Articles
In this paper, the structure and crystallographic features near the «single-crystal substrate-synthesized alloy» boundary in a sample obtained by selective laser melting on a single-crystal substrate with a crystallographic orientation of ZhS32-VI alloy were studied using SEM and EBSD analysis.
The crystallographic orientation of the grains and their structure have been studied in the volume of the synthesized material. The main features of the grains structure with a hereditary crystallographic orientation of ZhS32-VI alloy single-crystal substrate are shown. The morphology, size and orientation of particles γ'- phase in grains with hereditary crystallographic orientation or close to it are similar to reinforcing intermetallic particles of the γ'-phase of a single-crystal substrate, while the visible boundary in the auto epitaxial areas is almost not observed.
The structure in the zones of local misorientations, both in the synthesized part of the sample and in the substrate material near the «single-crystal substrate-synthesized alloy» boundary, was investigated. It is shown that in the zones of local misorientations the degradation of the γ'-phase particles and the carbide phase are observed.
Thus, a more detailed study of the individual phases behavior when exposed to external factors, as well as the distribution of zones with different levels of micro stresses in the material and the study of structural and phase features in the identified areas is necessary to establish the defect formation causes and mechanisms, which later predict the nucleation microcracks during operation parts. Understanding the evolution of the structure and its relationship with the material performance will allow assessing th
2. Kablov E.N. Nastoyashcheye i budushcheye additivnykh tekhnologiy [Present and future of additive technologies] // Metally Evrazii. 2017. №1. S. 2–6.
3. Acharya R., Das S. Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control // Metallurgical and Materials Transactions A. 2015. Vol. 46. No. 9. P. 3864–3875.
4. Evgenov A.G., Lukina E.A., Korolev V.A. Osobennosti protsessa selektivnogo lazernogo sinteza primenitelno k liteynym splavam na osnove nikelya i intermetallida Ni3Al [Features of process of the selection laser synthesis with reference to cast alloys on the basis of nickel and Ni3Al intermetallic compound] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №5 (23). St. 01. Available at: http://www.materialsnews.ru (accessed: November 05, 2018).
5. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: November 27, 2018). DOI: 10.18577/2307-6046-2014-0-3-1-1.
6. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
7. Basak A., Acharya R., Das S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: computational modeling, experimental process development, and process parameter optimization // Metallurgical and Materials Transactions A. 2016. Vol. 47. No. 8. P. 3845–3859.
8. Gu D. Laser Additive Manufacturing of High-Performance Materials. Springer, 2015. 311 p. Available at: https://books.google.ru/books?id=goh9CAAAQBAJ&pg=PA33&hl=ru&source=
gbs_selected_pages&cad=2#v=onepage&q&f=false (accessed: October 15, 2018).
9. Zlenko M.A., Popovich A.A., Mutylina I.N. Additivnyye tekhnologi v mashinostroyenii [Additive technologies in mechanical engineering]. SPb.: Izd-vo Politekh. un-ta, 2013. 222 s.
10. Sufiyarov V.Sh., Popovich A.A., Borisov E.V., Polozov I.A. Evolyutsiya struktury i svoystv zharoprochnogo nikelevogo splava posle selektivnogo lazernogo plavleniya, goryachego izostaticheskogo pressovaniya i termicheskoy obrabotki [Evolution of the structure and properties of a heat-resistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment] // Tsvetnyye metally. 2017. №1. S. 77–82.
11. Magerramova L., Kinzburskiy V., Vasilyev B. Novel designs of turbine blades for additive manufacturing // Proceedings of ASME Turbo Expo 2016: Turbine Technical Conference and Exposition GT2016 (Seoul, South Korea. June 13–17, 2016). 2016. P. 1–7.
12. Ströbner J., Terock M., Glatzel U. Mechanical and structural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM) // Advanced Engineering Materials. 2015. Vol. 17. No. 8. P. 1099–1105.
13. Carter L.N., Martin C., Withers P.J., Attallah M.M. The influence of the laser scan strategy on grain structure and cracking behavior in SLM powder-bed fabricated nickel superalloy // Journal of Alloys and Compounds. 2014. Vol. 615. P. 338–347.
14. Mathur H.N., Panwisawas C., Jones C.N. et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys // Acta Materialia. 2017. Vol. 129. P. 112–123.
15. Lukina E.A., Bazaleyeva K.O., Petrushin N.V., Treninkov I.A., Tsvetkova E.V. Vliyaniye parametrov selektivnogo lazernogo plavleniya na strukturno-fazovoye sostoyaniye zharoprochnogo nikelevogo splava ZhS6K-VI [Influence of parameters of selective laser melting on the structural-phase state of the ZhS6K-VI high-temperature nickel alloy] // Metally. 2017. №4. S. 63–70.
16. Rayevskikh A.N., Chabina Ye.B., Filonova Ye.V., Belova N.A. Vozmozhnosti metoda difraktsii obratnootrazhennykh elektronov (DOE/EBSD) dlya issledovaniya osobennostey struktury nikelevykh zharoprochnykh splavov, poluchennykh selektivnym lazernym splavleniyem // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №12 (60). St. 12. URL: http://www.viam-works.ru (data obrashcheniya: 27.11.2018). DOI: 10.18577/2307-6046-2017-0-12-12-12.
17. Petrushin N.V., Monastyrskaya E.V. Primeneniye napravlennoy kristallizatsii k resheniyu problem razrabotki i optimizatsii zharoprochnykh materialov [Application of directional crystallization to the solution of problems of development and optimization of heat-resistant materials] // Materialovedeniye. 1998. №5. S. 2–10.
18. Povarova K.B., Drozdov A.A., Bondarenko Yu.A., Bazyleva O.A. i dr. Vliyaniye napravlennoy kristallizatsii na strukturu i svoystva monokristallov splava na osnove Ni3Al, legirovannogo W, Mo, Sr i RZE [The effect of directional solidification on the structure and properties of single crystals of an alloy based on Ni3Al doped with W, Mo, Cr and REE] // Metally. 2014. №4. S. 35–40.
19. Zavodov A.V., Petrushin N.V., Zaytsev D.V. Mikrostruktura i fazovyy sostav zharoprochnogo splava ZhS32 posle selektivnogo lazernogo splavleniya, vakuumnoy termicheskoy obrabotki i goryachego izostaticheskogo pressovaniya [The microstructure and phase composition of the heat-resistant ZhS32 alloy after selective laser fusion, vacuum heat treatment, and hot isostatic pressing] // Pisma o materialakh. 2017. T. 7. №2 (26). S. 111–116.
20. Morozova G.I., Bogina N.H., Sorokina L.P. Otsenka stepeni degradatsii i vosstanovleniya ʹ-fazy nikelevykh splavov metodom fazovogo analiza [Estimation of the degree of degradation and restoration of the ʹ-phase of nickel alloys by the method of phase analysis] // Zavodskaya laboratoriya. 1994. №7. S. 8–11. Available at: https://www.viam.ru/public/files/1993/1993-201270.pdf (accessed: October 24, 2018).
21. Morozova G.I., Sorokina L.P., Bogina N.H. Degradatsiya i vosstanovleniye -fazy v zharoprochnykh nikelevykh splavakh [Degradation and restoration of the -phase in high-temperature nickel alloys] // Metallovedeniye i termicheskaya obrabotka metallov. 1995. №4. S. 29–32.
22. Venables J.A., Harland C.J. Electron back-scattering patterns – A new technique for obtaining crystallographic information in the scanning electron microscope // Philosophical Magazine. 1973. Vol. 27 (5). P. 1193–1200.
23. Shvarts A., Kumar M., Adams B., Fild D. Metod difraktsii otrazhennykh elektronov v materialovedenii [The method of diffraction of reflected electrons in materials science]. M.: Tekhnosfera, 2004. C. 335–375.
24. Bukatyy A.S., Bukatyy C.A. Razrabotka kriteriyev analiza napryazhenno-deformirovannogo sostoyaniya detaley gazoturbinnogo dvigatelya v uprugoplasticheskoy oblasti [Development of criteria for the analysis of the stress-strain state of parts of a gas-turbine engine in an elastoplastic region] // Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyeniye. 2016. T. 15. №3. S. 46–52.
25. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Petrushin N.V., Evgenov A.G., Zavodov A.V., Treninkov I.A. Struktura i prochnost' zharoprochnogo nikelevogo splava ZhS32-VI, poluchennogo metodom selektivnogo lazernogo splavleniya na monokristallicheskoy podlozhke [The structure and strength of the ZnS32-VI heat-resistant nickel alloy obtained by the method of selective laser alloying on a single-crystal substrate] // Materialovedeniye. 2017. №11. S. 19–26.
By Scanning Electron Microscopy (SEM) and Electrons Back Scattering Diffraction (EBSD) means sample structure in transitional area between single-crystal ZhS32-VI alloy substrate with crystallographic orientation and alloy ZhS32-VI, received on the same substrate by selective laser melting, after traction tests at temperature 1100°С is investigated. Structural changes in local subgrains disorientation sites, caused by microtension raised level are established.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispol'zovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials] // Rossiyskiye nanotekhnologii. 2013. T. 8. №3–4. S. 24–42.
3. Aristova E.Yu., Denisova V.A., Drozhzhin V.S. i dr. Kompozitsionnyye materialy s ispolzovaniyem polykh mikrosfer [Composite materials using hollow microspheres] // Aviatsionnyye materialy i tekhnologii. 2018. №1 (50). S. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
4. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
5. Lyubin Dzh. Spravochnik po kompozitsionnym materialam [Directory on composite materials]. M.: Mashinostroyeniye, 1988. 448 s.
