Articles
The process of electroslag remelting under pressure (PESR), as well as classical electroslag remelting (ESR), provides refining of the remelted metal. However, the fundamental difference between PESR for the creation of high-nitrogen steels with super-equilibrium nitrogen content is alloying of steel with nitrogen in the process of remelting with nitrogen-containing ligatures (silicon nitride, nitrated ferrochrome, manganese nitrided). Depending on the class of steels, the amount of nitrogen absorbed during remelting can be up to 1% by weight. Partially, nitrogen can be introduced when smelting the consumable electrode, but its solubility without creating excess pressure is severely limited. Increase the solubility of nitrogen in steels is possible with the help of an excess pressure of nitrogen gas above the melt and subsequent crystallization of the ingot. Thus the quality of the ingot-PESR (presence or absence of metallurgical defects) depends on the initial billet – a consumable electrode, which is directly related to the quality of the technological process and remelting change modes. One of the criteria for the quality of the consumable electrode is the presence of pores, their dimensions, and the total volume fraction. It was established experimentally that introduction of nitrogen in the melting in vacuum furnaces, providing a tight consumable electrode can be ignored, and the parameters affecting the stability modes when PESR: pore size of the gas should not exceed 500 microns, and their volume fraction – less than 0.25%. The coefficients of nitrogen doping of consumable electrodes during smelting are determined, which ensure that there is no coarse gas porosity – 0.5≤K≤0.8. The requirements imposed on the consumable electrode: chemical composition of the electrode should provide the chemical composition of the steel after PESR with the input of the alloying elements; the consumable electrode must prov
2. Rashev TS. Vysokoazotistye stali. Metallurgiya pod davleniem [High-nitrogen steels. Metallurgy under pressure]. Sofiya: Prof. Marin Drinov, 1995. 272 s.
3. Energietechnik Еssen. Сronidur30. Available at: http://www.energietechnik-essen.de (accrssed: August 21, 2018).
4. Berns H. High Interstitial Stainless Austenitic Steels, Part I: Constitution, Heat Treatment, Properties, Applications // Proceedings of 10th International Conference on High Nitrogen Steels. 2009. P. 129–139.
5. Stein G., Hucklenbroich I., Wagner M. P200 – a new austenitic nitrogen steel for power generating equipment// Material Science Forum. 1999. Vol. 318–320. Р. 167–174.
6. Krylov S.A., Evgenov A.G., Shherbakov A.I., Makarov A.A. Novaya elektroshlakovaya pech pod davleniem DEShP-0,1: osvoenie i perspektivy razvitiya [New pressure electroslag remelting furnace PESR-0,1: development and prospects for improvement] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 04. Available at: http://www.viam-works.ru (accessed: May 03, 2018). DOI: 10.18577/2307-6046-2016-0-5-4-4.
7. Krylov S.A., Shcherbakov A.I., Makarov A.A., Tonysheva O.A. Snizhenie soderzhaniya nemetallicheskikh vklyuchenij v korrozionnostojkoj azotsoderzhashchej stali [Reduction of non-metallic inclusions in the nitrogen-containing corrosion-resistant steels] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №5 (53). St. 01. Available at: http://www.viam-works.ru (accessed: May 08, 2018). DOI: 10.18577/2307-6046-2017-0-5-1-1.
8. Krylov S.A., Evgenov A.G., Makarov A.A., Tonysheva O.A. Slitok elektroshlakovogo pereplava pod davleniem [The ingot PESR] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3 (51). St. 03. Available at: http://www.viam-works.ru (accessed: May 10, 2018). DOI: 10.18577/2307-6046-2017-0-3-3-3.
9. Rigina L.G., Vasilev Ya.M., Dub V.S., Kolpishon E.Yu., Afanasev S.Yu. Legirovanie stali azotom [The alloying of steel with nitrogen] // Spetselektrometallurgiya. 2005. №2. S. 14–21.
10. Lysenkova E.V. Povyshenie tochnosti raschetov rastvorimostej azota i nitrida titana v rasplavakh na osnove zheleza. Primenenie k stalyam, legirovannym azotom i titanom: dis. … kand. tekhn. nauk [Increase the accuracy of calculations of the solubilities of nitrogen and titanium nitride in iron-based melts. Application to steels doped with nitrogen and titanium: thesis, Cand. Sc. (Tech.)]. M., 2015. S. 19–20.
11. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTS RF po realizatsii «Strategicheskikh napravlenij razvitiya materialov i tekhnologij ikh pererabotki na period do 2030 goda» // Aviatsionnye materialy i tekhnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials are the basis of Russia's innovative modernization] // Metally Evrazii. 2012. №3. S. 10–15.
13. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs materials of a new generation] // Redkie zemli. 2014. №3. S. 8–13.
14. Potak Ya.M. Vysokoprochnye stali. Ser.: Uspekhi sovremennogo metallovedeniya [High-strength steels. Ser.: Advances in modern metal science]. M.: Metallurgiya, 1972. S. 142.
15. Shved F.I. Slitok vakuumnogo dugovogo pereplava [Ingot vacuum arc remelting]. Chelyabinsk: Izd-vo Tatyany Lure, 2009. S. 289–295.
This article is a research paper. The article studies the process of filtration of a high- temperature nickel alloy against harmful impurities: sulfur, silicon, phosphorus, oxygen; as well as the possibility of refining high-temperature nickel alloys by adding yttrium has been studied.
The article consists of four parts.
The introduction refers to the use of high-temperature nickel alloys as parts of jet and turbojets, examples of the use of blades for engines made of heat-resistant nickel alloys, as well as their advantages. The influence of impurities on the properties of high-temperature nickel alloys is described. The process of filtration of the ZhS36 alloy by the addition of lanthanum is considered, the effect of variable sulfur content on the durability of the material is given.
In the methodological part, the chemical composition of the alloy under investigation is presented, the used motods for making samples of a high-temperature nickel alloy and a yttrium- based specimen are described, the methods of investigation with a scanning electron microscope and an X-ray diffractometer.
In the main part of the article the results of investigations are presented, microstructures of two samples of a high-temperature nickel alloy ZhS32 with different silicon content are described, a local elemental composition is made, as a result of which it is established that the impurities are mainly located near and in the pores of the material. The microstructure and elemental composition of the master alloy sample based on the yttrium compound with silicon Y5Si3 was also studied. As a result of the X-ray diffraction study, it was established that the master alloy sample contains 5 phases, three of which contain silicon. It is established that these phases are not refractory.
The final part of the article contains the mai
2. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviatsionnoj tekhniki [Main results and directions of development of materials for advanced aircraft technology] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 20–26.
3. Kablov E.N. Materialy novogo pokoleniya [Materials of a new generation] // Zashchita i bezopasnost'. 2014. №4. S. 28–29.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Arzamasov V.B., Volchkov A.N., Golovin V.A. i dr. Materialovedenie i tekhnologiya konstruktsionnykh materialov [Material Science and Technology of Structural Materials.]. M.: Akademiya, 2007. 538 s.
6. Stoyakina E.A., Dyagtereva A.G. Mekhanizm udaleniya sery i fosfora iz stali U8 filtratsiej rasplava cherez penokeramiku [Mechanism of removal of sulfur and phosphorus from steel U8 by melt filtration through foam ceramics] // Politekhnicheskij molodezhnyj zhurnal MGTU im. N.E. Baumana. 2017. №12. S. 37–40.
7. Smirnov L.A., Rovnushkin V.A., Oryshchenko A.S., Kalinin G.Yu., Milyuts V.G. Modifitsirovanie stali i splavov redkozemelnymi elementami. Soobshchenie 1 [Modification of steel and alloys by rare earth elements. Message 1] // Metallurg. 2015. №11. S. 57–63.
8. Golubovskij E.R., Svetlov I.L., Petrushin N.V., CHerkasova S.A., Volkov M.E. Malotsiklovaya ustalost' monokristallov zharoprochnykh nikelevykh splavov pri povyshennykh temperaturakh [Low-cycle fatigue of single crystals of high-temperature nickel alloys at elevated temperatures] // Deformatsiya i razrushenie materialov. 2009. №8. S. 41–48.
9. Petrushin N.V., Elyutin E.S., Chabina E.B., Timofeeva O.B. O fazovykh i strukturnykh prevrashcheniyakh v zharoprochnykh renijsoderzhashchikh splavakh monokristallicheskogo stroeniya [About phase and structural transformations in heat-resistant rhenium-containing alloys of a single-crystal structure] // Litejnoe proizvodstvo. 2008. №7. S. 2–6.
