Articles
In the article discuss the phenomenon of formation of low-temperature metastable solid solutions α and β with the allocation of dispersed particles of the tertiary α-phase (intragranular or Widmanstatten α, αwi) in heat-resistant titanium alloys ВT3-1, ВT8 and its modifications, ВT9, ВТ25У, ВТ41, ВТ46.
It follows from the literature data on alloys Ti64, Ti6246, Ti17 that for more density two-phase alloys like Ti6246 and Ti17 it is possible to obtain «triplex» structures in industrial conditions. For the more «simple» Ti64 alloy, close to near-alpha, the technological interval of tertiary alpha phase formation is rather narrow, which does not allow to obtain in practice a stable heterogeneous structure of the material with higher strength.
It is shown that the tertiary alpha phase in Russian heat-resistance alloys can be formed during the cooling after heat treatment with a solid solution at relatively low temperatures and cooling rates, as well as a result of low-temperature annealing (aging). Examples of heterogeneous structures in various semi-finished items (disks and blades die forgings and bars) and titanium alloy parts (disks, blisks and blades) are given. The changes in the mechanical properties of ВT8, ВT41 and ВT46 alloys at room temperature due to structural dispersion hardening are considered. On the example of ВT8 alloy it is shown that the diffusion transformation of β-solid solution is observed at relatively low temperatures during cyclic loads as result of jet engine exploitation for compressor disks material.
The presence of zirconium and iron alloying elements in the composition of the alloy contributes to obtaining heterogeneous structures as a result of heat treatment. It is found that the increase in the strength of the material is accomp
2. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Zavodov A.V. Vliyanie uslovij okhlazhdeniya krupnykh promyshlennykh pokovok iz zharoprochnogo titanovogo splava VT41 na fazovyj sostav i mekhanicheskie svojstva [Influence of cooling conditions of large industrial forgings made of heat-resistant titanium alloy VT41 on the phase composition and mechanical properties] // Tsvetnye metally. 2018. №2. S. 76–82. DOI: 10.17580/tsm.2018.02.10.
3. Pavlova T.V., Kashapov O.S., Kondrateva A.R., Kalashnikov V.S. Vozmozhnosti po rasshireniyu oblasti primeneniya splava VT8-1 dlya diskov i rabochih koles kompressora [Opportunities to expand the VT8-1 alloy application for disks and compressor rotor wheels] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3 (39). St. 05. Available at: http://www.viam-works.ru (accessed: July 31, 2017). DOI: 10.18577/2307-6046-2016-0-3-5-5.
4. Sauer C., Lutjering G. Influence of layers at grain boundaries on mechanical properties of Ti-alloys // Materials Science and Engineering A. 2001. Vol. 319–321. P. 393–397.
5. Es-Souni M. Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834). Part I. Primary and steady-state creep // Materials Characterization. 2001. Vol. 46. P. 365–379.
6. Davies P., Pederson R., Coleman M., Birosca S. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air // Acta Materialia. 2016. Vol. 117. P. 51–67.
7. Tong Li, Mansur Ahmed, Gang Sha et al. The influence of partitioning on the growth of intragranular a in near- Ti alloys // Journal of Alloys and Compounds. 2015. Vol. 643. P. 212–222.
8. Evans D.J., Broderick T.F., Woodhouse J.B., Hoenigman J.R. On the synergism of α2 and sislicides in Ti–6Al–Sn–2Cr–2Zr–2Mo–Si // Titanium`95: Science and Technology. 1995. P. 2413–2420.
9. Moiseyev V.N. Titanium alloys: Russian Aircraft and Aerospace applications. Taylor & Francis Group, 2006. 214 p.
10. Monicault J.-M., Guedou J.-Y., Soniak F. Issues and progress in manufacturing of aero titanium parts. 2008. JM de Monicaut / ITA 24.09.2008. 38 pp.
11. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigatelej i ustanovok [The achievements of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
14. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Kondrateva A.R. Issledovanie vliyaniya rezhimov termicheskoj obrabotki na strukturu i svojstva opytnykh pokovok iz splava VT41 s melkozernistoj strukturoj [The influence of heat treatment conditions on structure and properties of pilot forgings from VT41 alloy with fine grained structure] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 3–7. DOI: 10.18577/2071-9140-2017-0-3-3-7.
15. Bhattacharyya D., Viswanathan G.B., Denkenberger R. et al. The role of crystallographic and geometrical relationships between a and b phases in an a/b titanium alloy // Acta Materialia. 2003. Vol. 51. P. 4679–4691. DOI: 10.1016/S1359-6454(03)00179-4.