6. Melekhina M.I., Kavun N.S., Rakitina V.P. Epoksidnye stekloplastiki s uluchshennoi vlago- i vodostoikostiu [Epoxy fiberglass plastics with an improved moisture and water resistance] // Avi-atsionnye materialy i tekhnologii. 2013. №2. S. 29–31.
7. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernyye kompozitsionnyye materialy na termoplastichnoy matritse [Polymer composites on a thermoplastic matrix] // Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya. 2016. T. 59. №10. S. 61–71.
8. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
9. Lizunov D.A., Osipchik V.S., Olikhova Yu.V., Kravchenko T.P. Vliyaniye epoksinovolachnogo oligomera na svoystva epoksifenolnogo svyazuyushchego i ugleplastikov na yego osnove [The effect of epoxy-olivomeric oligomer on the properties of epoxy-phenolic binder and carbon-based plastics on its basis] // Plasticheskiye massy. 2013. №9. S. 39–42.
10. Moshinskiy L. Epoksidnyye smoly i otverditeli [Epoxy resins and hardeners]. Tel-Aviv: Arkadiya press Ltd, 1995. 371 s.
11. Kasterina T.N., Kalinina L.S. Khimicheskiye metody issledovaniya sinteticheskikh smol i plasticheskikh mass [Chemical methods for the study of synthetic resins and plastics]. M.: Gos. nauch.-tekhnich. izdatelstvo khimicheskoy lit., 1963. 288 s.
12. Garbar M.I., Katayev V.M., Akutin M.S. Spravochnik po plasticheskim massam [Handbook of plastics]. M.: Khimiya, 1969. 520 s.
13. Vorobyev A. Epoksidnyye smoly [Epoxy resins] // Komponenty i tekhnologii. 2003. №8. S. 170–173.
14. Li H., Nevill K. Spravochnoye rukovodstvo po epoksidnym smolam [Epoxy Resins Reference Guide]. M.: Energiya, 1973. 415 s.
15. Standard Specification for Epoxy Resins: ASTM D1763-00. ASTM International, 2013. 4 p.
16. Kochnova Z.A., Zhavoronkov E.S., Chalykh A.E. Epoksidnyye smoly i otverditeli: promyshlennyye produkty [Epoxies and hardeners: industrial products.]. M.: Peynt-Media, 2006. 200 s.
17. Kozlova V.I. Analiz kondensatsionnykh polimerov [Analysis of condensation polymers]. M.: Khimiya, 1984. 296 s.
18. Klayn G. Analiticheskaya khimiya polimerov [Analytical chemistry of polymers]. M.: Izd-vo inostrannoy lit., 1963. T. 1. 592 s.
19. GOST 12497–78. Plastmassy. Metody opredeleniya soderzhaniya epoksidnykh grupp [State Standard 12497–78. Plastics. Methods for determining the content of epoxy groups]. M.: Gosstandart, 1978. 12 s.
20. Alekseyev V.N. Kolichestvennyy analiz. 4-e izd. [Quantitative analysis. 4th ed.]. M.: Khimiya, 1972. 504 s.
21. Kreshkov A.P. Osnovy analiticheskoy khimii [Fundamentals of analytical chemistry]. M.: Khimiya, 1971. T. 2. 456 s.
22. Korokhin R.A., Solodilov V.I., Otegov A.V., Gorbatkina Yu.A. Vyazkost dispersno-napolnennykh epoksidnykh kompozitsiy [Viscosity of dispersion-filled epoxy compositions] // Klei. Germetiki. Tekhnologii. 2013. №2. S. 2–7.
23. Surikov P.V., Trofimov A.N., Kokhan E.I. i dr. Vliyaniye molekulyarnoy massy i molekulyarno-massovogo raspredeleniya na reologicheskiye svoystva epoksidnykh oligomerov [Influence of molecular weight and molecular mass distribution on the rheological properties of epoxy oligomers] // Vestnik MITKhT. 2009. T. 4. №5. S. 87–90.
24. GOST 33–2016. Neft i nefteprodukty. Prozrachnyye i neprozrachnyye zhidkosti. Opredeleniye kinematicheskoy i dinamicheskoy vyazkosti [State Standard 33–2016. Oil and petroleum products. Transparent and opaque liquids. Determination of kinematic and dynamic viscosity]. M.: Standartinform, 2017. 39 s.
25. GOST 10587–84. Smoly epoksidno-dianovyye neotverzhdennyye. Tekhnicheskiye usloviya [State Standard 10587–84. Uncured epoxy resin. Specifications]. M.: Izd-vo standartov, 1989. 10 s.
26. Kabanov V.A. Entsiklopediya polimerov [Encyclopedia of polymers]. M.: Sovetskaya entsiklopediya, 1977. T. 3. 1152 s.
The article summarizes the results of research on the development of a rubber compound formulation of extremely high heat resistance of low flammability and, on the basis of this, made the choice and justification of the optimal technology of parts from it. A literature search was carried out and the main factors for choosing a rubber – a high molecular weight organosilicon block copolymer of a staircase – were explained. The main component composition of rubber was determined on the basis of a high molecular weight silicone organosilicon block copolymer of a staircase. The optimal content is explained and the choice of the type of the main ingredients for rubber of extremely high heat resistance is justified. Comprehensive studies of rubber on the basis of a high molecular weight silicone organosilicon block copolymer of a staircase have been carried out for a wide range of indicators under conditions simulating the effect of operating factors. In addition, it was found that rubber, along with an improved complex of elastic-deformation characteristics, is additionally self-extinguishing. The result is achieved without additional introduction of special modifiers (flame retardants) into the composition. This is explained by the ladder structure of the polymer matrix and the active formation of coke when exposed to high temperatures. Experiments confirmed the possibility of operating parts from the developed rubber at temperatures of 350°C for a long time and at 500°C for a short time. The analysis of various types of sealing parts was carried out and the main options for using rubber BP-38M in sealing technology were disassembled. A technology has been developed for molding sealing products of a simple configuration made of rubber BP-38M, taking into account the revealed features of its structure and properties. The analysis of the range of sealing parts has been carried out and the optimal use of rubber BP-38M in&
2. Kablov E.N. Shestoy tekhnologicheskiy uklad [The sixth technological structure] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S.7–27.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Fedyukin D.L., Makhlis F.A. Tekhnicheskiye i tekhnologicheskiye svoystva rezin [Technical and technological properties of rubber]. M.: Khimiya, 1985. 240 s.
6. Uplotneniya i uplotnitelnaya tekhnika: spravochnik / pod obsh. red. A.I. Golubeva, L.A. Kondakova [Seals and sealing equipment: a handbook / gen. ed. by A.I. Golubev, L.A. Kondakov]. M.: Mashinostroyeniye, 1986. 464 s.
7. Naumov I.S., Petrova A.P., Chaykun A.M. Reziny uplotnitelnogo naznacheniya i snizheniye ikh goryuchesti [Rubber sealing destination and reduce their flammability] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №5. S. 28–35.
8. Naumov I.S. Uplotnitelnyye reziny ponizhennoy goryuchesti: dis. … kand. tekhn. nauk [Sealing rubber low flammability: thesis, Cand. Sc. (Tech.)]. M., 2016. 118 s.
9. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
10. Kodolov V.I. Zamedliteli goreniya polimernykh materialov. M.: Khimiya, 1980. 269 s.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Mikhaylin Yu.A. Konstruktsionnyye polimernyye kompozitsionnyye materialy. 2-e izd. [Structural polymer composites. 2nd ed.]. SPb.: Nauchnyye osnovy i tekhnologii, 2016. 820 s.
13. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: December 13, 2018).
14. Goreniye, destruktsiya i stabilizatsiya polimerov / pod red. G.E. Zaikova [Combustion, destruction and stabilization of polymers / ed. by G.E. Zaikov]. SPb.: Nauchnyye osnovy i tekhnologii, 2008. 422 s.
15. Clough R.L. Aging Effects on Fire-Retardant Additives in Polymers // Journal of Polymer Science: Polymer Chemistry Edition. 1983. Vol. 21. P. 767–780.
16. Goryuchest i dymoobrazuyushchaya sposobnost polimernykh materialov aviatsionnogo naznacheniya / pod red. R.E. Shalin, B.I. Panshin [lammability and smoke-forming ability of polymeric materials for aviation purposes / ed. By R.E. Shalin, B.I. Panshin]. M.: VIAM, 1986. 104 s.
17. Barbotko S.L., Shurkova E.N., Volny O.S., Skrylyov N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlya vneshnego kontura aviacionnoj tehniki [Evolution of polymer composite fire-safety for the outer contour of aeronautical engineering] // Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
18. Normy letnoy godnosti samoletov transportnoy kategorii [Airworthiness standards for airplanes of the transport category]: AP-25: utv. Postanovleniyem 28-y sessii Soveta po aviatsii i ispol'zovaniyu vozdushnogo prostranstva 11.12.2008. 3-e izd. M.: Aviaizdat, 2009. 274 s.
19. GOST R 57924–2017. Kompozity polimernyye. Metod opredeleniya goryuchesti polimernykh materialov dlya aviatsionnoy tekhniki [State Standard R 57924–2017. Polymer composites. Method for determining the flammability of polymeric materials for aircraft]. M.: Standartinform, 2017. 19 s.
20. Naumov I.S., Chaykun A.M., Eliseyev O.A. Rossiyskiye i mezhdunarodnyye standarty na metody ispytaniy rezin, syrykh rezinovykh smesey i vysokomolekulyarnykh kauchukov [Russian and International Standards for Test Methods for Rubber, Raw Rubber Mixtures and High-Molecular Rubbers] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №11. S. 4–13.