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnykh aviatsionnykh GTD [Foundry heat-resistant nickel alloys for advanced aircraft GTE] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Morozova G.I. Zakonomernost formirovaniya khimicheskogo sostava γ'/γ-matritsy mnogokomponentnykh nikelevykh splavov [Regularity in the formation of the chemical composition of the γ'/γ matrix of multicomponent nickel alloys] // DAN SSSR. 1991. T. 320. №6. S. 1413–1416.
13. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
14. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Issledovanie sery i fosfora v litejnykh zharoprochnykh nikelevykh splavakh i razrabotka effektivnykh sposobov ikh rafinirovaniya [Investigation of sulfur and phosphorus in foundry heat-resistant nickel alloys and development of effective methods for their refining] // Tekhnologiya metallov. 2015. №12. S. 2–9.
15. Kablov D.E., Sidorov V.V., Puchkov Yu.A. Osobennosti diffuzionnogo povedeniya primesej i rafiniruyushhih dobavok v nikele i monokristallicheskih zharoprochnyh splavah [Diffusion behavior features of impurities and microalloying additives in nickel and single crystal superalloys] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 24–31. DOI: 10.18577/2071-9140-2016-0-1-24-31.
16. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: August 13, 2018). DOI: 10.18577/2307-6046-2015-0-12-2-2.
17. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie poverhnostno-aktivnyh primesej i dobavki lantana na strukturu i svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36 [Influence of surface-active impurities and lanthanum on structure and properties of singlecrystal nickel superalloy ZhS36] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 02. Available at: http://www.viam-works.ru (accessed: August 13, 2018). DOI: 10.18577/2307-6046-2017-0-4-2-2.
18. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
19. Shalin R.E., Svetlov I.L., Kachanov E.B. Monokristally nikelevykh zharoprochnykh splavov [Single crystals of nickel refractory alloys]. M.: Mashinostroenie, 1997. 336 s.
The increase in let-out volumes and especially dimensions оf products from composite, has demanded search of cheaper alternatives to avtoklave way of manufacturing of products. Ways of liquid vacuum formation dry preformеs impregnation binding have appeared the cheapest. The arisen problems of receiving high-quality products vacuum formation have led to development semi-pregs, representing fabrics or cordlike fillers which are duplicated with film of the binding. Many manufacturing firms of materials include in the nomenclature of the materials wide ruler semi-pregs. In work researches of processes of receiving polymeric composite materials (PСM) on the basis of developed semi-pregs by means of their formation by means of atmospheric pressure instead of autoclave for manufacturing of load bearing structures are considered. The interrelation of porosity of plastics, permeability, and some other parameters for the purpose of receiving PCM with minimal porosity and properties, approximate to avtoklave formation is investigated PСM.
2. Dushin M.I., Khrulkov A.V., Mukhametov R.R. Issledovanie tekhnologicheskikh parametrov avtoklavnogo formovaniya detalej iz polimernykh kompozitsionnykh materialov [Research of technological parameters of autoclave molding of parts from polymer composite materials] // Klei. Germetiki. Tekhnologii. 2013. №8. S. 12–15.
3. Dushin M.I., Chursova L.V., Khrulkov A.V., Kogan D.I. Osobennosti izgotovleniya PKM metodom vakuumnoj infuzii [Peculiarities of manufacturing PCM by the method of vacuum infusion] // Voprosy materialovedeniya. 2013. №3. S. 33–40.
4. Dushin M.I., Muhametov R.R., Platonov A.A., Merkulova Yu.I. Issledovanie filtracionnyh harakteristik armiruyushhih napolnitelej i svyazuyushhih pri razrabotke tehnologii bezavtoklavnogo formovaniya polimernyh kompozicionnyh materialov [Study of filtration characteristics of reinforcing fillers and binders in the development of non-out-autoclave technology for polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №2. S. 22–25.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N. Materialy novogo pokoleniya [Materials of a new generation] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
7. Kablov E.N. Kompozity: segodnya i zavtra [Composites: Today and Tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
8. Grunenfelder L.K., Nutt S.R. Void formation in composite prepregs – effect of dissolved moisture // Composites Science Technologies. 2010. Vol. 70. P. 2304–2309.
9. Ridgard C. Out of Autoclave Composite Technology for Aerospace, Defense and Space Structures // International SAMPE Symposium. 2009. P. 134–136.
10. Thomas S., Bongiovanni C., Nutt S.R. In Situ Estimation of through-Thickness Resin Flow using Ultrasound // Composites Science and Technology. 2008. Vol. 68. No. 15–16. P. 3093–3098.
11. Donetskiy K.I., Dushin M.I., Mischun M.I., Sevastianov D.V. Nekotorye osobennosti primeneniya semipregov dlya vakuumnogo formovaniya PKM (obzor) [Some features of semi-pregs application for vacuum formation of polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №12 (60). St. 08. Available: http://www.viam-works.ru (accessed: July 31, 2018). DOI: 10.18577/2307-6046-2017-0-12-8-8.
12. Thorfinnson B., Biermann T.F. Production of Void Free Composite Parts without Debulking // International SAMPE Symposium. 1986. P. 71–74.
13. Thorfinnson B., Biermann T.F. Degree of Impregnation of Prepregs: Effects on Porosity // International SAMPE Symposium. 1987. P. 28–32.
14. Boyd J. Tutorial: Vacuum Bag Only Composite Part Manufacturing // International SAMPE Symposium. 2003. P. 7–10.
15. Arafath A.R.A., Fernlund G., Poursartip A. Gas Transport in Prepregs: Model and Permeability Experiments // ICCM-17. 2009. P. 43–47.
16. Dushin M.I., Doneckij K.I., Karavaev R.Yu. Ustanovlenie prichin obrazovaniya poristosti pri izgotovlenii PKM [Identification of the reasons of porosity formation when manufacturing composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6 (42). St. 08. Available at: http://www.viam-works.ru (accessed: July 31, 2018). DOI: 10.18577/2307-6046-2016-0-6-8-8.
17. Campbell F.C., Mallow A.R., Browning C.E. Porosity in Carbon Fiber Composites an Overview of Causes // Journal of Advanced Materials. 1995. Vol. 26. No. 4. P. 18–33.
18. Kardos J.L. Void Growth and Dissolution // Processing of Composites. 2000. Vol. 1. P. 182–206.
19. Zingraff L. Void Formation and Transport during Liquid Moulding and Forming of Reactive Thermoplastic Composites: PhD Thesis. École polytechnique fédérale de Lausanne (EPFL), 2004. 231 p.
20. Lykov A.V. Yavleniya perenosa v kapillyarno-poristykh telakh [Transport phenomena in capillary-porous bodies]. M.: Gos. izd-vo tekhniko-teoretich. liter., 1954. 472 s.
21. Kavkazov Yu.L. Vzaimodejstvie kozhi s vlagoj [Interaction of the skin with moisture]. M.: Gizlegprom, 1952. 320 s.
22. Rudobashta S.P. Massoperenos v sistemakh s tverdoj fazoj [Mass transfer in systems with a solid phase]. M.: Khimiya, 1980. 248 s.
23. Putnam J.W., Seferis J.C. Prepreg Gas Permeation as a Function of Fiber Orientation and Aging Time // Journal of Advanced Materials. 1995. Vol. 26. No. 3. P. 35–41.
24. Gaskell D.R. An Introduction to Transport Phenomena in Materials Engineering. Macmillan Publishing Company, 1992. 143 p.
25. Civan F. Porous Media Transport Phenomena. John Wiley & Sons, 2011. 448 p.
26. Gas Transport in Porous Media / Eds. by S.W. Webb, C.K. Ho. Springer, 2006. 303 p.
27. Louis B., Hsiao K., Fernlund G. Gas Permeability Measurements of Out of Autoclave Prepreg MTM45-1/CF2426A // International SAMPE Symposium. Seatle, 2010. P. 342–354.
28. Xin C., Li M., Gu Y. et al. Measurement and Analysis on in-Plane and through-Thickness Air Permeation of Fiber/Resin Prepreg // Journal of Reinforced Plastics and Composites. 2011. Vol. 30. No. 17. P. 1467–1479.
29. Tavares S.S., Michaud V., Mеnson J.A.E. Assessment of semi-impregnated fabrics in honeycomb sandwich structures // Composites Applied Science Manufactory. 2010. Vol. 41. P. 8–15.
30. Ahn K.J., Seferis J.C., Price J.O., Berg A.J. Permeation Measurements Through Prepreg Laminates // Sampe Journal. 1991. Vol. 27. No. 6. P. 19–25.
31. Centea T., Hubert P. Measuring the impregnation of an out-of-autoclave prepreg by micro-CT // Composites Science and Technology. 2011. Vol. 71. P. 593–599.
