23 (25, 27, 29) -613 / Interstate Aviation Committee]. M.: Aviaizdat, 2002. 24 s.
3. Raschetnyye znacheniya kharakteristik aviatsionnykh metallicheskikh konstruktsionnykh materialov: spravochnik [The calculated values of the characteristics of aircraft metal structural materials: a reference]. M.: OAK, 2012. Vyp. 4. 302 s.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N., Grinevich A.V., Yerasov V.S. Kharakteristiki prochnosti metallicheskikh aviatsionnykh materialov i ikh raschetnyye znacheniya [Strength characteristics of metallic aviation materials and their calculated values] // 75 let. Aviatsionnyye materialy. Izbrannyye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 370–379.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N. Marketing materialovedeniya, aviastroyeniya i promyshlennosti: nastoyashcheye i budushcheye [Marketing of materials science, aircraft building and industry: present and future] // Direktor po marketingu i sbytu. 2017. №5–6. S. 40–44.
8. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
9. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
10. Konovalov V.V., Dubinskiy S.V., Makarov A.D., Dotsenko A.M. Issledovaniye korrelyatsionnykh zavisimostey mezhdu mekhanicheskimi svoystvami aviatsionnykh materialov // Aviatsionnyye materialy i tekhnologii. 2018. №2 (51). S. 40–46. DOI: 10.18577/2071-9140-2018-0-2-40-46.
11. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistye metallopolimernyye materialy v elementakh konstruktsii vozdushnykh sudov [Layered metal-polymer materials in aircraft structural elements] // Perspektivnyye materialy. 2016. №10. S. 5–19.
12. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] // Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
13. Gaskarov D.V., Shapovalov V.I. Malaya vyborka [Small sample]. M.: Statistika, 1978. 248 s.
14. Gorbunova E.B. Metod neparametricheskoy otsenki zakona raspredeleniya sluchaynogo parametra po malomu chislu nablyudeniy // Inzhenernyy vestnik Dona. 2014. №3. Available at: http://ivdon.ru/ru/magazine/archive/n3y2014/2516 (accessed: September 24, 2019).
15. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: September 23, 2019). DOI: 10.18577/2307-6046-2014-0-7-10-10.
16. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
17. Erasov V.S., Podzhivotov N.Yu. Metody otsenki raschetnykh znacheniy kharakteristik prochnosti aviatsionnykh materialov v Rossii i za rubezhom [Methods for assessing the calculated values of the strength characteristics of aviation materials in Russia and abroad] // Kommentarii k standartam, TU, sertifikatam: prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2013. №12. S. 2–8.
18. Podzhivotov N.Yu., Erasov V.S., Oreshko E.I. O metodakh otsenki staticheskoy prochnosti materialov, poluchennykh s pomoshch'yu additivnykh tekhnologicheskikh protsessov [About methods for assessing the static strength of materials obtained using additive processes] // Kommentarii k standartam, TU, sertifikatam: prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2017. №10. S. 54–60.
19. Erasov V.S., Yakovlev N.O., Avtaev V.V. Sovremennoe sostoyanie laboratorii imeni professora S.I. Kishkinoj [Contemporary state of laboratory after the named of professor S.I. Kishkina] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 136–139.
20. Bobyr M.V., Titov D.V., Kulabukhov S.A. Otsenka prognozirovaniya prinyatiya resheniy v usloviyakh neopredelennosti [Assessment of forecasting decision making in conditions of uncertainty] // Telekommunikatsii. 2015. №11. C. 39–44.
21. Zolotorev V.M. Sovremennaya teoriya summirovaniya nezavisimykh sluchaynykh velichin [The modern theory of summation of independent random variables]. M.: Nauka, 1986. 416 s.
22. Kryanev A.V., Lukin G.V. Matematicheskiye metody obrabotki neopredelennykh dannykh [Mathematical methods for processing uncertain data]. M.: Fizmatlit, 2003. 216 s.
23. Lapko A.V., Sharkov N.A. Neparametricheskiye metody obnaruzheniya zakonomernostey v usloviyakh malykh vyborok [Nonparametric methods for detecting patterns in small samples] // Priborostroyeniye, 2008. T. 51. №8. S. 62–67.
24. Glukhov V.V., Anufriyev D.V. Butstrep-protsedury opredeleniya tochnostnykh kharakteristik [Bootstrap procedures for determining accuracy characteristics] // Nauchnyy vestnik MGTU GA. 2005. №89 (7). C. 30–35.
25. Samoylenko A.P., Gorbunova E.B. Metod vosstanovleniya plotnosti veroyatnostey prognoziruyemoy sluchaynoy velichiny po ukorochennoy vyborke dannykh [A method for reconstructing the probability density of a predicted random variable from a shortened data sample] // Nelineynyy mir. 2015. №6. S. 10–17.
26. Shitikov V.K., Rozenberg G.S. Randomizatsiya i butstrep: statisticheskiy analiz v biologii i ekologii s ispolzovaniyem R [Randomization and bootstrap: a statistical analysis in biology and ecology using R]. Tolyatti: Kassandra, 2013. 314 s.