16. Suwas S., Singh A.K. Textural changes during β→α and α→β→α transformations in a Near-α Titanium Alloy // Metallurgical and materials transactions. 2004. Vol. 35A. P. 925–938. DOI: 10.1007/s11661-004-0017-8.
17. Scotti L. First-principles study of solute diffusion mechanisms in alpha-Ti: thesis for the degree of PhD. School of Metallurgy and Materials. College of Engineering and Physical Sciences. University of Birmingham. March, 2016. 211 p.
18. Seishi Ishiyama, Shuji Hanada, Osamu Izumi. Effect of Zr, Sn and Al Additions on Deformation Mode and Beta Phase Stability of Metastable Beta Ti Alloys // ISIJ International. 1991. Vol. 31. No. 8. P. 807–813. DOI: 10.2355/isijinternational.31.807.
19. Jing R., Liang S.X., Liu C.Y. et al. Structure and mechanical properties of Ti–6Al–4V alloy after zirconium addition // Materials Science and Engineering: A. 2012. Vol. 552. P. 295–300. DOI: 10.1016/j.msea.2012.05.043.
20. Binguo Fu, Hongwei Wang, Chunming Zou, Zunjie Wei. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys // Materials Characterization. 2015. Vol. 99. P. 17–24. DOI: 10.1016/j.matchar.2014.09.015.
21. Dolton W.T., Allison J.E., Lasecki J.V. The influence of thermal exposure on properties and microstructure of elevated temperature titanium alloys // Titanium’92 Science and technology. TMS, 1993. P. 295–302.
22. Popov A.A., Popova M.A. Izotermicheskie diagrammy vydeleniya silitsidnykh i alyuminidnykh faz v zharoprochnykh titanovykh splavakh [Isothermal diagrams of silicide and aluminide phases in heat-resistant titanium alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2016. №11. S. 23–28.
23. Ahmed T., Rack H.J. Phase transformations during cooling in a+b titanium alloys // Materials Science and Engineering A. 1998. Vol. 243. P. 206–211. DOI: 10.1016/j.matchar.2016.05.020.
24. Zhichao Sun, Xuanshuang Li, Huili Wu, He Yang. Morphology evolution and growth mechanism of the secondary Widmanstatten α phase in the TA15 Ti-alloy // Materials Characterization. 2016. Vol. 118. P. 167–174.
25. Zhang X.D., Evans D.J., Baeslack W.A., Fraser H.L. Effect of long term aging on the microstructural stability and mechanical properties of Ti–6Al–2Cr–2Mo–2Sn–2Zr alloy // Materials Science and Engineering. 2003. A344. P. 300–311.
26. Da Costa Teixeira J., Appolaire B., Aeby-Gautier E. et al. Transformation kinetics and microstructures of Ti17 titanium alloy during continuous cooling // Materials Science and Engineering A. 2007. Vol. 448. P. 135–145. DOI: 10.1016/j.msea.2006.10.024.
The wide spread of glass, carbon and organoplastics products requires constant improvement of technological processes, which ensure improvement of their performance properties and cost reduction. One of the final technological operations, which forms the quality of the finished product, is – curing, a distinctive feature of which is its long duration and energy intensity.
To reduce the duration of the curing operation, it is proposed to use microwave heating. The results of experimental studies of the properties of organoplastics made by wet winding technology using epoxy binder are presented. Curing was carried out in two different ways: in electric and microwave ovens using two modes of temperature rise to a predetermined value (single-stage and three-stage). It is shown that the use of microwave heating can not only significantly reduce the curing time, but also leads to an increase in the modulus of elasticity. It is experimentally established that the degree of conversion when using an electric furnace is higher than when microwave heating, and the form error is significantly less. At the same time, the value of the modulus of elasticity, when curing microwave method is higher than when using standard equipment. The shrinkage and porosity properties of organoplastics are the same and do not depend on the heating method used. However, the values of standard deviations in porosity and shrinkage when using microwave heating are much higher than when using an electric furnace. As a result of the research it was found that the use of microwave curing can lead to errors in the form, which does not allow to recommend this method for its wide application. However, for a number of parts made of organoplastics, which do not have high requirements associated with the geometric accuracy of the manufactured product, this curing technology can be successfully applied.
2. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
3. Kablov E.N., Buznik V.M. Sostoyanie i perspektivy arkticheskogo materialovedeniya [Condition and perspectives of the Arctic materials science] // Vestnik Rossijskoj akademii nauk. 2017. T. 87. №9. S. 827–839.
4. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
5. Bazhenov S.L., Berlin A.A., Kulkov A.A., Oshmyan V.G. Polimernye kompozitsionnye materialy [Polymeric composite materials]. Dolgoprudnyj: Intellekt, 2010. 352 s.
6. Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushchie, kleevye prepregi / pod obshch. red. E.N. Kablova [Glues, glue binding, glue prepregs / gen. ed. by E.N. Kablov]. M.: VIAM, 2017. 472 s.
7. Baurova N.I., Zorin V.A. Primenenie polimernykh kompozitsionnykh materialov pri proizvodstve i remonte mashin: ucheb. posobie [Application of polymeric composite materials by production and repair of machines: manual]. M.: MADI, 2016. 264 s.
8. Mikhajlin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Nauchnye osnovy i tekhnologii, 2013. 720 s.
9. Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsij raket i sredstv porazheniya [Technology of winding of composite designs of rockets and means of defeat]. M.: Izd-vo MGTU im. N.E. Baumana, 2011. 431 s.
10. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Tekhnologii i osnovnye etapy stroitelstva pervogo v Rossii arochnogo mosta iz kompozitsionnykh materialov [Technologies and the main stages of construction of the arch bridge first in Russia from composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 05. Available at: http://www.viam-works.ru (accessed: July 12, 2018). DOI: 10.18577/2307-6046-2017-0-6-5-5.
11. Guzeva T.A. Novye podkhody k povysheniyu effektivnosti proizvodstva detalej iz organoplastikov [New approaches to increase of production efficiency of details from organ plastics] // Vse materialy. Entsiklopedicheskij spravochnik. 2012. №7. S. 53–56.
The interfaces between the matrix and the reinforcing phases play an important role in the formation of the mechanical properties of composite materials. The feature of eutectic in situ composites is that the structure of interfaces is formed in accordance with the phase diagrams in the process of crystallization. The phase composition of the in situ composites in the doped Nb-Si system depends on the crystallization conditions and is determined by the kinetics of the solid-phase eutectoid reaction.
In accordance with the principle of the Dankov-Konobeevsky structural and dimensional relationship in diffusion-controlled solid-phase reactions, the crystal structures of the reaction products are oriented with such a ratio that the interphase energy between them is minimal. The high thermal stability of the structure of the Nb-Si composite was experimentally investigated and substantiated from the crystallochemical standpoint in the article.
On the basis of the metallographic analysis of the microstructure of the composite in the initial state and after high-temperature homogenization for 10 and 20 hours at a temperature of 1500°C in vacuum, a conclusion is drawn about the high thermal stability of the morphology of the interface surfaces of the niobium matrix and silicide formed as a result of solid-phase reactions.
The phenomenon of micrliquation of alloying elements within the cell has been studied using the MRSA. The nature of microliquation of "low-melting" and "refractory" elements obeys the general pattern of distribution of alloying elements in cellular crystallization.
Pole figures were obtained by X-ray diffraction and the direction of predominant growth of the niobium matrix and niobium silicide with directional crystallization was determined.
<p style="text-align: j
2. Zhang M.-X., Kelly P.M. Edge-to-еdge matching and its application. Part I. Application to the simple HCP/BCC system // Acta Materialia. 2009. Vol. 53. P. 1073–1084.
3. Zhang M.-X., Kelly P.M. Edge-to-edge matching and its application. Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys // Acta Materialia. 2009. Vol. 53. P. 1085–1096.
4. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb-Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie, 2011. №SP2. S. 164–173.
5. Kablov E.N., Svetlov I.L., Karpov M.I., Nejman A.V., Min P.G., Karachevtsev F.N. Vysokotemperaturnye kompozity na osnove sistemy Nb–Si, armirovannye silitsidami niobiya [High-temperature composites on the basis of the Nb-Si system, reinforced by niobium silicides] // Materialovedenie. 2017. №2. S. 24–32.
6. Ospennikova O.G., Rassohina L.I., Bitjuckaja O.N., Gamazina M.V. Otrabotka tehnologii poluchenija otlivok lopatok GTD metodom napravlennoj kristallizacii iz splavov na osnove Nb–Si kompozita [Development of technology for production of castings by the method of direc-tional solidification of GTE blades made of alloys based on Nb–Si composite] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 01 Available at: http://www.viam-works.ru (accessed: March 19, 2018). DOI: 10.18577/2307-6046-2017-0-4-1-1.