32. Gutowski T.G., Cai Z., Bauer S. et al. Consolidation experiments for laminate composites // Journal of Composites Materials. 1987. Vol. 21 (7). P. 650–669.
33. Cender T.A., Simacek P., Advani S.G. Resin film impregnation in fabric prepregs with dual length scale permeability // Composites: Part A. 2013. Vol. 53. P. 118–128.
34. Simacek P., Neacsu V., Advani S.G. A phenomenological model for fiber tow saturation of dual scale fabrics in liquid composite molding // Polymer Composites. 2010. Vol. 31. P. 1881–1889.
35. Hwang W.R., Advani S.G. Numerical simulations of Stokes–Brinkman equations for permeability prediction of dual scale fibrous porous media // Physical Fluids. 2010. Vol. 22. P. 113–115.
36. Zhou F., Alms J., Advani S. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions // Composition Science Technologies. 2008. Vol. 68. P. 699–708.
37. Zhou F., Kuentzer N., Simacek P. et al. Analytic characterization of the permeability of dual-scale fibrous porous media // Composition Science Technologies. 2006. Vol. 66. P. 2795–2803.
38. Umemoto Y., Gouke M., Mashima Y. Out of autoclave material «semi-preg». Technical development of resin transfer molding // Proceedings of the 18th International Conference on Composite materials (Korea, August 21–26, 2011). 2011. Paper No. TH05-2.
39. Out-of-autoclave prepregs: Hype or revolution? // СompositesWorld. Available at: http://www.compositesworld.com/articles/out-of-autoclave-prepregs-hype-or-revolution (accessed: July 31, 2018).
At process research PEO on alloy of ML5 it has become clear that on properties of covering the great influence renders alloy surface condition. Research cross sample ML5 alloy with PEO the covering received on different sites of sample, having phase Mg17Al12 and phase AlхMnу inclusions, has shown that close aluminum - containing phase is created the covering, having serious defects and through time.
This phenomenon speaks that at early stage of process of PEO the tight barrier oxide layer on aluminum - the containing phases Mg17Al12 and AlхMnу is created smaller thickness and with smaller electroresistance. Upon transition to the following stage of process of PEO being formed as a result of oxide layer breakdown microplasma discharges are localized on energetically favorable places of covering what sites with smaller electroresistance of barrier oxide layer, that is on the phases Mg17Al12 and AlхMnу are. The increase in quantity of microplasma discharges in one place leads to strong warming up of oxide layer that in turn leads to its escalating destruction and formation of through defect on the phases Mg17Al12 and AlхMnу and in adjacent areas. Localization of microplasma discharges on the phases Mg17Al12, AlхMnу and near them in the course of PEO leads to the selection oxidation of surface and formation of volume defects of PEO of covering.
For decrease in deficiency preliminary chemical treatment of the magnesium alloy, allowing to exclude electrochemical heterogeneity of surface of alloy at the expense of etching of phases or formation of insulation layer is offered.
The conducted electrochemical researches&
2. Volkova E.F. Analiz i itogi Mezhdunarodnoj konferencii «Magnij–21. Novye gorizonty» (obzor) [The analysis and results of the International conference «Magnesium–21. Broad horizons» (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 86–94. DOI: 10.18577/2071-9140-2016-0-1-86-94.
3. Volkova E.F., Mostyaev I.V. Vliyanie nekotorykh primesej na strukturu, fazovyj sostav i svojstva magnievykh splavov, soderzhashchikh redkozemelnye element [Influence of some impurities on the structure, phase composition and properties of magnesium alloys containing rare-earth elements] // Metally. 2018. №1. S. 64–71.
4. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
5. Kozlova A.A., Kondrashov Je.K. Sistemy lakokrasochnyh pokrytij dlja protivokorro-zionnoj zashhity magnievyh splavov [Systems of paint coatings for anticorrosive protection of magnesium alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 44–47. DOI: 10.18577/2071-9140-2014-0-2-44-47.
6. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviatsionnoj tekhniki [Main results and directions of development of materials for advanced aircraft technology] // 75 let. Aviacionnye materialy. Izbrannye trudy VIAM 1932–2007: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 20–26.
7. Darband B.G., Aliofkhazraei M., Hamghalam P., Valizade N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications // Journal of Magnesium and Alloys. 2017. Vol. 5. P. 74–132.
8. Vladimirov B.V., Krit B.L., Morozova N.V., Epelfeld A.V. Issledovanie svojstv modifitsirovannogo magnievogo splava MA21, prednaznachennogo dlya ispolzovaniya v biosensornykh sistemakh [Investigation of the properties of the modified magnesium alloy MA21, intended for use in biosensor systems] // Biotekhnologiya i kachestvo zhizni: materialy Mezhdunar. nauch.-praktich. konf. 2014. S. 179–180.
9. Kozlov I.A., Vinogradov S.S., Naprienko S.A. Struktura i svojstva PEO-pokrytiya, formiruemogo na splave ML5 v silikatno-fosfatnom elektrolite [Structure and properties of the PEO coating formed on the ML5 alloy in a silicate-phosphate electrolyte] // Korroziya: materialy, zashchita. 2017. №8. S. 35–41.
10. Rakoch A.G., Gladkova A.A., Schneider O. i dr. Vliyanie katodnykh mikrorazryadov na skorost' obrazovaniya i stroenie pokrytij, formiruemykh na magnievom splave metodom plazmenno-elektroliticheskogo oksidirovaniya [Influence of cathode microdischarges on the rate of formation and structure of coatings formed on a magnesium alloy by the plasma-electrolytic oxidation method] // Perspektivnye materialy. 2014. №5. S. 59–64.
11. Vladimirov B.V., Krit B.L., Lyudin V.B., Morozova N.V., Suminov I.V., Epelfeld A.V. Vliyanie sostava elektrolita na svojstva splava MA2-1 pri mikrodugovom oksidirovanii [Influence of the composition of electrolyte on the properties of the alloy MA2-1 with microarc oxidation] // Izvestiya Tomskogo politekhnicheskogo universiteta. 2014. T. 324. №2. S. 143–148.
12. Felix Tjiang, Li-Wei Ye, Yan-Jang Huang et al. Effect of processing parameters on soft regime behavior of plasma electrolytic oxidation of magnesium // Ceramics International. 2017. Vol. 43. P. s567–s572.
13. Kozlov I.A., Vinogradov S.S., Kulyushina N.V. Vliyanie formy polyarizuyushchikh impulsov na strukturu i zashchitnye svojstva PEO-pokrytiya, formiruemogo na splave ML5 [Influence of the form of the polarizing impulses on structure and protective properties PEO coating formed on alloy ML5] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №8 (56). St. 12. Available at: http://www.viam-works.ru (accessed: April 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-12-12.
14. Kozlov I.A., Vinogradov S.S., Kulyushina N.V., Kutyrev A.E., Pastukhov A. S. Vliyanie sootnosheniya amplitud polyarizuyushchego toka na zashchitnye svojstva PEO-pokrytiya, formiruemogo na splave ML5 [Influence of the polarization current amplitude correlation on the protective properties of the PEO coating formed on the ML5 alloy] // Korroziya: materialy, zashchita. 2016. №11. S. 40–48.
15. Kozlov I.A., Kulyushina N.V., Kutyrev A.E. Vliyanie formy polyarizuyushchego toka na zashchitnye svojstva plazmennogo elektroliticheskogo pokrytiya na splave ML5 [Influence of the shape of the polarizing current on the protective properties of a plasma electrolytic coating on an ML5 alloy] // Materialovedenie. 2015. №9. S. 25–31.
16. Olejnik S.V., Rudnev V.C., Kuzenkov Yu.A. i dr. Zashchitnye svojstva napolnennykh trialkoksisilanami PEO-pokrytij na magnievom splave MA-8 [Protective properties of PEO coatings filled with trialkoxysilanes on magnesium alloy MA-8] // Korroziya: materialy, zashchita. 2016. №12. S. 29–33.
17. Olejnik S.V., Rudnev V.C., Kuzenkov YU.A. i dr. Ingibirovannye PEO-pokrytiya na magnievom splave MA-8 [Inhibited PEO coatings on magnesium alloy MA-8] // Korroziya: materialy, zashchita. 2015. №10. S. 39–44.
18. Mingo B., Arrabal R., Mohedano M. et al. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy // Applied Surface Science. 2018. Vol. 433. P. 653–667.
19. Chen Y., Yang Y., Zhang W. et al. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy // Journal of Alloys and Compounds. 2017. Vol. 718. P. 92–103.