In modern aviaengine building the great attention is given to indicators of durability, reliability and non-failure operation of nodes and design elements that, in turn, imposes high requirements of the materials applied in design. Assessment of physicomechanical properties of materials for determination of reliable values carry out in the accredited test laboratories. Requirements to test laboratories contain in ISO 17025–2009. In particular, one of requirements is ensuring identification of object of testing. The most reliable way for identification of sample is drawing marking (and other identification information) is direct on it even if it will be separated from packaging and is mixed with other samples. The analysis of existing ways of shaped coding is carried out and opportunity and expediency of their use with reference to test pieces is evaluated. Drawing alphanumeric marking on sample allows to identify visually unambiguously it without use of additional devices. 2D barcodes allow to cipher the bigger volume of information on the smaller area. For identification of metal samples for high-temperature tests by the optimum decision drawing complete (expanded) marking on packaging and the reduced marking on sample end face on which it is possible to identify unambiguously sample within sample party is. Thus it is necessary to take measures for exception of possibility of hashing of samples from different parties. For drawing expanded information on sample it is reasonable to use Data matrix code and to put it on sample packaging. Thus it is desirable to have at the enterprise database with the complete information about sample stories. Drawing Data matrix of code on end face of sample is the ambiguous decision. In spite of the fact that it provides unambiguous identification of sample, code damage is very probable during testing, additional expenditure for equipment acquisition for drawing code on sample thus are required.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnyye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroyeniya [Priority areas for the development of technologies for the production of heat-resistant materials for aircraft engine building] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [VIAM materials and technologies for Aviadvigatel] // Permskiye aviatsionnyye dvigateli. 2014. №31. S. 43–47.
5. GOST ISO/MEK 17025–2009. Obshchiye trebovaniya k kompetentnosti ispytatelnykh i kalibrovochnykh laboratoriy [ISO/IEC 17025:2005. General requirements for the competence of testing and calibration laboratories]. M.: Standartinform, 2018. 31 s.
6. Gorbovets M.A., Belyayev M.S., Ryzhkov P.V. Soprotivleniye ustalosti zharoprochnykh nikelevykh splavov, poluchennykh metodom SLS [Fatigue strength of heat-resistant nickel alloys produced by selec-tive laser melting] // Aviacionnye materialy i tehnologii. 2018. №3. S. 50–55. DOI: 10.18577/2071-9140-2018-0-3-50-55.
7. Gorbovets M.A., Kochetkov D.A., Khodinev I.A. Analiz i sravnenie rossijskogo i zarubezhnogo standartov, ustanavlivayushchikh metody ispytanij na termomekhanicheskuyu ustalost [The analysis and comparison of the RF and foreign standards for method of thermomechanical fatigue tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 11. Available at: http://www.viam-works.ru (accessed: April 03, 2019). DOI: 10.18577/2307-6046-2017-0-4-11-11.
8. Solovyev A.E., Golynets S.A., Khvatsky K.K., Aslanyan I.R. Provedenie staticheskih ispytanij pri rastyazhenii na mashinah firmy Zwick/Roell [Performing of static tensile tests on Zwick/Roell machines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 12. Available at: http://viam-works.ru (accessed: April 03, 2019). DOI: 10.18577/2307-6046-2015-0-8-12-12.
9. Letnikov M.N., Lomberg B.S., Ospennikova O.G., Bakradze M.M. Vliyaniye skorosti okhlazhdeniya pri zakalke na mikrostrukturu i svoystva zharoprochnogo deformiruyemogo nikelevogo splava VZH175-ID [influence of quench rate on microstructure and mechanical properties of nickel-based wrought superalloy VZh175-ID] // Aviacionnye materialy i tehnologii. 2019. №2 (55). S. 21–30. DOI: 10.18577/2071-9140-2019-0-2-21-30.
10. Dzunovich D.A., Lukina E.A., Yakovlev A.L. Vliyaniye rezhimov termicheskoy obrabotki na tekhnologichnost i mekhanicheskiye svoystva listov iz vysokoprochnogo titanovogo splava VT23 [Influence of heat treatment parameters on producibility and mechani-cal properties of sheets made from high-strength titanium alloy VT23] // Aviacionnye materialy i tehnologii. 2018. №3. S. 3–10. DOI: 10.18577/2071-9140-2018-0-3-3-10.
11. Solonina O.P., Glazunov S.G. Zharoprochnyye titanovyye splavy [Heat resistant titanium alloys]. M.: Metallurgiya, 1976. 448 s.
12. Bazyleva O.A., Bondarenko Yu.A., Timofeyeva O.B., Khvatskiy K.K. Vliyaniye kristallograficheskoy oriyentatsii na strukturu i svoystva splava VKNA-1V [The influence of crystallographic orientation on the structure and properties of VKNA-1V alloy] // Metallurgiya mashinostroyeniya. 2012. №4. S. 3–7.
13. Povarova K.B., Bazyleva O.A., Kazanskaya N.K., Drozdov A.A. i dr. Konstruktsionnyye zharoprochnyye splavy na osnove Ni3Al: polucheniye, struktura i svoystva [Structural heat-resistant alloys based on Ni3Al: production, structure, and properties] // Materialovedeniye. 2011. №4. S. 39–48.
14. Nagesha A., Goyal Sunil, Nandagopal M. yet al. Dynamic strain ageing in Inconel Alloy 783 under tension and low cycle fatigue // Materials Science and Engineering: A. 2012. Vol. 546. P. 34–39.
15. Dong C., Yu H., Li Y. et al. Life modeling of anisotropic fatigue behaviour for a single crystal nickel-base superalloy // International Journal of Fatigue. 2014. Vol. 61. P. 21–27. DOI: 10.1016/j.ijfatigue.2013.11.026.