21. Tekhnologiya reziny: retsepturostroyeniye i ispytaniya. Per. s angl. [Rubber technology: formulation and testing. Trans. from Engl.]. SPb.: Nauchnyye osnovy i tekhnologii, 2010. 632 s.
22. Nurmukhametova A.N., Zenitova L.A. Sposoby polucheniya nanodispersnykh napolniteley [Methods of obtaining nano-dispersed fillers] // Tez. dokl. XII Mezhdunar. konf. molodykh uchenykh, studentov i aspirantov «Sintez, issledovaniye svoystv, modifikatsiya i pererabotka vysokomolekulyarnykh soyedineniy – IV Kirpichnikovskiye chteniya». Kazan, 2008. S. 120.
23. Bolshoy spravochnik rezinshchika v 2 ch. [Great reference book of rubberman in 2 parts]. M.: Tekhinform, 2012. 1385 s.
Currently, non-autoclaving injection technologies are widely used in the global industry: Resin Transfer Molding (RTM) and Vacuum Assisted Resin Transfer Molding (VARTM).
For this purpose, for the manufacture of low- and medium-loaded constructional parts, including aircraft parts made of polymer composite materials by the method of vacuum infusion, an epoxy resin VSE-30 was developed by vacuum infusion, which is characterized by a combination of high strength, thermomechanical and technological properties. The developed epoxy resin VSE-30 is a two-component system: the epoxy component (part A), the curing system (part B). The using of a two-component system can significantly increase the storage time of the epoxy resin and reduce the cost of transporting and storing it until using by eliminating of costs of using refrigeration.
The paper presents studies of technological viability, viscosity, glass transition temperature and elastic-strength characteristics of the epoxy resin VSE-30. The temperature and curing mode of the epoxy resin were selected in different modes. The recommended mode is considered curing to solid form at room temperature, and then postcuring at 120 ° C until the desired characteristics are achieved, and if necessary, it is possible to decrease the curing temperature of the epoxy resin to 80 ° C, but without curing at room temperature step.
The obtained results can significantly reduce the processing time, which contributes to energy savings, and also corresponds to the principles of "green chemistry". With lowering the final curing temperature, the epoxy resin is applicable in non-loaded parts, and also when high operating temperature of materials is not required. Also epoxy resin VSE-30 is useful in performing various technological tasks.
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2. S. 16–22.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials] // Polimernyye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
4. Veshkin E.A. Tekhnologii bezavtoklavnogo formovaniya nizkoporistykh polimernykh kompozitsionnykh materialov i krupnogabaritnykh konstruktsiy iz nikh: dis. … kand. tekhn. Nauk [Technologies of non-autoclaving molding of low-porous polymer composite materials and large-sized structures of them: thesis, Cand. Sc. (Tech.)]. M., 2016. 146 s.
5. Grigorev M.M., Hrulkov A.V., Gurevich Ya.M., Panina N.N. Izgotovlenie stekloplastikovyh obshivok metodom vakuumnoj infuzii s ispolzovaniem epoksiangidridnogo svyazuyushhego i polupronicaemoj membrany [Manufacture of fiberglass skins using vacuum infusion using epoxyanhydride resin and a semipermeable membrane] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 04. Available at: http://viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2014-0-2-4-4.
6. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
7. Dry fibrous material for subsequent resin infusion: pat. WO 2013096377; filed 20.12.11; publ. 27.06.13.
8. Michelsa J., Widmann R., Czaderski C., Allahvirdizadeh R., Motavalli M. Glass transition evaluation of commercially available epoxy resins used for civil engineering applications // Composites Part B: Engineering 2015. Vol. 77. P. 484–493. DOI: 10.1016/j.compositesb.2015.03.053.
9. Ricciardi M.R., Antonucci V., Durante M. et al. A new cost-saving vacuum infusion process for fiber-reinforced composites: Pulsed infusion // Journal of Composite Materials. 2014. Vol. 48 (11). R. 1365–1373.
10. Kompaniya «KORSIL TREYD» Lamborghini vybirayet Araldite® [Company «KORSIL TRADE» Lamborghini chooses Araldite®] // Kompozitnyy mir. 2013. №4. S. 34–36.
11. Shchepotova A., Raykhlin L., Yatsenko S. Nekotoryye aspekty infuzii krupnogabaritnykh konstruktsiy [Some aspects of the infusion of large structures] // Kompozitnyy mir. 2013. №4. S. 44–51.
12. Arulappan C., Duraisamy A., Adhikari D., Gururaja S. Investigations on pressure and thickness profiles in carbon fiber-reinforced polymers during vacuum assisted resin transfer molding // Journal of Reinforced Plastics and Composites. 2015. Vol. 34. Is. 1. P. 3–18.
13. Savin S.P. Primeneniye sovremennykh polimernykh kompozitsionnykh materialov v konstruktsii planera samoletov semeystva MS-21 [The use of modern polymer composite materials in the construction of a glider of airplanes of the MS-21 family] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (2). S. 686–693.
14. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
15. Chursova L.V., Grebeneva T.A., Panina N.N., Tsybin A.I. Svyazuyushchiye dlya polimernykh kompozitsionnykh materialov stroitelnogo naznacheniya [Binders for polymeric composite materials for construction] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 13–17.
16. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Tehnologii i osnovnye etapy stroitelstva pervogo v Rossii arochnogo mosta iz kompozicionnyh materialov [Technologies and the main stages of construction of the arch bridge first in Russia from composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 05. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2017-0-6-5-5.
17. Doneckij K.I., Karavaev R.Yu., Raskutin A.E., Panina N.N. Svojstva ugle- i stekloplastikov na osnove pletenyh preform [Properties of carbon fiber and fiberglass on the basis of braiding preforms] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 54–59. DOI: 10.18577/2071-9140-2016-0-4-54-59.
18. Chursova L.V., Babin A.N., Panina N.N., Tkachuk A.I., Terekhov I.V. Ispolzovaniye aromaticheskikh aminnykh otverditeley dlya sozdaniya epoksidnykh svyazuyushchikh dlya PKM konstruktsionnogo naznacheniya [Usage of aromatic amine curing agents for epoxy resins binders for production of structural PCM] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2016. №6 (42). St. 04. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2016-0-6-4-4.
19. Donetskiy K.I., Khrulkov A.V. Printsipy «zelenoy khimii» v perspektivnykh tekhnologiyakh izgotovleniya izdeliy iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] // Aviacionnye materialy i tehnologii. 2014. №S2 (44). S. 24–28. DOI: 10.18577/2071-9140-2014-0-s2-24-28.
20. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Opredelenie stepeni otverzhdeniya PKM metodami termicheskogo analiza [Polymer composite curing degree evaluation by thermal analysis test methods] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 79–83.
Main structure factors affecting a fire resistance of GLARE are investigated and recommendations to improve flame resistance of this material are stated. It is shown that GLARE`s could be used instead of conventional materials, including fire resistant materials on the example of engine cowling manufacture by means of autoclave forming.
Samples of GLAREs made with reinforcing glass fiber (unidirectional and equal in strength) and roving. Prepregs contains from 24 up to 55 mass % of binder. Fiberglass samples were made with different thickness because of two-, three of four layer packing of prepreg.
VIAM engineers developed testing procedure considering requirements of national aviation rules and foreign ISO 2685 standard.
As a result of tests it was confirmed that all of the investigated samples are fireproof. Main factors affecting a time of material resistance to combustion were found: prepreg type and number of prepreg layers. Best results were shown by four-layer samples made with roving. Also it was found that a direction of glass fiber reinforcement and quantity of binder in fiberglass doesn`t affect GLARE`s fire resistance. In addition, a number of tested fiberglass structures shown a burning-out time on a level more than a half of an hour. It is twice more than required by specification documents in a part of fire resistance of aviation materials.
A possibility of GLARE usage for manufacture of details requiring a fire resistance through the example of manufacture of engine cowling prototype of aircraft.
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt & Tekhnologii. 2016. №2. S. 41–46.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Yevrazii. 2015. №1. S. 36–39.
4. Kablov E.N. O nastoyashchem i budushchem VIAM i otechestvennogo materialovedeniya: interv'yu [About the present and the future of the Institute of Scientific and Technical Information and Russian Materials Science: an interview] // Rossiyskaya akademiya nauk. 2015. 19 yanvarya. S. 10–15.
5. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Roebroeks G.H.J.J. GLARE: a structural material for fire resistant fuselages // AGARD Conference Proceedings. October, 1996. R. 26–1; 26–13.
8. Characterisation of Fibre Metal Laminates under Thermo-mechanical Loadings / ed. M. Hagenbeek. Netherlands, 2005. R. 17–22.
9. Fridlyander I.N., Senatorova O.G., Anikhovskaya L.I. Struktura i svoystva konstruktsionnykh alyumostekloplastikov marki SIAL [Structure and properties of structural aluminum-glass plastics of the SIAL brand] // Sloistyye kompozitsionnyye materialy – 98: sb. tr. Mezhdunar. konf. Volgograd, 1998. S. 131–133.
10. Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Metody sozdaniya alyuminiyevykh kompozitsionnykh materialov [Methods for joining of aluminum composite materials (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (38). S. 35–42. DOI: 10.18577/2071-9140-2017-0-3-35-42.
11. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G. Kleyenyye metallicheskiye i sloistyye kompozity. Tsvetnyye metally i splavy. Kompozitsionnyye metallicheskiye materialy [Glued metal and laminated composites. Non-ferrous metals and alloys. Composite metallic materials]. M.: Mashinostrienie, 2001. T.: II–3. S. 814–832.