20. Kukhling Kh. Spravochnik po fizike. Per. s nem. [Handbook of Physics. Trans from Germ.] M.: Mir, 1982. 475 s.
One of widely applied protecting coatings especially in the conditions of contact with oils and fuel is the chemical oxide coating put on such details, as gear wheels, toothed wheels, axes, plugs, rods, rods, etc. The chemical oxide coating on carbon steel represents the thin film which is easily destroyed at mechanical influences. The purpose of work was development of technology of local repair of chemical oxide coating on carbon steel with use of the solution which is not containing substances of the 1st class of danger, and without necessity of its heating.
Researches of protective properties of the films received as a result of processing of steel details in oxalic solutions, containing persulfaty, tiosulfaty and sulfites (fig. 1), in solution of the tannin with addition of phosphoric acid, and also in the acidified solutions of oxidizers (permanganate, nitrite, nitrate, tungstate and vanadate of alkali metal) are conducted. Tests of the received films by drop method (solution of copper sulfate of 20 g/l) have not allowed to recommend any of the studied solutions for repair of chemical oxide coating: time before emergence of contact copper on surface there were no more than 20 с (tab. 1-5).
The film of satisfactory quality has been received at the cathode surface treatment of carbon steel by rubbing method by marker with molibdenum solution. Detail with the damaged covering connected to negative pole of source of current, the free end of the corrosion-proof wire fixed in marker, – to positive pole of source of current. At the current density of 5-10 A/sq.dm the film of black color (fig. 2) with protective ability more than 40 с (tab. 6) that above protective ability of chemical oxide coating is formed.
Simplicity of hardware registration of process and availability of chemicals along with positive results of resear
2. Dobromyslov A.N. Diagnostika povrezhdenij zdanij i inzhenernykh sooruzhenij [Diagnosis of damage to buildings and engineering structures]. M.: ASV, 2006. 256 s.
3. Kablov E.N. Shestoj tekhnologicheskij uklad [The Sixth Technological Structure] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnye pokrytiya dlya zashchity ot korrozii uglerodistykh stalej [Perspective coatings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.
7. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Zashchita ot korrozii uglerodistykh stalej [Protection against corrosion of carbon steel] // Aviacionnye materialy i tehnologii. 2017. №S. S. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
8. Galvanicheskie pokrytiya v mashinostroenii: spravochnik v 2 t. / pod red. M.A. Shlugera, L.D. Toka [Galvanic coatings in mechanical engineering: a reference book in 2 vil. / ed. By M.A. Schluger, L.D. Tok]. M.: Mashinostroenie. 1985. T. 2. 1985. S. 57–60.
9. Azhogin F.F., Belenkij M.A., Gal I.E. i dr. Galvanotekhnika [Galvanics]. M.: Metallurgiya, 1987. S. 484–485.
10. Spravochnoe rukovodstvo po galvanotekhnike / pod red. V.I. Lajnera; per. s nem. N.B. Stsiborovskoj [Reference guide to electroplating / ed. by V.I. Lajner; trans. From Germ. by N.B. Stsiborovskaya]. M.: Metallurgiya. 1972. Ch. III: Neorganicheskie pokrytiya. Okraska metallov. Korroziya. Ispytanie pokrytij. 423 s.
11. Sukhotin A.N. Fizicheskaya khimiya passiviruyushchikh plenok na zheleze [Physical chemistry of passivating films on iron]. L.: Khimiya, 1989. 320 s.
12. Nikitin M.K., Melnikova E.P. Khimiya v restavratsii [Chemistry in restoration]. L. Khimiya, 1990. 304 s.
13. Shemakhanskaya M.S., Lemenovskij D.A., Lakshin B.V., Brusova G.P. Novye metody v restavratsii arkheologicheskogo metalla [New methods in the restoration of archaeological metal] // Vestnik restavratsii muzejnykh tsennostej. 2008. №1 (11). S. 64.
14. Lavorko P.K. Oksidirovanie metallov [Oxidation of metals]. Kiev: Mashgiz, 1951. S. 38–41.
15. Grilikhes S.YA., Tikhonov K.I. Elektroliticheskie i khimicheskie pokrytiya. Teoriya i praktika [Electrolytic and chemical coatings. Theory and practice]. L.: Khimiya. 1990. S.160–161.
16. Salakhova R.K., Ilin V.A., Semenychev V.V., Tyurikov E.V. Izbiratelnoe nanesenie zashchitnykh elektrokhimicheskikh pokrytij [Elective deposition of protective electrochemical coatings] // Galvanotekhnika i obrabotka poverkhnosti. 2008. T. XVI. №4. S. 36–40.
The use of modern materials in the design of aircraft gas turbine engines (AGTE) is possible only if the material has undergone a variety of strength tests. The types and scope of the tests are established by normative and technical documentation. When evaluating the strength of materials, their resistance to fatigue loading is of great importance. The following characteristics of fatigue are to be assessed: the resistance of high- and low-cycle fatigue (HCF and LCF), as well as the fatigue crack growth rate (FCGR). For heat-resistant steels and alloys used in the AGTE design, these characteristics are determined at various temperatures of the operating interval.
When carrying out mechanical tests, three factors determine the decisive influence on the determined characteristics: the accuracy of the testing machine, the technology of sample production, in particular, the quality of the surface layer, as well as the properties of the material being studied. The influence of the first two factors is discussed in detail in this article.
To carry out a variety of fatigue tests, universal servo-hydraulic testing machines of the LFV-100 type of the Swiss company Walter+bai with high rigidity of construction are used. They are a two-column structure that can be equipped with different grips and represents the possibility of carrying out all the fatigue tests mentioned above. The machine provides high alignment in the loading (deformation) circuit of the samples, which is a very important positive characteristic, as well as the possibility of cyclic testing of samples of metals and alloys in the temperature range from room temperature to 1200°C. The control of the testing process is carried out with specialized computer programs that enable the conduct of mechanical research.
LCF is one of the main characteristics of strength for&
2. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and technologies of VIAM for «Aviadvigatel»] // Permskie aviatsionnye dvigateli: inform. byul. 2014. №S. C. 43–47.
3. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii: sb. nauch.-informats. mater. 3-e izd. [Tendencies and guidelines for Russia's innovative development: collection of scientific-information materials]. M.: VIAM, 2015. 720 s.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: United Kingdom at University Press, 2006. 372 p.
6. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Sravnitelnyj analiz rossijskogo i zarubezhnyh standartov ispytanij na ustalost metallov [Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 11. Available at: http://www.viam-works.ru (accessed: June 04, 2018). DOI: 10.18577/2307-6046-2014-0-9-11-11.
7. Kablov E.N., Grinevich A.V., Erasov V.S. Kharakteristiki prochnosti metallicheskikh aviatsionnykh materialov i ikh raschetnye znacheniya [Characteristics of the strength of metallic aviation materials and their calculated values] // 75 let. Aviacionnye materialy. Izbrannye trudy VIAM 1932–2007: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 370–379.
8. Gorbovets M.A., Belyaev M.S., Khodinev I.A., Lukyanova M.I. Issledovanie MTSU zharoprochnykh splavov pri «zhestkom» tsikle nagruzheniya [Investigation of ISC of high-temperature alloys under a «hard» loading cycle] // Tsvetnye metally. 2017. №2. S. 91–95.
9. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
10. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologij proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [Priority directions of the development of technologies for the production of heat-resistant materials for aircraft engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
11. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
12. Gerov M.V., Vladislavskaya E.Yu., Terentev V.F. i dr. Issledovanie ustalostnoj prochnosti splava Ti–6Al–4V, poluchennogo metodom selektivnogo lazernogo plavleniya [Investigation of the fatigue strength of Ti-6Al-4V alloy obtained by the selective laser melting method] // Deformatsiya i razrushenie materialov. 2016. №5. S. 14–20.
13. Lutsenko A.N., Perov N.S., Chabina E.B. Novye etapy razvitiya Ispytatelnogo tsentra [The new stages of development of Testing Center] // Aviacionnye materialy i tehnologii 2017. №S. S. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
14. Kablov E.N., Morozova L.V., Grigorenko V.B., Zhegina I.P., Fomina M.A. Issledovanie vliyaniya korrozionnoj sredy na protsess nakopleniya povrezhdenij i kharakter razrusheniya konstruktsionnykh alyuminievykh splavov 1441 i V-1469 pri ispytaniyakh na rastyazhenie i malotsiklovuyu ustalost [Investigation of the influence of the corrosive environment on the process of accumulation of damages and the nature of destruction of structural aluminum alloys 1441 and B-1469 in tensile tests and low cycle fatigue] // Materialovedenie. 2017. №1. S. 41–48.
15. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
16. Grishko V.G., Aleksyuk M.M., Melent'eva V.B. Metodika otsenki kachestva avtomatizirovannykh sistem issledovaniya mekhanicheskikh svojstv materialov i elementov konstruktsij [A technique for assessing the quality of automated systems for studying the mechanical properties of materials and structural elements] // Problemy prochnosti. 1978. №2. S. 119–122.
Tests for loss of stability of samples from an alloy 1441 with various speeds of deformation which did not show dependence of critical force of loss of stability on speed of loading of a sample are carried out.
Calculations on loss of stability of homogeneous plates of constant thickness with the jammed cross-section edges are executed. Calculation of critical efforts is executed analytically on formulas and a method of final elements on the basis of bifurcate statement of a task with use of the program ANSYS Mechanical APDL complex.
At comparison of experimental data with the results received on a formula for calculation of stability of plates, the difference with calculation was in the range of 25–37%. At comparison with Euler's formula results of experiment differed from settlement for 18–30%.
The divergence in settlement and experimental values of critical force of loss of stability of samples speaks in sensitivity of this characteristic to geometry of a sample which always has some initial curvature.
Values of critical force of loss of stability of the plates, received by a method of final elements in the program ANSYS complex, exceed the values received on a formula of Euler for cores, but it is less than results of calculations on a formula for plates.
Without Puasson's factor results of numerical calculations of MKE correspond to the results received on a formula of Euler. With increase in factor of Puasson difference of results numerical and analytical calculations raises.
Change of thickness of a plate and the module of elasticity does not influence an error of calculations of MKE of rather analytical results.
Extent of coincidence of results of calculations&
2. Grigolyuk E.I., Selezov I.T. Mekhanika tverdykh deformiruemykh tel [Mechanics of solid deformable bodies. M .: VINITI, 1973. Vol. 5: Non-classical theories of vibrations of rods, plates and shells]. M.: VINITI, 1973. T. 5: Neklassicheskie teorii kolebanij sterzhnej, plastin i obolochek. S. 12–13.
3. Zhilin P.A. Ratsionalnaya mekhanika sploshnykh sred: ucheb. Posobie [Rational Mechanics of Continuous Media: textbook]. SPb.: Izd-vo Politekh. un-ta, 2012. S. 27–28.
4. Birger I.A., Mavlyutov R.R. Soprotivlenie materialov: ucheb. Posobie [Resistance of materials: Textbook]. M.: Nauka, 1986. 560 s.
5. Volmir A.S. Ustojchivost deformiruemykh system [Stability of deformable systems]. M.: Nauka, 1967. S. 20–21.
6. Timoshenko S.P. Ustojchivost sterzhnej, plastin i obolochek [Stability of rods, plates and shells]. M.: Nauka, 1974. 808 s.
7. Rabotnov Yu.N. Soprotivlenie materialov: ucheb. posobie dlya un-tov [Resistance of materials: textbook for universities]. M.: Fizmat, 1962. S. 301–302.
8. Feodosev V.I. Soprotivlenie materialov: ucheb. dlya vuzov [Resistance of materials: textbook for universities]. M.: MGTU im. N.E. Baumana, 1999. S. 513–516.
9. Aleksandrov A.V. Soprotivlenie materialov: ucheb. dlya vuzov [Resistance of materials: textbook for universities]. M.: Vysshaya shkola, 2003. S. 408–411.
10. Ponomarev S.D., Biderman V.L., Likhachev K.K. i dr. Raschety na prochnost v mashinostroenii [Calculations for strength in mechanical engineering]. M.: Gos. nauch.-tekhnich. izd-vo mashinostroit. lit., 1959 g. T. 3. S. 964–987.
11. Korotkin YA.I., Lokshin A.Z., Sivers N.L. Izgib i ustojchivost plastin i krugovykh tsilindricheskikh obolochek [Bending and stability of plates and circular cylindrical shells] // Stroitelnaya mekhanika korablya. L.: Sudpromgiz, 1955. S. 174–236.
12. Kurdyumov A.A., Lokshin A.Z., Iosifov R.A., Kozlyakov V.V. Stroitelnaya mekhanika korablya i teoriya uprugosti [Building mechanics of the ship and the theory of elasticity]. L.: Sudostroenie, 1968. S. 146–151.
13. Vajnberg D.V., Vajnberg E.D. Raschet plastin [Calculation of plates]. Kiev: Budivelnik, 1970. S. 286–297.
14. Astakhov M.F., Karavaev A.V., Makarov S.Ya., Suzdaltsev Ya.Ya. Spravochnaya kniga po raschetu samoleta na prochnost [Reference book on the calculation of the aircraft for durability]. M.: Oborongiz, 1954. S. 411–412.
15. Birger I.A., Panovko Ya.G. Prochnost. Ustojchivost. Kolebaniya: spravochnik [Strength. Stability. Oscillations: a reference book]. M.: Mashinostroenie, 1968. T. 3. S. 91–94.
16. Nemirovskij Yu.V., Gorynin G.L. Metod zhestkostnykh funktsij v zadachakh rascheta mnogoslojnykh sterzhnej i plit [The method of stiffness functions in the problems of calculating multilayer rods and plates] // Vestnik Nizhegorod. un-ta im. N.I. Lobachevskogo. 2011. №4 (4). S. 1654–1656.
17. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Y. Hybrid laminates for application in north conditions // Mechanics of Composite Materials. 2016. Vol. 52. No. 5. P. 973–990.
18. Oreshko E.I., Erasov V.S., Lutsenko A.N. Kriticheskie napryazheniya poteri ustojchivosti v gibridnykh sloistykh plastinakh [Critical stresses of loss of stability in hybrid laminated plates] // Materialovedenie. 2016. №11. S. 17–21.
19. Oreshko E.I., Erasov V.S., Lutsenko A.N. Osobennosti raschetov ustojchivosti sterzhnej i plastin [Calculation features of cores and plates stability] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 74–79. DOI: 10.18577/2071-9140-2016-0-4-74-79.
20. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
21. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
22. Romanovskij V.P. Spravochnik po kholodnoj shtampovke. 6-e izd., pererab. i dop. [Reference book on cold stamping. 6th ed., rev. and add.]. L.: Mashinostroenie, 1979. S. 52–53.
23. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Kablov E.N., Grinevich A.V., Erasov V.S. Kharakteristiki prochnosti metallicheskikh aviatsionnykh materialov i ikh raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 370–379.
25. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
26. Grishin V.I., Dzyuba A.S., Dudarkov Yu.I. Prochnost i ustojchivost elementov i soedinenij aviatsionnykh konstruktsij iz kompozitov [Strength and stability of elements and compounds of aviation structures from composites]. M.: Fizmatlit, 2013. S. 81–84.
Novel carbon fiber reinforced plastics VKU-27l, VKU-39, VKU-46 and glass reinforced plastics VPS-47/7781, VPS-48/7781, based on VST-1208, VSE-1212, VSR-3M resigns in initial state and after 12 month of weathering in warm and mild cold climate were investigated by means of profilometry, diffusion analysis and dynamical mechanical analysis. The influence of material composition on mean size of sample surface inhomogeneities, moisture content, diffusion coefficient, glass transition temperature of resigns was studied. The physicomechanical transitions were studied at the early stage of natural weathering.
2. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
3. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
4. Raskutin A.E. Konstruktsionnye ugleplastiki na osnove novykh svyazuyushchikh rasplavnogo tipa i tkanej PORCHER [Constructional carbon plastics based on new melt-type binders and PORCHER fabrics] // Novosti materialovedeniya: Nauka i tekhnika: elektron. nauch.-tehnich. zhurnal. 2013. №5. St. 01. URL:http://www.materialsnews.ru (accessed: June 25, 2018).
5. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: June, 25 2018).
6. Gulyaev I.N., Zelenina I.V., Raskutin A.E. Ugleplastiki na osnove uglerodnykh tkanej importnogo proizvodstva i rossijskikh rastvornykh svyazuyushchikh [Carbon-based plastics on the basis of carbon fabrics of imported production and Russian solvent binders] // Voprosy materialovedeniya. 2014. №1 (77). S. 116–125.
7. Chursova L.V., Tsybin A.I., Grebeneva T.A. Svyazuyushchie dlya polimernykh kompozitsionnykh i funktsionalnykh materialov. Predshestvuyushchij opyt, sovremennoe sostoyanie, perspektivy razvitiya [Matrix for polymeric composite and functional materials. Previous experience, modern state, development prospects] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June, 25 2018).
8. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: June, 25 2018).
9. Nikolaev E.V., Korenkova T.G., Shvedkova A.K., Valevin E.O. Issledovanie vliyaniya temperaturnykh faktorov na protsess stareniya novykh polimernykh kompozitsionnykh materialov dlya motogondoly aviatsionnogo dvigatelya [Research of an influence of temperature factors on aging of new polymer composite materials for aviation engine nacelle] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 12. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2015-0-3-12-12.
10. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 1. Issledo-vanie vliyaniya sorbirovannoy vlagi na epoksidnuyu matritsu i ugleplastik na ee osnove [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of influence of sorbirovanny moisture on epoxy matrix and carbon plastics on its basis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2015-0-12-11-11.
11. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis
Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2016-0-1-80-89.
12. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 3. Raschet energii aktivacii i teplovogo resursa polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 11. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2016-0-5-11-11.
13. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
14. Mishurov K.S., Pavlovskij K.A., Imametdinov E.SH. Vliyanie vneshnej sredy na svojstva ugleplastika VKU-27L [Environmental effects on properties of CFRP (carbon fiber reinforced plastic) VKU-27L] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3 (63). St. 07. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2018-0-3-60-67.
15. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbi-rovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: June, 25 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
16. Startsev V.O., Mahonkov A.Yu., Kotova E.A. Mehanicheskie svojstva i vlagostojkost' PKM s povrezhdeniyami [Mechanical properties and moisture resistance of PCM with damages] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 49–55. DOI: 10.18577/2071-9140-2015-0-S1-49-55.
17. Startsev V.O., Panin S.V., Startsev O.V. Sorption and diffusion of moisture in polymer composite materials with drop-weight impact damage // Mechanics of Composite Materials. 2016. Vol. 51. No. 6. P. 761–770.
18. Yakovlev N.O., Gulyaev A.I., Lashov O.A. Treshchinostoikost sloistykh polimernykh kompozitsionnykh materialov (obzor) [Crack firmness of layered polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №4 (40). St. 12. Available at: http://www.viam-works.ru (accessed: June, 25 2018) DOI: 10.185772307-6046-2016-0-4-12-12.
19. Perov N.S., Startsev V.O., Chutskova E.Yu., Gulyaev A.I., Abramov D.V. Svojstva ugleplastika na osnove politsianuratnogo svyazuyushchego posle ekspozitsii v razlichnykh estestvennykh i iskusstvennykh sredakh [Properties of carbon-based plastics on the basis of a polycyanurate binder after exposure in various natural and artificial environments] // Materialovedenie. 2017. №2. S. 3–9.
20. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
21. Panin S.V., Startsev V.O., Kurs M.G., Varchenko E.A. Razvitie metodov klimaticheskikh ispytanij materialov dlya mashinostroeniya i stroitelstva v GTSKI VIAM im. G.V. Akimova [Development of methods for the climatic testing of materials for engineering and construction in the CCM VIAM them. G.V. Akimova] // Vse materialy. Entsiklopedicheskij spravochnik. Kommentarii k standartam, TU, sertifikatam. 2016. №10. S. 50–61.
22. Startsev V.O., Kutsevich K.E., Khrulyov K.A., Molokov M.V. Prognozirovanie temperatury poverkhnosti obraztsov kompozitsionnykh materialov na osnove kleevykh prepregov pri eksponirovanii v klimaticheskikh usloviyakh [Prediction of surface temperature of samples of composite materials on the basis of adhesive prepregs under exposure in climatic conditions] // Klei. Germetiki. Tekhnologii. 2017. №9. S. 24–31.
23. Startsev V.O., Lebedev M.P., Frolov A.S. Izmerenie pokazatelej relefa poverkhnosti pri izuchenii stareniya i korrozii materialov. 1. Rossijskie i zarubezhnye standarty [Measurement of surface relief in the study of aging and corrosion of materials. 1. Russian and foreign standards] // Vse materialy. Entsiklopedicheskij spravochnik. 2018. №7. S. 32–38.
24. Startsev O.V., Mashinskaya G.P., YArtsev V.A. Molekulyarnaya podvizhnost' i relaksatsionnye protsessy v epoksidnoj matritse kompozita. 2. Effekty stareniya vo vlazhnom subtropicheskom klimate [Molecular mobility and relaxation processes in the composite epoxy matrix. 2. Effects of aging in a humid subtropical climate] // Mekhanika kompozitnykh materialov. 1984. №4. S. 593–597.
25. Startsev V.O., Lebedev M.P., Khrulev K.A. et al. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers // Polymer Testing. 2018. Vol. 65. P. 281–296.
26. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiber-reinforced plastics after their climatic aging // Doklady Physical Chemistry. 2014. Vol. 456. No. 1. P. 77–81.
27. Kablov E.N., Startsev O.V., Panin S.V. Moisture transfer in carbon-fiber-reinforced plastic with degraded surface // Doklady Physical Chemistry. 2015. Vol. 461. No. 2. P. 80–83.
The article describes the various methods of static loading constructive-like specimen of a hybrid welded wing-skin panel for determining of strength characteristics. It is determined that selection of optimal loading method is influenced by the necessity of structure element resistance force determination or zone hybrid elements, the shear stress level in the design, test equipment and test complexity possible. It is shown that for the hybrid and welded panel zone investigation, including the quality and stability bonding technology determination, is preferred by bending loading scheme.
Testing equipment is proposed in the form of two identical supports and a loading tip with rounded contact surfaces for three-point bending test of constructive-like specimen of a hybrid welded wing-skin panel with longitudinal stringers. Using the developed equipment allows bending loading for constructive-like specimen of a hybrid welded wing-skin panel both along the stringer and across. The sustainability of the constructive-like specimen hybrid wing-skin panels in three-point bending test using proposed testing equipment is provided by fixing the stringers and preventing the local crumpling and brittle fracture of the hybrid laminate strips during the test by reducing the contact stresses.
To proofing testing equipment, for bending test of constructive-like specimen of a hybrid welded wing-skin panel with longitudinal stringers and welded joint (friction stir welding technology), located along the stringer made of the extruded V-1469-T1 alloy profile, with reinforcing hybrid laminate strips (GRP based on hot-melt adhesive prepreg KMKS-2m.120-T64 and carbon fibre-reinforced plastic VKU-30K.R14535) were carried out in Gelendzik climatic testing center (GCTC). Its operability checked after the tests, according to the results that the local destru
2. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
3. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminij-litievyh splavov primenitelno k panelyam kryla samoleta [Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
4. Kablov E.N., Deev I.S., Efimov V.A., Kavun N.S. i dr. Vliyanie atmosfernykh faktorov i mekhanicheskikh napryazhenij na mikrostrukturnye osobennosti razrusheniya polimernykh kompozitsionnykh materialov [Influence of atmospheric factors and mechanical stresses on microstructural features of the destruction of polymer composite materials] // Sb. dokl. VII nauch. konf. po gidroaviatsii «Gidroaviasalon–2008». Gelendzhik, 2008. S. 279–286.
5. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
6. Lavrov A.V., Erasov V.S., Podzhivotov N.Yu., Avtaev V.V. Optimizaciya struktury gibridnyh kompozicionnyh materialov aviacionnogo naznacheniya [Optimization of structure of hybrid composition materials for aircraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11 (47). St. 07. Available at: http://www.viam-works.ru (accessed: May 31, 2018). DOI: 10.18577/2307-6046-2016-0-11-7-7.
7. Voropaev S.A., Semenchuk I.N., Vdovichenko A.G., Polinik A.N. Opredelenie ostatochnoj prochnosti trekhstringernoj klepanoj paneli s poperechnoj tsentralnoj treshchinoj v obshivke i razrushennym stringerom metodom konechnykh elementov s pomoshch'yu VK MSC.Marc [Determination of the residual strength of a three-stringer riveted panel with a transverse central crack in the skin and destroyed by a stringer by the finite element method with the help of VC MSC.Marc] // Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii. 2012. №53. S. 112–123.
8. State Standard 25.604–82. Raschety i ispytaniya na prochnost. Metody mekhanicheskikh ispytanij kompozitsionnykh materialov s polimernoj matritsej (kompozitov). Metod ispytaniya na izgib pri normal'noj, povyshennoj i ponizhennoj temperaturakh [Calculations and strength tests. Methods of mechanical testing of composite materials with a polymer matrix (composites). Bending test method at normal, high and low temperatures]. M.: Izd-vo standartov, 1983. S. 15.
9. State Standard 14019–2003. Materialy metallicheskie. Metod ispytaniya na izgib [Metallic materials. Bending test method]. M.: Izd-vo standartov, 2004. S. 12.
10. Bending test pressure head: pat. 204177670 U China. №CN20142711013U; publ. 25.02.15.
11. Device for preventing metal welded joint bending test samples from deviating in test process: pat. 203479602 U China. №CN20132512200U; pub. 12.03.14.