12. Podzhivotov N.YU., Kablov E.N., Antipov V.V., Yerasov V.S. Sloistyye metallopolimernyye materialy v elementakh konstruktsii vozdushnykh sudov [Laminated metal-polymer materials in the structural elements of aircraft] // Perspektivnyye materialy. 2016. №10. S. 5–19.
13. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstruktsionnyye sloistyye alyumostekloplastiki 1441-SIAL [Structural layered alumino-glass plastics 1441-SIAL] // Metallovedeniye i termicheskaya obrabotka metallov. 2013. №9. S. 28–32.
14. Leshchiner L.N., Latushkina L.V., Fedorenko T.P. Splav 1441 sistemy Al–Cu–Mg–Li [Alloy 1441 of the Al – Cu – Mg – Li system] // Tez. dokl. Vsesoyuz. nauch. konf. Metallovedeniye splavov alyuminiya s litiyem. M.: VILS, 1991. S. 76–77.
15. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
16. Antipov V.V., Senatorova O.G., Sidelnikov V.V. Issledovanie pozharostojkosti sloistyh gibridnyh alyumostekloplastikov klassa SIAL [Research of fire firmness layered hybrid aluminum fibreglasses of SIAL’s class] // Aviacionnye materialy i tehnologii. 2011. №3. S. 36–41.
17. Barbotko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznacheniya [Fire safety evolution for polymer composites of aeronautical application] // Aviacionnye materialy i tehnologii. 2012. №3. S. 56–63.
18. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Vliyaniye napolniteley na svoystva kleyevykh prepregov i PKM na ikh osnove [Influence of fillers on properties of adhesive prepregs and PCM on their basis] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
19. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
The article is devoted to advanced polymer composite materials, which capable to independently recover own damaged structure of polymer matrix or via ultraviolet radiation, hH change, temperature, pressure or oxygen. As a literature sources are provided foreign researches from USA, Iran, China, Singapore and Great Britain.
There are developed different approaches to modification of matrix on present day, but self-healing composite materials have a row of advantages, which authors give in this article. Application the principe of self-healing can increase life time of product avoiding outside intervention. Authors describe methods for increasing service life and efficiency of polymer composite materials based on thermoset matrix whith healing agents and releasing through growth the crack or another damages cured polymer matrix and reversible self-regulation chemical bonds in Diels-Alder reaction. Also classification of self-healing composite materials are provided.
Based on the reviewed material authors conclude, that application and introduction of self-healing composite materials in various industries can improve the service life and efficiency of products based on thermoset matrix.
2. Zheleznyak V.G., Chursova L.V., Grigoryev M.M., Kosarina E.I. Issledovaniye povysheniya soprotivlyayemosti udarnym nagruzkam politsianurata s modifikatorom na osnove lineynykh termostoykikh polimerov [Study of an increase in shock resistance of polycyanurate with modifier based on linear heat-resistant polymers] // Aviacionnye materialy i tehnologii. 2013. №2. S. 26–28.
3. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials] // Rossiyskiye nanotekhnologii. 2013. T. 8. №3–4. S. 24–42.
4. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovaniya polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializovannymi nanotrubkami [Features of forming of polymeric grids when curing epoxy oligomers with functionalizing nanotubes] // Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
5. Perov N.S. Konstruirovanie polimernykh materialov na molekulyarnykh printsipakh. I. Sozdanie polimernykh materialov s dopolnitelnymi mekhanizmami dissipatsii mekhanicheskoy energii pri nizkikh temperaturakh [Design of polymer materials on the molecular principles. I. The development of polymer materials with additional mechanisms of dissipation of mechanical energy at low temperatures] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 50–55. DOI: 10.18577/2071-9140-2017-0-3-50-55.
6. Das R., Melchior C., Karumbaiah K.M. Self-healing composites for aerospace applications // Advanced Composite Materials for Aerospace Engineering. Elsevier, 2016. P. 333–364.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Benight S.J., Wang C., Tok J., Bao Z. Stretchable and self-healing polymers and devices for electronic skin // Progress in Polymer Science. 2013. Vol. 38. P. 1961–1977.
9. Doan T.Q., Leslie S., Kim S.Y. et al. Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings // Polymer. 2016. Vol. 107. P. 1–42.
10. Thakur V.K., Kessler M.R. Self-healing polymer nanocomposite materials: a review // Polymer. 2015. Vol. 69. P. 369–383.
11. Jones A.R., Watkins C.A., White S.R., Sottos N.R. Self-healing thermoplastic-toughened epoxy // Polymer. 2015. Vol. 74. P. 254–260.
12. Uprochneniye epoksidnykh smol kauchukom [Hardening of epoxy resins with rubbe]. Available at: http://stilin.ru/polimernye-smesi/449-uprochnenie-epoksidnyh-smol-kauchukom.html (accessed: October 28, 2018).
13. Neisianya R.E., Leeb J.K.Y., Khorasania S.N. et al. Facile strategy toward fabrication of highly responsive self-healing carbon/epoxy composites via incorporation of healing agents encapsulated in poly(methylmethacrylate) nanofiber shell // Journal of Industrial and Engineering Chemistry. 2018. Vol. 59. 456–466.
14. Rehman H.U., Chen Y., Guo Y. et al. Stretchable, strong and self-healing hydrogel by oxidized CNT-polymer composite, Self-healing polymer nanocomposite materials: a review // Composites: Part A. 2016. Vol. 90. P. 250–260.
15. Guadagno L., Naddeo C., Raimondo M. et al. Development of Self-Healing Multifunctional Materials // Composites: Part B. 2017. Vol. 128. P. 30–38.
16. Champagne J., Su-Seng Pang, Guoqiang Li. Effect of Confinement Level and Local Heating on Healing Efficiency of Self-healing Particulate Composites // Composites: Part B. 2016. Vol. 97. P. 344–352.
17. Lee J., Bhattacharyya D., Zhang M.Q., Yuan Y.C. Mechanical properties of mendable composites containing self-healing thermoplastic agents // Composites: Part B. 2014. Vol. 62. P. 10–18.
18. Turkenburg D.H., Fischer H.R. Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites // Polymer. 2015. Vol. 79. P. 187–194.
19. Heo Y., Sodano H.A. Thermally Responsive Self-Healing Composites with Continuous Carbon Fiber Reinforcement // Composites Science and Technology. 2015. Vol. 118. P. 244–250.
20. Scheiner M., Dickens T.J., Okoli O. Progress towards self-healing polymers for composite structural applications // Polymer. 2015. Vol. 83. P. 260–282.
In different industries when manufacturing products from polymeric composite materials (PCM) reinforcing braiding preformes use even more often. The leading foreign companies, such as Boeing, Airbus, General Electric Aircraft Engines, Snecma and some other have implemented such materials in production of products as for space, and civil products. Now these technologies are used for manufacturing of stringer, frames, load-carrying structures of aviation engineering, blades of screws, elements of fuselage, the chassis, transmissions, drafts of management and many other.
Use such preform provides the increased impact resistance of material and resistance to damages, possibility of implementation of automation of production, and also high speed and profitability of process manufacturing of designs.
In work it is considered carbon fibers composite material on the basis of braided preforms and its properties, possibility of application of material is evaluated when manufacturing designs, including working in the conditions of the increased outside hydrostatic pressure. Physicomechanical properties of material, and also tightness of material are investigated at influence of internal air and outside hydrostatic pressure.
The knowledge of properties of such materials at design of samples of equipment allows to optimize release of products with necessary parameters.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Borshchev A.V., Gusev Yu.A. Polimernye kompozicionnye materialy v avtomobilnoj promyshlennosti [Polymer composite materials in automotive industry] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 34–38.
4. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
6. Braided reinforcement for aircraft fuselage frames and method of producing the same: pat. 8210086B2 US; publ. 03.07.12.
7. Dushin M.I., Doneckij K.I., Karavaev R.Yu. Ustanovlenie prichin obrazovaniya poristosti pri izgotovlenii PKM [Identification of the reasons of porosity formation when manufacturing composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6 (42). St. 08. Available at: http://www.viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2016-0-6-8-8.
8. Donetskij K.I., Hrulkov A.V., Kogan D.I., Belinis P.G., Lukyanenko Yu.V. Primenenie obemno-armiruyushhih preform pri izgotovlenii izdelij iz PKM [Use of three-dimensional reinforcing preforms during the production of polymer composite products] // Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
9. Vlasenko F.S., Raskutin A.E., Doneckij K.I. Primenenie pletenyh preform dlya polimernyh kompozicionnyh materialov v grazhdanskih otraslyah promyshlennosti (obzor) [Application of braided preforms for polymer composite materials in civil industries (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 05. Available at: http://www.viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2015-0-1-5-5.
10. Erber A., Birkefeld K., Drechsler K. The influence of braiding configuration on damage tolerance of drive shafts // SAMPE EUROPE: 30th International Jubilee Conference and Forum. 2010. P. 364–371.
11. Branscomb D., Beale D., Broughton R. New directions in braiding // Journal of Engineered Fibers and Fabrics. 2013. No. 8 (2). R. 11–24.
12. Donetskij K.I., Kogan D.I., Hrulkov A.V. Svojstva polimernyh kompozicionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of braided preforms] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 05. Available at: http://www.viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2014-0-3-5-5.
13. Lebel L.L., Nakai A. Design and manufacturing of an L-shaped thermoplastic composite beam by braid-trusion // Composites. Part A: Applied Science and Manufacturing. 2012. No. 43 (10). P. 1717–1729.
14. Kohlman L.W., Bail J.L., Roberts G.D. et al. A notched coupon approach for tensile testing of braided composites // NASA Publications. 2012. No. 65. P. 1–9.
15. Dun V.A., Petrovskiy O.L., Rumyantsev A.F., Ushakov P.G. Rezultaty primeneniya ugleplastika dlya izgotovleniya malogabaritnykh korpusov [The results of carbon fiber for the manufacture of small buildings] // Sudostroitelnaya promyshlennost, seriya PVMO. 1986. Vyp. 2. S. 70–75.
16. Kompozitnyy korpus glubokovodnogo tekhnicheskogo sredstva: pat. 2453464 Ros. Federatsiya [Composite hull deep-sea technical means: pat. 2453464 Rus. Federation]; zayavl. 17.08.10; opubl. 20.06.12.
17. Carey J.P. Handbook of Advances in Braided Composite Materials. Woodhead Publishing is an Imprint of Elsevier, 2017. No. 72. R. 3–6.
18. Chursova L.V., Babin A.N., Panina N.N., Tkachuk A.I., Terekhov I.V. Ispolzovaniye aromaticheskikh aminnykh otverditeley dlya sozdaniya epoksidnykh svyazuyushchikh dlya PKM konstruktsionnogo naznacheniya [Usage of aromatic amine curing agents for epoxy resins binders for production of structural PCM] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2016. №6 (42). St. 04. Available at: http://www.viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2016-0-6-4-4.
One of ways of change of properties of polymers and the polymeric composite materials (PCM) is nanomodifying. Enter various nanodimensional additives which influence formation of structure of material into a polymeric matrix. Nanomodifying allows to receive the hybrid polymeric composite materials (HPCM) with the properties increased in comparison with initial PCM.
Now in scientific literature influence of CNT (carbon nanotubes) on heat resistance and reactionary ability of epoxy compositions in the conditions of achievement of almost full conversion of functional groups is insufficiently investigated.
In this work such technological mode of hardening which provided almost full conversion of epoxy groups was chosen. Therefore, temperature change of vitrification of the received epoxynanocomposites is explained by exclusively nano-level modification carbon nanotubes.
Authors developed various laboratory ways of receiving the epoxynanocomposites modified by non-functional multiwall carbon nanotubes (MWCNTs).
In work thermoanalytical and microstructural researches of the modified compositions and epoxynanocomposites were conducted.
It is shown that non-functional MWCNTs have no considerable impact on temperature parameters of chemical reaction of hardening of epoxy composition and size of thermal effect.
It is established that modifying of epoxy compositions non-functional MWCNTs at almost full hardening leads to vitrification temperature increase.
Influence of various technological ways of receiving an epoxynanocomposite on its heat resistance is defined. It is established that use of the three-roll mixer plays a key role at production of epoxynanocomposites. Temperature of vitrific
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Pavlyuk B.F. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
5. Mukhametov R.R., Petrova A.P. Svoystva epoksidnykh polimernykh svyazuyushchikh i ikh pererabotka v polimernyye kompozitsionnyye materialy [Properties of epoxy binders and their processing in polymers composition materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4. St. 06. Available at: http://materialsnews.ru (accessed: December 04, 2018).
6. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: December 04, 2018).
7. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials] // Rossiyskiye nanotekhnologii. 2013. T. 8. №3–4. S. 24–42.
8. Simonov-Yemelyanov I.D., Pykhtin A.A., Smotrova S.A., Kovaleva A.N. Strukturoobrazovaniye i fiziko-mekhanicheskiye kharakteristiki epoksidnykh nanokompozitov [Structure formation and physico-mechanical characteristics of epoxy nanocomposites] // Vse materialy. Entsiklopedicheskiy spravochnik. 2017. №2. S. 2–7.
9. Bolshakov V.A., Solodilov V.I., Korokhin R.A., Kondrashov S.V., Merkulova Yu.I., Dyachkova T.P. Issledovaniye treshchinostoykosti polimernykh kompozitsionnykh materialov, izgotovlennykh metodom infuzii s ispolzovaniyem razlichnykh kontsentratov na osnove modifitsirovannykh UNT [Research of crack resistance of polymeric composite materials fabricated by infusion using various concentrates on the basis of modified CNT] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7 (55). St. 09. Available at: http://www.viam-works.ru (accessed: December 04, 2018). DOI: 10.18577/2307-6046-2017-0-7-9-9.
10. Gunyayev G.M., Kablov E.N., Aleksashin V.M. Modifitsirovaniye konstruktsionnykh ugleplastikov uglerodnymi nanochastitsami [Modification of structural carbon plastics with carbon nanoparticles] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–11.
11. Thakre P.R., Bisrat Y., Lagoudas D.C. Electrical and mechanical properties of carbon nanotube‐epoxy nanocomposites // Journal of Applied Polymer Science. 2010. Vol. 116. No. 1. P. 191–202.
12. Zhou Y.X., Wu P.X., Cheng Z.-Y. et al. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube // Express Polymer Letters. 2008. Vol. 2. No. 1. P. 40–48.
13. Hernag̀ndez-Peg̀rez A., Avileg̀s F., May-Pat A. Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes // Composites Science and Technology. 2008. Vol. 68. P. 1422–1431.
14. Wang Sh., Liang R., Wang B., Zhang Ch. Covalent Addition of Diethyltoluenediamines Onto Carbon Nanotubes for Composite Application // Polymer Composites. 2009. Vol. 30 (8). DOI: 10.1002/pc.20654.
15. Wang Sh., Liang Z., Liu T. et al. Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites // Nanotechnology. 2006. Vol. 17. Р. 1551–1557.
16. Shen J., Huang W., Wu L. et al. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites // Composites Science and Technology. 2007. Vol. 67. Р. 3041–3050.
17. Allaoui A., Bounia N.El. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?: a review // Express Polymer Letters. 2009. Vol. 3. No. 9. Р. 588–594.
18. Marakhovskiy P.S., Kondrashov S.V., Akatenkov R.V., Aleksashin V.M., Anoshkin I.V., Mansurova I.A. O modifikatsii teplostoykikh epoksidnykh svyazuyushchikh uglerodnymi nanotrubkami // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2015. №2. S. 118–127.
19. Ma P.-C., Naveed A., Marom G. et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites // Composites Part A: Applied Science and Manufacturing. 2010. Vol. 41. No. 10. P. 1345–1367.
20. Sandler J., Shaffer M., Prasse T. et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties // Polymer. 1999. Vol. 40. No. 21. P. 5967–5971.
21. Gojny F., Wichmann M., Kopke U. et al. Carbon nanotube reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content // Composites science and technology. 2004. Vol. 64. No. 15. P. 2363–2371.
22. Thostenson E.T., Chou T.W. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites // Carbon. 2006. Vol. 44. No. 14. P. 3022–3029.
23. Li Y., Shimizu H. High-shear melt processing of polymer–carbon nanotube composites // Polymer–Carbon Nanotube Composites. 2011. No. 5. P. 133–154.
24. Puglia D., Valentini L., Kenny J.M. Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy // Journal of Applied Polymer Science. 2003. Vol. 88. P. 452–458.
25. Valentini L., Armentano I., Puglia D., Kenny J.M. Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy // Carbon. 2004. Vol. 42. P. 323–329.
26. Bae J., Jang J., Yoon S.-H. Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction // Macromolecular Chemistry Physics. 2002. Vol. 203. P. 2196–2204.
27. Pykhtin A.A. Vysokotekhnologichnyye epoksidnyye nanodispersii i nanokompozity s reguliruyemoy strukturoy i kompleksom svoystv: dis. … kand. tekhn. nauk [High-tech epoxy nanodispersions and nanocomposites with adjustable structure and complex properties: thesis Dr. Sc. (Tech.)]. M., 2017. 125 c.
Among the huge variety of composite materials developed to date, it is necessary to single out a class of materials consisting of a ceramic matrix reinforced with high-strength (continuous or discrete) inorganic fibers. Such materials combine a complex of various properties and can be used as structural materials for heat-loaded aircraft parts.
This review is devoted to the consideration of the main types of organosilicon polymers based silicon carbide fibers (SiC-fibers), produced abroad.
It is shown that at present the entire range of SiC-fibers can be divided into three main groups according to their oxygen content and the ratio of C/Si atoms. The fibers of the first group were developed in the 1980s, contain up to 11 % oxygen and significantly lose their strength at temperatures above 1300°C. The maximum operating temperature of such fibers is 1100°C.
The oxygen content in the fibers of the second group is less than 1%, they retain their strength to a temperature of 1500°C, however, the creep resistance of such fibers decreases even at a temperature of 1150°C due to the presence of carbon in their structure.
The third group includes stoichiometric SiC-fibers. The heat resistance and creep resistance of these fibers are significantly improved. Such fibers maintain high creep resistance up to a temperature of 1400°C. In terms of their physical and mechanical properties, stoichiometric SiC-fibers meet the basic requirements necessary for their use in high-temperature composites of structural purpose.
Thus, the prospects for the development of SiC-fibers are associated with a further decrease in the oxygen content in their structure, the preservation of the C/Si ratio in terms of fiber volume, and modification of the fiber surface.&a
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Grashchenkov D.V., Evdokimov S.A., Zhestkov B.E., Solntsev S.St., Shtapov V.V. Issledovaniye termokhimicheskogo vozdeystviya potoka vozdushnoy plazmy na vysokotemperaturnyy keramicheskiy kompozitsionnyy material [Research of thermochemical influence of the air plasma flow on high-temperature ceramic composite material] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 31–40. DOI: 10.18577/2071-9140-2017-0-2-31-40.
5. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnyye pokrytiya dlya zashchity ot korrozii uglerodistykh staley [Perspective coatings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.
6. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. Vysokotemperaturnye metallomatrichnye kompozicionnye materialy, armirovannye chasticami i voloknami tugoplavkih soedinenij [High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds] // Aviacionnye materialy i tehnologii. 2017. №S. S. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
7. Kablov E.N., Grashchenkov D.V., Shchegoleva N.E., Orlova L.A., Suzdaltsev E.I. Radioprozrachnaya steklokeramika na osnove strontsiyalyumosilikatnogo stekla [Radiotransparent glass ceramics based on strontium-aluminosilicate glass] // Ogneupory i tekhnicheskaya keramika. 2016. №6. S. 31–37.
8. Sorokin O.Yu. K voprosu o mehanizme vzaimodejstviya uglerodnyh materialov s kremniem (obzor) [On the issue of the mechanism of interaction between carbon materials and Si melt (review)] // Aviacionnye materialy i tehnologii. 2015. №1. S. 65–70. DOI: 10.18577/2071-9140-2015-0-1-65-70.
9. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
10. Kablov E.N., Grashchenkov D.V., Isayeva N.V., Solntsev S.S., Sevastyanov V.G. Vysokotemperaturnyye konstruktsionnyye kompozitsionnyye materialy na osnove stekla i keramiki dlya perspektivnykh izdeliy aviatsionnoy tekhniki [High-temperature structural composite materials based on glass and ceramics for promising products of aviation technology] // Steklo i keramika. 2012. №4. S. 7–11.
11. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2018).
12. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: December 11, 2018). DOI: 10.18577/2307-6046-2014-0-6-8-8.
13. Sidorov D.V., Shcherbakova G.I. Vysokotekhnologichnyye komponenty kompozitsionnykh materialov i spetsialnyye volokna dlya shirokogo spektra primeneniya [High-tech components of composite materials and special fibers for a wide range of applications] // Khimicheskaya tekhnologiya. 2016. T. 17. №4. S. 183–192.
14. Ichikawa H. Polymer-Derived Ceramic Fibers // Annual Review of Materials Research. 2016. Vol. 46. P. 6.1–6.22.
15. Fritz G., Grofe J. Carbosilanes // Advanced Inorganic Chemistry and Radiochemistry. 1965. Vol. 7. P. 349.
16. Yajima S., Okamura K., Hayashi J. Continuous silicon carbide fiber of high tensile strength // Chemistry Letters. 1975. Vol. 9. P. 931–934.
17. Bansal N.P., Lamon J. Ceramic Matrix Composites: Materials, Modeling and Technology. New York. Wiley & Sons, 2014. P. 217–220.
18. Schilling C.L., Wesson J.P., Williams T.C. Polycarbosilane precursors for silicon carbide // American Ceramic Society Bulletin. 1983. Vol. 62. P. 912–915.
19. Ishikawa T. Recent developments of the SiC fibers NICALON and its composites, including properties of the SiC fiber HI-NICALON for ultra-high temperature // Composites Science Technology. 1994. Vol. 51. P. 135–144.
20. Kyushin S., Ichikawa K. Study on the detailed structure of poly(dimethylsilylene) // Organometallics. 2014. Vol. 33. P. 6298–6303.
21. Okamura K. Preparation of Preceramics from Polysilane. Tokyo: CMC, 1985. 179 p.
22. Ichikawa H., Machino F., Teranishi H., Ishikawa T. Oxidation reaction of polycarbosilane // Silicon-Based Polymer Science: A Comprehensive Resource. Washington, DC: American Chemical Society, 1990. P. 619–637.
23. Simon G., Bunsell A.R. Mechanical and structural characterization of the Nicalon silicon carbide fibre // Journal of Materials Science. 1984. Vol. 19. P. 3649–3657.
24. Wynne K.J., Rice R.W. Ceramics via polymer pyrolysis // Annual Reviews of Materials Science. 1984. Vol. 14. P. 325–334.
25. Yajima S. Tensile strength of SiC fibers as a function of fiber diameter // Philosophical Transactions of the Royal Society A. 1980. Vol. 294. P. 419–425.
26. Ichikawa H. Effect of curing conditions on mechanical properties of SiC fibre (Nicalon) // Journal of Materials Science Letters. 1987. Vol. 6. P. 420–422.
27. Laffon C., Flank A.M., Lagarde P. et al. Study of Nicalon-based ceramic fibers and powders by XAFS spectrometry, X-ray diffractometry and some additional methods // Journal of Materials Science. 1989. Vol. 24. P. 1503–1512.
28. Ishikawa T., Ichikawa H. Strength and structure of SiC fiber after exposure to high temperature // Proceedings of the Symposium on High Temperature Materials Chemistry. 1987. Vol. 4. P. 205–217.
29. Mah T. Thermal stability of SiC fibres (Nicalon) // Journal of Materials Science. 1984. Vol. 19. P. 1191–1201.
30. Pysher D.J. Strength of ceramic fibers at elevated temperatures // Journal of the American Ceramic Society. 1989. Vol. 72. No. 2. P. 284–288.
31. Shimoo T., Hayatsu T., Narisawa M. et al. Mechanism of ceramization of electron-irradiation cured polycarbosilane fiber // Journal of the Ceramic Society of Japan. 1993. Vol. 101. No. 7. P. 809–813.
32. Okamura K., Seguchi T. Application of radiation curing in the preparation of polycarbosilane-derived SiC fibers // Journal of Inorganic and Organometallic Polymers Chemistry. 1992. Vol. 2. No. 1. P. 171–179.
33. Sugimoto M., Shimoo T., Okamura K., Seguchi T. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation. 1. Evolved gas analysis // Journal of the American Ceramic Society. 1995. Vol. 78. No. 4. P. 1013–1017.
34. Bodet R., Bourrat X., Lamon J., Nslain R. Tensile creep behavior of a silicon carbide-based fibre with a low oxygen content // Journal of Materials Science. 1995. Vol. 30. P. 661–667.
35. Chollon G., Bodet R., Pailler R., Bourrat X. Structure and thermal evolution of SiC-based fibers with low oxygen content // Ceramic Transactions. 1995. Vol. 58. P. 305–310.
36. Berger M.H., Bunsell A.R. Microstructure and thermal-mechanical stability of a low-oxygen Nicalon fibre // Journal of Microscopy. 1995. Vol. 177. No. 3. P. 230–241.
37. Takeda M., Saeki A., Sakamoto J. et al. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers // Journal of the American Ceramic Society. 2000. Vol. 83. No. 5. P. 1063–1069.
38. Takeda T., Sakamoto J., Imai Y. et al. Properties of stoichiometric silicon carbide fiber derived from polycarbosilane // Ceramic Engineering and Science Proceedings. 1994. Vol. 15. No. 4. P. 133–141.
39. Ichikawa H., Okamura K., Seguchi T. Oxygen-free ceramic fibers from organosilicon precursors and E-beam curing // Ceramic Transactions. 1995. Vol. 58. P. 63–74.
40. Takeda M., Sakamoto J., Saeki A. et al. High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites // Ceramic Engineering and Science Proceedings. 1995. Vol. 16. No. 4–5. P. 37–44.
41. Takeda M., Sakamoto J., Saeki A., Ichikawa H. Mechanical and structural analysis of silicon carbide fiber Hi-Nicalon Type S // Ceramic Engineering and Science Proceedings. 1996. Vol. 17. No. 4. P. 35–42.
42. Takeda M., Urano A., Sakamoto J., Imai Y. Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane // Journal of the American Ceramic Society. 2000. Vol. 83. No. 5. P. 1171–1176.
43. Toreki W., Sacks M.D. Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability // Composites Science Technology. 1994. Vol. 51. P. 145–159.
44. Sacks M.D., Morrone A.A., Scheiffele G.W., Saleem M. Characterization of polymer-derived silicon carbide fibers with low oxygen content, near-stoichiometric composition, and improved thermomechanical stability // Ceramic Engineering and Science Proceedings. 1995. Vol. 16. No. 4. P. 25–35.
45. Lipowitz J., Rabe J.A., Zank G.A. Polycrystalline SiC fibers from organosilicon polymers // Ceramic Engineering and Science Proceedings. 1991. Vol. 12. No. 9–10. P. 1819–1831.
46. Xu Y., Zangvil A., Lipowitz J. et al. Microstructure and microchemistry of polymer-derived crystalline SiC fibers // Journal of the American Ceramic Society. 1993. Vol. 76. No. 12. P. 3034–3040.
47. Lipowitz J., Barnard T., Bujaski D. et al. Fine-diameter polycrystalline SiC fibers // Composites Science Technology. 1994. Vol. 51. P. 167–171.
48. Lipowitz J., Rabe J.A., Orr L.D., Androl R.R. Polymer derived stoichiometric SiC fibers // Materials Research Society Symposium Proceedings. 1994. Vol. 350. P. 99–104.
49. Lipowitz J., Rabe J.A., Ngyuen K.T., Orr L.D., Androl R.R. Structure and properties of polymer-derived stoichiometric SiC fiber // Ceramic Engineering and Science Proceedings. 1995. Vol. 16. No. 4. P. 55–62.
50. Lipowitz J., Rabe J.A., Zangvil A., Xu Y. Structure and properties of SYLRAMIC silicon carbide fiber: a polycrystalline, stoichiometric β-SiC composition // Ceramic Engineering and Science Proceedings. 1997. Vol. 18. No. 3. P. 147–157.