12. Tool for testing bending performance of carbon fiber composite material of T-shaped beam: pat. 204101369 U China. №CN20142654406U; pub. 14.01.15.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
15. Osnastka dlya ispytanij na izgib konstruktivno-podobnykh obraztsov gibridnoj paneli kryla: pat. 262685 C2 Ros. Federatsiya. №2015144207 [Rigging tool for constructively similar samples of a hybrid wing panel: pat. 262685 C2 Ros. Federation. №2015144207]; zayavl. 15.10.15; opubl. 18.07.17, Byul. №20. 10 s
The article presents advantages strain-controlled testing over force-controlled testing at static tension and repeated-static (fatigue) with a fixed deformation step. In addition to the traditional mechanical properties of materials (elastic modulus E, yield strength σ0,2, tensile strength σв, permanent deformation δ), obtained from the stress-strain diagram at tensile test, introduction of additional characteristics (plastic deformation rate , material damage function of the specimen ω, damage velocity ) subject to stress-strain diagram with strain-controlled testing is suggested. The stress-strain diagram relationship with the envelope of the line when the strain-controlled repeated-static testing with a fixed deformation step introduced. Approaches to determining fatigue characteristics using test data in this manner at fatigue testing are showing. For 1441-T1 and 1163-ATB alloys under repeated-static testing, a characteristic effect is observe. A plastic deformation in a certain deformation range is realize discretely at the same stresses (similar to the yield plateau during tension). For alloy B-1481-T1, there is no similar effect.
2. Makhutov N.A., Moskvitin G.V. Vliyanie uslovij nagruzheniya na nakoplenie povrezhdenij i razrushenie [Influence of loading conditions on damage accumulation and destruction] // Mashinostroenie: entsiklopediya. M.: Mashinostroenie, 2010. T. II-I: Fiziko-mekhanicheskie svojstva. Ispytaniya metallicheskikh materialov. S. 220–221.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoj tekhniki [Quality control of materials - guarantee of safety of operation of aviation equipment] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
4. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
5. Oreshko E.I., Erasov V.S., Lucenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trehmernom prostranstve σ–ε–t [Creation of the 3D stress-strain diagrams σ–ε–t] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 61–68. DOI: 10.18577/2071-9140-2017-0-1-61-68.
6. Erasov V.S., Bajramukov R.R., Nuzhnyj G.A. Opredelenie skorosti plasticheskoj deformatsii pri ispytanii na rastyazhenie [Determination of the rate of plastic deformation in the tensile test] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №5. S. 61–63.
7. Erasov V.S., Nuzhnyj G.A. Zhestkij tsikl nagruzheniya pri ustalostnykh ispytaniyakh [A rigid cycle of loading during fatigue tests] // Aviatsionnye materialy i tekhnologii. 2011. №4. S. 35–40.
8. Erasov V.S. Deformatsiya, napryazhenie, vremya pri ispytaniyakh na rastyazhenie [Deformation, stress, time for tensile tests] // Trudy TSAGI. 2015. №2751. S. 107–115.
9. Erasov V.S., Oreshko E.I., Lutsenko A.N. Povrezhdaemost materialov pri staticheskom rastyazhenii [Damageability of materials in tension testing] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 91–94. DOI: 10.18577/2071-9140-2015-0-4-91-94.
10. Erasov V.S., Nuzhnyj G.A., Grinevich A.V. Ob otsenke povrezhdaemosti metallicheskikh materialov metodami mekhanicheskikh ispytanij [On the evaluation of the damageability of metallic materials by the methods of mechanical testing] // Deformatsiya i razrushenie materialov. 2015. №3. S. 42–47.
11. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: March 31, 2018).
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. MMPDS-02. Metallic Materials Properties Development and Standardization. Atlantic City: Federal Aviation Administration, 2005. P. 1–36.
14. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminij-litievye splavy novogo pokoleniya i sloistye alyumostekloplastiki na ikh osnove [Aluminum-lithium alloys of a new generation and layered aluminum-plastic plastics on their basis] // Tsvetnye metally. 2016. №8 (884). S. 86–91.
15. Gorev B.V., Banshchikova I.A. K opisaniyu nispadayushchego uchastka krivoj deformirovaniya «napryazhenie–deformatsiya» po kineticheskim uravneniyam so skalyarnym parametrom povrezhdaemosti [To the description of the descending section of the strain-strain curve for kinetic equations with a scalar damping parameter] // Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Fiziko-matematicheskie nauki. 2008. №2 (17). S. 110–117.
16. Terentev V.F. Ustalost metallicheskikh materialov [Fatigue of metal materials]. M.: Nauka, 2003. S. 37–44.
17. Vildeman V.E., Tretyakov V.P. Ispytaniya materialov s postroeniem polnykh diagramm deformirovaniya [Tests of materials with construction of complete diagrams of deformation] // Problemy mashinostroeniya i nadezhnosti mashin. 2013. №2. S. 93–98.
The aim of research was to derive an electrolyte that could be used to obtain aluminum alloys corrosion damage, identical to one found in natural environments, by anodic dissolution. To determine the right choice of solution pitting corrosion factor was used. Pitting corrosion factor is the ratio of maximum pitting depth to the corrosion depth, derived from specific mass loss under the assumption of uniform dissolution. The power law relationship between specific mass loss and pitting corrosion factor was revealed: pitting corrosion factor is reduced when specific mass loss is increased. It is shown that anodic dissolution in a solution, containing nitrates, sulfites and chlorides, is resulting in corrosion damage with the same pitting corrosion factor as during the natural exposure. This solution can be used to imitate pitting corrosion on aluminum alloys in natural environments. However, in this solution the intergranular and/or exfoliation corrosion is not obtained. Two possible ways to achieve these types of corrosion were introduced: 1) increasing the chloride ions concentration, which reduces the pitting corrosion factor; 2) multistep anodic dissolution in solution, containing nitrates, sulfites and chlorides, first and then in sulfite-chloride solution in order to obtain intergranular and/or exfoliation corrosion. However, both of the approaches require further development of anodic dissolutions regimes and, therefore, further investigations.
2. Findlay S.J, Harrison N.D. Why aircraft fail // Materials Today. 2002. Vol. 5. No. 11. P. 18–25
3. Fejgenbaum Yu.M., Dubinskij S.V. Vliyanie sluchajnykh ekspluatatsionnykh povrezhdenij na prochnost' i resurs konstruktsii vozdushnykh sudov [Influence of accidental operational damage on the strength and lifetime of aircraft construction] // Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviatsii. 2013. №187. S. 83–91.
4. Sadkov V.V., Mirkin I.I. Obespechenie korrozionnoj stojkosti alyuminievykh konstruktsij v samoletakh «Tu» [Providing corrosion resistance of aluminum structures in Tu airplanes] // Tsvetnye metally. 2006. №11. S. 73–76.
5. Katsura A.V. Issledovanie vliyaniya korrozionnykh povrezhdenij na dolgovechnost elementov konstruktsij letatel'nykh apparatov: avtoref. dis. … kand. tekh. Nauk [Investigation of the effect of corrosion damage on the durability of structural elements of aircrafts: thesis, Cand. Sc. (Tech.)]. Krasnoyarsk, 2001. 15 s.
6. Semin A.V. Metod utochneniya kharakteristik zhivuchesti silovykh elementov planera dlitelno ekspluatiruemykh vozdushnykh sudov: avtoref. dis. … kand. tekh. Nauk [Method of refinement of survivability characteristics of power elements of the airframe of long-term operated aircraft: thesis, Cand. Sc. (Tech.)]. M., 2011. 23 s.
7. Sinyavskij V.S., Valkov V.D., Budov G.M., Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1979. 224 s.
8. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Investigation of the corrosive destruction of deformable aluminum alloys in field-accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
9. Fomina M.A., Kutyrev A.E., Klochkova Yu.Yu., Sbitneva S.V. Issledovanie korrozionnyh harakteristik vysokoprochnogo splava sistemy Al–Cu–Li v zavisimosti ot razlichnyh rezhimov termicheskoj obrabotki [Research of corrosion characteristics of high-strength alloy of Al–Cu–Li system depending on various modes of heat treatment] // Aviacionnye materialy i tehnologii. 2016. №S2. S. 39–48. DOI: 10.18577/2071-9140-2016-0-S2-39-48.
10. Fomina M.A., Karimova S.A. Analiz korrozionnogo sostoyaniya materialov planera samoletov tipa «Su» posle dlitelnykh srokov ekspluatatsii [Analysis of the corrosive state of airframe materials of Su-type airplanes after long service life] // Korroziya: materialy, zashchita. 2014. №9. S. 20–24.