51. DiCarlo J.A., Yun H.M. Non-oxide (silicon carbide) fibers // Handbook of Ceramic Composites. Editor N.P. Bansal. Boston: Kluwer Academic Publishers. 2005. P. 33–52.
52. Yamamura T., Ishikawa T., Shibuya M. et al. Development of a new continuous Si–Ti–C–O fiber using an organometallic polymer precursor // Journal of Materials Science. 1988. Vol. 23. P. 2589–2594.
53. Ichikawa H. Silicon carbide fibers (organometallic pyrolysis) // Comprehensive Composite Materials. Oxford: Elsevier Science, 2000. Vol. 1. P. 126–145.
54. Fischbach D.B., Lemoine P.M., Yen G.V. Mechanical properties and structure of a new commercial SiC-type fibers (Tyranno) // Journal of Materials Science. 1988. Vol. 23. P. 987–993.
55. Yajima S., Hasegawa Y., Okamura K., Matsuzawa T. Development of high tensile strength silicon carbide fibers using organosilicon precursor // Nature. 1978. Vol. 273. P. 525–527.
56. Kumagawa K., Yamaoka H., Shibuya M., Yamamura T. Thermal stability and chemical corrosion resistance of newly developed continuous Si–Zr–C–O Tyranno fiber // Ceramic Engineering and Science Proceedings. 1997. Vol. 18. No. 3. P. 113–118.
57. Ishikawa T., Kohtoku Y., Kumagawa K. et al. High-strength alkali-resistant sintered SiC fiber stable to 2200°C // Nature. 1998. Vol. 391. No. 6669. P. 773–775.
58. Parthasarathy T.A., Mah T.I., Folsom C.A., Katz A.P. Microstructure stability of Nicalon at 1000°C in air after exposure to salt (NaCl) water // Journal of the American Ceramic Society. 1995. Vol. 78. No. 7. P. 1992–1996.
59. Legrow G.E., Lim T.F., Lipowitz J., Reaoch R.S. Ceramics from hydridopolysilazane // Journal of the American Ceramic Society Bulletin. 1987. Vol. 66. No. 2. P. 363–367.
60. Silicon nitride-containing ceramics: pat. US 4535007; publ. 13.08.85.
61. Hydrosilazane polymers from (R3Si)2NH and HSiCl3: pat. US 4540803; publ. 10.09.85.
62. Cannady J.P. Silicon nitride-containing ceramic material prepared by pyrolysis hydrosilazane polymers from (R3Si)2NH and HSiCl3: pat. US 4543344; publ. 24.09.85.
63. Sawyer L.C., Jameleson M., Brikowski D., Haider M.I. Strength, structure and fracture properties of ceramic fibers produced from polymeric precursors // Journal of the American Ceramic Society. 1987. Vol. 70. No. 11. P. 798–810.
64. Bunsell A.R. Inorganic fibers for composite materials // Composites Science Technology. 1994. Vol. 51. P. 127–133.
65. Isoda T. Preparation of silicon nitride fibers // Development of Organosilicon Polymer. Tokyo: CMC, 1989. P. 210–231.
66. Grisaffe S.J. Reinforcements: the key to high performance composites materials // NASA Technical Memorandum. 1990. No. 103230.
67. Introducing SiNC-1400X ceramic fiber // Brochure. MATECH. URL: http://www.matechgsm.com/brochures/SiNC1400X.pdf (дата обращения: 29.11.2018).
68. Baldus H.P., Passing G., Scholz H. et al. Properties of amorphous SiBNC ceramic fibers // Key Engineering Materials. 1997. No. 127. P. 177–184.
69. Baldus H.P., Passing G. Si–B–(N, C): a new ceramic material for high performance applications // Advanced Structural Fiber Composites. Faenza: Techna, 1995. P. 125–132.
Process of selection of ratio of components of prepreg is described. The data on electrochemical corrosion in the contact zone of «metal–carbon» fiber and describes a method of protection against contact corrosion by isolating the carbon-plastic metal layer prepreg GRP. The initial components of prepreg GRP VPS-53/120, designed to prevent contact corrosion between metal and carbon fiber, were selected. Two methods for calculating the surface density of the binder and prepreg are described. The ranges of permissible dispersion of the surface densities of the binder and prepreg film are calculated taking into account the dispersion of the surface density of GRP and the selected range of the binder content in the prepreg. The actual values of the prepreg characteristics of the VPS-53/120 brand are determined and their statistical analysis is carried out, the high convergence of the actual values with the calculated ones is shown. Physical-mechanical and operational characteristics of GRP of the VPS-53/120 brand are defined.
2. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] // Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
3. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
4. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Tsentry dlya klimaticheskikh ispytaniy aviatsionnykh PKM [Climate Test Centers for Aviation PCM] // Aviatsionnaya promyshlennost. 2009. №4. S. 36–46.
5. Melnikov D.A., Ilichev A.V., Vavilova M.I. Sravnenie standartov dlia provedeniia mekha-nicheskikh ispytanii stekloplastikov na szhatie [Comparison of standards for carrying out mechanical tests of GRP compression strength] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3 (51). St. 06. Available at: http://www.viam-works.ru (accessed: June 21, 2018). DOI: 10.18577/2307-6046-2017-0-3-6-6.
6. Karimova S.A., Pavlovskaya T.G., Chesnokov D.V., Semenova L.V. Korrozionnaya aktivnost ugleplastikov i zashchita metallicheskikh silovykh konstruktsiy v kontakte s ugleplastikom [Corrosion activity of carbon fiber plastic and protection of metal power structures in contact with carbon plastic] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 54. №1. S. 110–116.
7. Sinyavskiy V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminiyevykh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1986. 368 s.
8. Bosze E., Nutt S. Potential for Galvanic Corrosion between Carbon Fibers and Al Wires in ACCC/TW Conductor // Gill Foundation Composites Center University of Southern California. 2008. Available at: https://www.ctcglobal.com/ftp/Reports/Galvanic_Corrosion_Test.pdf (accessed: September 20, 2018).
9. Kiselev B.A. Stekloplastiki. M.: Gos. nauch.-tekhnich. izd-vo khim. lit., 1961. 240 s.
10. Gunyayev G.M. Struktura i svoystva polimernykh voloknistykh kompozitov [Structure and properties of polymer fiber composites]. M.: Khimiya, 1981. 232 s.
11. Skudra A.M., Bulave F.Ya. Prochnost armirovannykh plastikov [Strength of reinforced plastics]. M.: Khimiya, 1982. 216 s.
12. Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannyye kompozitnyye materialy: spravochnik [Spatially reinforced composite materials: a guide]. M.: Mashinostroyeniye, 1987. 224 s.
13. Tarnopolskiy Yu.M., Skudra A.M. Konstruktsionnaya prochnost i deformativnost stekloplastikov [Structural strength and deformability of fiberglass]. Riga: Zinatne, 1966. 260 s.
14. Nemets Ya., Serensen S.V., Strelyayev V.S. Prochnost plastmass [Durability of plastics]. M.: Mashinostroyeniye, 1970. 335 s.
15. Kucher N.K., Dveyrin A.Z., Zemtsov M.P., Ankyanets O.K. Kharakteristiki uprugosti sloistykh tkanykh stekloplastikov [Characteristics of elasticity of laminated woven fiberglass] // Problemy prochnosti. 2004. №6. S. 26–32.
16. Kucher N.K., Dveyrin A.Z., Zarazovskiy M.N., Zemtsov M.P. Deformirovaniye sloistykh stekloplastikov, armirovannykh tkan'yu satinovoy struktury pri komnatnoy i nizkikh temperaturakh [Deformation of laminated glass-reinforced plastics reinforced with satin-structure fabric at room and low temperatures] // Mekhanika kompozitnykh materialov. 2004. №3. S. 341–354.
17. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: July 12, 2018). DOI: 10.18577/2307-6046-2017-0-1-8-8.
18. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: September 12, 2018).
19. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polimernyye kompozitsionnyye materialy novogo pokoleniya na osnove svyazuyushchego VSE-1212 i napolniteley, alternativnykh napolnitelyam firm Porcher Ind. i Toho Tenax [Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
20. Kurnosov A.O., Vavilova M.I., Melnikov D.A. Tehnologii proizvodstva steklyannyh napolnitelej i issledovanie vliyaniya appretiruyushhego veshhestva na fiziko-mehanicheskie harakteristiki stekloplastikov [Manufacturing technologies of glass fillers and study of effects of finishing material on physical and mechanical properties of fiberglass plastics] // Aviacionnye materialy i tehnologii. 2018. №1 (50). S. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.
The polymer composite materials industry is in constant development, however, PCM processing technologies must be developed, and the effects of mechanical processing on the properties of the material after processing should be investigated. Manufacturers of tools offer special cutters, differing in the materials from which they are made, geometry, grinding angles, etc. It is necessary to conduct research for each brand of material in order to designate the optimal cutting mode. The design of the equipment should provide reliable protection of personnel and take into account the properties formed during the processing of chips.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials] // Polimernyye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Boychuk A.S., Generalov A.S., Stepanov A.V. Nerazrushayushhij kontrol ugleplastikov na nalichie nesploshnostej s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [NDT monitoring of CFRP structural health by ultrasonic phased array technique] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 84–89. DOI: 10.18577/2071-9140-2015-0-3-84-89.
6. Murashov V.V., Trifonova S.I. Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
7. Boychuk A.S., Generalov A.S., Dikov I.A. Kontrol detaley i konstruktsiy iz polimernykh kompozitsionnykh materialov s primeneniyem tekhnologii ultrazvukovykh fazirovannykh reshetok [FRP parts and structures testing by phased array technique] // Aviacionnyye materialy i tehnologii. 2017. №1 (46). S. 45–50. DOI: 10.18577/2071-9140-2017-0-1-45-50.