11. Fomina M.A., Karimova S.A. Issledovanie korrozionnyh svojstv listov splava V-1461-T1 primenitelno k vseklimaticheskim usloviyam ekspluatacii aviacionnoj tehniki [Study of corrosion properties of V-1461-T1 aluminum alloy sheets in all-climatic conditions of aerotechnics operation ] // Aviacionnye materialy i tehnologii. 2014. №4. S. 18–22. . DOI: 10.18577/2071-9140-2014-0-4-18-22.
12. Agarwala V.S. Aircraft corrosion and aging: problems and controls // Proceedings of 15th ICC. Granada, Spain. 2002. P. 3–12.
13. Kurs M.G., Kutyrev A.E., Fomina M.A. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri laboratornyh i naturnyh ispytaniyah [Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 10. Available at: http://www.viam-works.ru (accessed: September 14, 2018). DOI: 10.18577/2307-6046-2016-0-8-10-10.
14. Kurs M.G., Antipov V.V., Lutsenko A.N., Kutyrev A.E. Integralnyj koeffitsient korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov [Integral figure of corrosion damage of deformed aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 24–32. DOI: 10.18577/2071-9140-2016-0-3-24-32.
15. Szklarska-Smialowska Z. Mechanism of pit nucleation by electrical breakdown of the passive film // Corrosion Science. 2002. Vol. 44. P. 1143–1149.
16. McCafferty E. Sequence of steps in the pitting of aluminum by chloride ions // Corrosion Science. 2003. Vol. 45. P. 1421–1438.
17. Knörnschild G. Mechanism of Pit Growth in Homogeneous Aluminum Alloys // Pitting Corrosion, 2012. InTech, Rijeka, Croatia. 178 p.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Grigoreva I.O., Dresvyannikov A.F., Khasan A.D.M. Lokalnaya korroziya alyuminiya v usloviyakh anodnoj polyarizatsii [Local corrosion of aluminum under conditions of anodic polarization] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. №7. S. 279–283.
20. Zhuk N.P. Kurs teorii korrozii i zashchity metallov [Course in the theory of corrosion and protection of metals]. M.: Metallurgiya, 1976. 472 s.
21. Kuznetsov Yu.I., Kazanskij A.P. Fiziko-khimicheskie aspekty zashchity metallov ingibitorami korrozii klassa azolov [Physicochemical aspects of metal protection by corrosion inhibitors of the azole class] // Uspekhi khimii. 2008. T. 77. №3. S. 227–241.
22. Karimova S.A., Kutyrev A.E., Pavlovskaya T.G., Zaharov K.E. Nizkotemperaturnoe uplotnenie anodno-oksidnyh pokrytij na detalyah iz alyuminievyh splavov [Low temperature sealing of anodic oxide coatings on parts of aluminum alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17. DOI: 10.18577/2071-9140-2014-0-4-9-17.
23. Sprowls D.O. Evaluation of pitting corrosion // ASM Handbook. New York: John Wiley & Sons, 1987. Vol. 13: Corrosion. P. 516–521.
24. Sowinski G., Sprowls D.O. Weathering of Aluminum Alloys // Atmospheric Corrosion. Jonh Wiley & Sons, 1982. P. 297–328.
25. Kurs M.G. Metod rascheta integralnogo koeffitsienta korrozionnogo razrusheniya listov iz deformiruemykh alyuminievykh splavov pri naturno-uskorennykh ispytaniyakh: dis. … kand. tekhn. nauk [The method of calculating the integral coefficient of corrosive destruction of sheets from deformable aluminum alloys in field-accelerated tests: thesis, Cand. Sc. (Tech.)]. M., 2016. 147 s.
26. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 01. Available at: http://viam-works.ru (accessed: September 17, 2018). DOI: 10.18577/2307-6046-2014-0-7-1-1.
27. Kablov E.N., Morozova L.V., Grigorenko V.B., Zhegina I.P., Fomina M.A. Issledovanie vliyaniya korrozionnoj sredy na protsess nakopleniya povrezhdenij i kharakter razrusheniya konstruktsionnykh alyuminievykh splavov 1441 i V-1469 pri ispytaniyakh na rastyazhenie i malotsiklovuyu ustalost [Investigation of the influence of the corrosive environment on the process of accumulation of damages and the nature of destruction of structural aluminum alloys 1441 and B-1469 in tensile tests and low cycle fatigue] // Materialovedenie. 2017. №1. S. 41–48.
During the curing of any thermosetting polymer, a consistent change in its phase state takes place and it initially passes from the liquid state to the gel-like and further into the solid state. As an object of research, an epoxy formulation based on epoxy-diane resin and modified aliphatic polyamine was used. In the technical literature, the values of the thermophysical characteristics of epoxy (and other thermosetting) materials are given only in a solid aggregate state, i.e. even after curing, however, these characteristics undergo significant changes in the transition from one phase state to another.
The technique of carrying out thermophysical measurements directly during the curing process is described. A distinctive feature of these tests was the use of a sample in the liquid state, which did not allow to withstand the required geometric dimensions, as well as its optical transparency. A special mandrel consisting of a crucible and a cover made of a platinum-rhodium alloy (its density, thermophysical properties, as well as all the geometric characteristics of the crucible and the cap are known) was used to fill the initial sample and subsequent tests. The test material was placed in the space between the bottom of the crucible and the lid. During the tests, the effective thermal diffusivity was measured, the crucible-test material-cover system was measured. The measurements were carried out over the course of a day, sequentially determining the heat capacity, thermal diffusivity, and thermal conductivity.
As a result of the conducted studies, it was found that during the curing process (i.e., when the degree of conversion is changed), the heat capacity decreases by 32%. Conversely, the values of thermal conductivity during curing, with a similar change in the degree of cure, increase from 0.08 to 0.25 W / (m/K), i.e. more than 3 times. Even more important
2. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Issledovanie epoksidno-polisulfonovykh polimernykh sistem kak osnovy vysokoprochnykh kleev aviatsionnogo naznacheniya [Study of epoxy-polysulfone polymer systems as the basis of high-strength adhesives for aviation purposes] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 7–12.
3. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Borodulin A.S., Malysheva G.V. Eksperimentalnye issledovaniya kinetiki protsessa propityvaniya volokon epoksidnymi svyazuyushchimi [Experimental studies of the kinetics of the process of impregnation of fibers with epoxy binders] // Bulletin of modern technologies. 2017. № 4 (8). C. 11–15.
5. Shchegoleva N.E., Grashchenkov D.V., Vaganova M.L., Solntsev S.S. Kompozitsionnye materialy, armirovannye voloknistymi napolnitelyami [Composite materials reinforced with fibrous fillers] // Perspektivnye materialy. 2014. №8. S. 22–30.
6. Bazhenov S.L., Berlin A.A., Kulkov A.A., Oshmyan V.G. Polimernye kompozitsionnye materialy [Polymer composite material]. Dolgoprudnyj: Intellekt, 2010. 352 s.
7. Baurova N.I., Zorin V.A. Primenenie polimernykh kompozitsionnykh materialov pri proizvodstve i remonte mashin: ucheb. posobie [The use of polymer composite materials in the production and repair of machines: tutorial]. M.: Izd-vo MADI, 2016. 264 s.
8. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Tehnologii i osnovnye etapy stroitelstva pervogo v Rossii arochnogo mosta iz kompozicionnyh materialov [Technologies and the main stages of construction of the arch bridge first in Russia from composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 05. Available at: http://www.viam-works.ru (accessed: July 18, 2018). DOI: 10.18577/2307-6046-2017-0-6-5-5.
9. Marakhovskij P.S., Barinov D.YA., Pavlovskij K.A., Aleksashin V.M. Otverzhdenie mnogoslojnykh polimernykh kompozitsionnykh materialov. Chast 1. Matematicheskoe modelirovanie teploperenosa pri formovanii tolstoj plity ugleplastika [Curing of multilayer polymer composite materials. Part 1. Mathematical modeling of heat transfer in the formation of a thick plate of carbon fiber] // Vse materialy. Entsiklopedicheskij spravochnik. 2018. №2. S. 16–22.
10. Barinov D.Ya., Marakhovskij P.S., Kutsevich K.E., Chutskova E.Yu. Matematicheskoe modelirovanie temperaturnykh polej s uchetom kinetiki otverzhdeniya tolstoj plity stekloplastika [Mathematical modeling of temperature fields taking into account the kinetics of thick plate curing fiberglass] // Perspektivnye materialy. 2017. №5. S. 19–28.
11. Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskij P.S. Raschetno-eksperimentalnye issledovaniya teplofizicheskikh svojstv [Computational and experimental investigations of thermophysical properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595.