8. Nerazrushayushchiy kontrol: spravochnik / pod obshch. red. V.V. Klyuyeva [Non-Destructive Testing: Reference / gen. ed. By V.V. Klyuev]. M.: Mashinostroyeniye, 2006. T. 3: Ultrazvukovoy kontrol / I.N. Ermolov, Yu.V. Lange. 864 s.
9. Antyufeyeva N.V., Stolyankov Yu.V., Iskhodzhanova I.V. Issledovaniye i otsenka svoystv polimernykh kompozitsionnykh materialov po metodikam, garmonizirovannym s mezhdunarodnymi standartami [Research and evaluation of the properties of polymeric composite materials by methods harmonized with international standards] // Konstruktsii iz kompozitsionnykh materialov. 2013. №3. S. 41–45.
10. ASTM D5687/D5687M-95. Standard guide for preparation of flat composite panels with processing guidelines specimen preparation. ASTM International, West Conshohocken, PA, 2015. Available at: http://astm.org (accessed: October 01, 2018). DOI: 10.1520/D5687_D5687M-95R15.
11. Abrão A.M., Rubio J.C.C., Faria P.E., Davim J.P. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite // Materials and Design, 2008. Vol. 29. Is. 2. P. 508–513. Available at: https://www.scopus.com (accessed: October 18, 2018). DOI: 10.1016/j.matdes.2007.01.016.
12. Caggiano A., Improta I., Nele L. Characterization of a new dry drill-milling process of Carbon Fibre Reinforced Polymer laminates // Materials. 2018. Vol. 11. Is. 8. P. 1470. Available at: https://www.scopus.com (Available at). DOI: 10.3390/ma11081470.
13. Wang H., Sun J., Li J. et al. Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites // International Journal of Advanced Manufacturing Technology. 2016. Vol. 82. Is. 9–12. P. 1517–1525. Available at: https://www.scopus.com (accessed: October 18, 2018). DOI: 10.1007/s00170-015-7479-2.
14. Gao C., Xiao J., Xu J, Ke Y. Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation // International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. Is. 5–8. P. 1113–1125. Available at: https://www.scopus.com (accessed: October 19, 2018). DOI: 10.1007/s00170-015-7592-2.
15. Garant ToolScout: spravochnik po obrabotke rezaniyem [Garant ToolScout: handling Guide]. Hoffmann Group, 2013. S. 152–153.
16. Tekhnologiya naneseniya almazopodobnykh pokrytiy [The technology of applying diamond-like coatings]. Available at: http://www.dlc.ru (accessed: October 20, 2018).
17. Tikhomirov R.A., Nikolayev V.I. Mekhanicheskaya obrabotka plastmass [Mechanical processing of plastics]. L., 1975. 208 s.
Within the framework of the work, the design of the sample was developed, which allows testing on HCF at different values of the load ratio without loss of stability including cyclic compression.
To determine the stresses acting on the sample during cyclic tests from the side opposite to the stress concentrator, a step-by-step static loading of the sample with a strain gage in the range of elastic deformations was carried out. The finite element method through ANSYS R17.2 it was software calculated of operating in the stress concentrator σmax and σmin in the cycle of loading.
The samples of VT3-1 titanium alloy were tested for the fatigue limit on the basis of N=106 cycles at a loading frequency of 100 Hz by STO 1-595-17-467-2015. The tests were carried out under symmetrical loading cycle R = -1 under cyclic stretching conditions at R = 0; 0,3; 0,5 and cyclic compression at R = ∞; 3, both in air and in sea water. Individual containers for each sample were used in sea water tests.
The results show that sea water leads to an increase in the fatigue limit of samples from titanium alloy VT3-1 with a concentrator of radius 1 mm in the range of load cycle asymmetries +0.5≤R≤+3.0 (-1 ≤Rnorm≤1.5).
The increase of fatigue cracks in the conditions of cyclic compression is accompanied by the formation of a trickle relief with longitudinal folds.
On the surface of the facet relief of samples tested in air, there are signs of plastic deformation, while the facets on the fractures of samples tested in sea water have a completely brittle appearance.
For a symmetrical cycles, and for the cyclic stretching the destruction of both environments&
2. Ospennikova O.G., Napriyenko S.A., Lukina E.A. Issledovaniye prichin obrazovaniya treshchin na stupitse diska KVD iz splava VT8 nazemnoy GTU [Study of operational destruction of the GTP compressordisk of alloy VT8] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 11. Available at: http://www.viam-works.ru (accessed: December 28, 2018). DOI: 10.18577/2307-6046-2018-0-12-97-106.
3. Nochovnaia N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Opyt VIAM v oblasti razrabotki i issledovaniia ekonomnolegirovannykh titanovykh splavov novogo pokoleniia [VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №9 (45). St. 05. Available at: http://www.viam-works.ru (accessed: December 17, 2018). DOI: 10.18577/2307-6046-2014-0-9-5-5.
4. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseyev E.B., Novak A.V. Issledovaniye struktury i svoystv zharoprochnykh splavov na osnove alyuminidov titana s mikrodobavkami gadoliniya [Study of the structure and properties of superalloys based on titanium aluminides with gadolinium microadditives] // Materialovedeniye. 2017. №3. S. 3–10.
5. Nochovnaya N.A., Kashapov O.S., Bykov Yu.G., Karamyan K.A. Issledovaniye vliyaniya rezhimov termicheskoy obrabotki na strukturu i mekhanicheskiye svoystva osnovnogo materiala i materiala svarnogo shva rabochego kolesa tipa «blisk» iz splava VT41 v konstruktsii KVD perspektivnogo dvigatelya [Study of the effect of heat treatment on the structure and mechanical properties of the base material and weld material of the blisk-type impeller from VT41 alloy in the design of high-pressure boiler of a promising engine] // Elektrometallurgiya. 2017. №11. S. 15–19.
6. Nochovnaya N.A., Panin P.V., Alekseyev E.B., Bokov K.A. Sovremennyye ekonomnolegirovannyye titanovyye splavy: primeneniye i perspektivy razvitiya [Modern economically alloyed titanium alloys: application and development prospects] // Metallovedeniye i termicheskaya obrabotka metallov. 2016. №9 (735). S. 8–15.
7. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
8. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlya lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] // Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
10. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Razrabotka opytno-promyshlennoy tekhnologii izgotovleniya polufabrikatov iz psevdo-alfa-titanovogo splava VT41 [Development of experimental industrial technology for manufacturing semi-finished products from pseudo-alpha-titanium alloy VT41] // Titan. 2016. №2 (52). S. 33–42.
11. Pilchak A.L., Young A.H., Williams J.C. Stress corrosion cracking facetcrystallography of Ti–8Al–1Mo–1V // Corrosion Science. 2010. Vol. 52. P. 3287–3296.
12. Cao S., Lim C.V.S., Hinton B., Wu X. Effects of microtexture and Ti3Al (a2) precipitates on stress-corrosioncracking properties of a Ti–8Al–1Mo–1V alloy // Corrosion Science. 2017. Vol. 116. P. 22–33.
13. Chattoraj I. Stress corrosion cracking (SCC) and hydrogen-assisted cracking in titanium alloys // Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011. P. 381–408.
14. Orlov M.R., Napriyenko S.A. Razrusheniye dvukhfaznykh titanovykh splavov v morskoy vode [Destruction of two-phase titanium alloys in sea water] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 10. Available at: http://www.viam-works.ru (accessed: December 25, .2018). DOI: 10.18577/2307-6046-2017-0-1-10-10.
15. Gorbovets M.A., Nochovnaya N.A. Vliyaniye mikrostruktury i fazovogo sostava zharoprochnykh titanovykh splavov na skorost rosta treshchiny ustalosti [Influence of microstructure and phase composition of heat-resisting titanium alloys on the fatigue crack growth rate] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2016. №4 (40). St. 03. Available at: http://www.viam-works.ru (accessed: October 03, 2018). DOI: 10.18577/2307-6046-2016-0-4-3-3.
16. Morozova L.V., Orlov M.R. Issledovaniye prichin razrusheniya zubchatykh koles v protsesse ekspluatatsii [Study of the causes of the destruction of gears during operation] // Sb. dokl. VI Vseros. konf. po ispytaniyam i issledovaniyam svoystv materialov «TestMat». M.: VIAM, 2015. S. 19.
17. Morozova L.V., Orlov M.R. Ustalostnoye razrusheniye vedushchey konicheskoy shesterni gazoturbinnogo dvigatelya iz stali 16KH3NVMFMB [Fatigue destruction of the leading bevel gear of a gas turbine engine made of steel 16Kh3NVMFMB] // Stal. 2015. №2. S. 68–71.
18. Ratner S.I. Razrusheniye pri povtornykh nagruzkakh [Destruction under repeated loads]. M.: Gos. izd-vo oboron. prom-sti, 1959. 352 s.
19. Sposob opredeleniya predela vynoslivosti metallicheskikh materialov: pat. 2603243 Ros. Federatsiya [The method for determining the endurance limit of metallic materials: pat. 2603243 Rus. Federation]; zayavl. 07.10.15; opubl. 01.11.16.
20. Aviatsionnyye materialy: spravochnik [Aviation materials: a handbook]. M.: MAP, 1973. T. 5: Magniyevyye i titanovyye splavy. 585 s.
21. Shtremel M.A. Razrusheniye v 2 kn. [Destruction in 2 book] M.: MISiS, 2014. Kn. 1. Razrusheniye materiala. 670 s.