7. Loshhinin Yu.V., Dmitrieva V.V., Pahomkin S.I., Razmahov M.G. Teplofizicheskie svojstva kompaktirovannyh kompozitov sistemy Nb–Si v diapazone temperatur ot 20 do 1400°C [Thermophysical properties of Nb–Si system compact composites with the temperature range from 20 to 1400°C] // Aviacionnye materialy i tehnologii. 2017. №2. S. 41–49. DOI: 10.18577/2071-9140-2017-0-2-41-49.
8. Kablov E.N., Bondarenko Ju.A., Echin A.B. Razvitie tehnologii napravlennoj kristallizacii litejnyh vysokozharoprochnyh splavov s peremennym upravljaemym temperaturnym gradientom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
9. Svetlov I.L., Kuzmina N.F., Nejman A.V. Mikrostruktura nikelevykh i Ni/Ni3Al–NbC Nb–Nb5Si3 evtekticheskikh kompozitov [Microstructure nickel and Ni/Ni3Al–NbC Nb–Nb5Si3 of eutectic composites] // Materialovedenie. 2015. №3. S. 50–56.
10. Kuzmina N.A., Eremin N.N., Marchenko E.I., Svetlov I.L., Muromtsev N.A., Nejman A.V., YAkushev D.A. Puti diffuzii primesej vnedreniya v silitside niobiya Nb5Si3 razlichnykh polimorfnykh modifikatsij [Ways of diffusion of impurity of implementation in silicide of Nb5Si3 niobium of different polymorphic updatings] // Kristallografiya. 2018. №3. S. 358–365.
11. Kablov E.N., Kuzmina N.A., Eremin N.N., Svetlov I.L., Nejman A.V. Atomnye modeli struktury silitsidov niobiya v in-situ kompozitakh Nb–Si [Nuclear models of structure of silicides of niobium in in-situ Nb–Si composites] // Zhurnal strukturnoj khimii. 2017. №3. C. 27–37.
12. Marchenko E.I., Kuzmina N.A., Eremin N.N. Lokalizatsiya pozitsij primesej ugleroda v kristallicheskikh strukturakh polimorfnykh modifikatsij Nb5Si3 po dannym atomisticheskogo kompyuternogo modelirovaniya [Localization of positions of impurity of carbon in crystal structures of polymorphic updatings of Nb5Si3 according to atomistic computer modelling] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3 (51). St. 04. Available at: http://www.viam-works.ru (accessed: March 19, 2018) DOI: 10.18577/2307-6046-2017-0-3-4-4.
13. Guo J.T., Tian Y.X., Gheng G.M. et al. Microstructural characteristics in and high temperature compressive properties at 1623 K of a directionally solidified Nb-silicide based in situ composites // Journal of Alloys and Compound. 2009. Vol. 470. P. 606–609.
14. Sekido N., Wei F.G., Kimura Y. et al. Orientation relationship between Nb and Nb5Si3 (D8l) phases in the eutectoid lamellar microstructure // Philosophical Magazine Letters. 2006. Vol. 86. No. 2. P. 89–98.
15. Cheng G.M., Tian Y.X., He L.L. Orientation relationship and interfacial structure between Nb solid solution precipitates and α-Nb5Si3 intermetallics // Journal of Materials Research. 2009. Vol. 24. No. 1. P. 192–197.
16. Cheng G., Tian Y., He L., Guo J. Orientation relationship and interfacial structure between α-Nb5Si3 and Nb solid solution in eutectic lamellar structure // Philosophical Magazine. 2009. Vol. 89. No. 31. P. 2801–2812.
17. Li Y.L., Ma C.L., Zhang H. Crystallographic orientation evolution in Nbss-Nb5Si3 eutectic alloys by EBSD analyses // ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. Vol. 5A: Industrial and Cogeneration and Manufacturing Materials and Metallurgy. DOI: 10.1115/GT2013-95309.
18. Tian Y.X., Guo J.T., Gheng G.M. et al. Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb–Silicide base alloy // Materials and Design. 2009. Vol. 30. P. 2274–2277.
19. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Xiao Ma, Xiping Guo, Maosen Fu, Haisheng Guo. Crystallographic characteristics of an integrally in a directionally solidified Nb–Ti–Si based in-situ composite // Scripta Materialia. 2017. Vol. 139. P. 108–113.
This article discusses the property of prepreg as the stickiness that affects the parameters of the layout of various blanks of parts from polymer composite materials (PCM).
As you know, PCM are widely used in industry, have high physical and mechanical characteristics. Such materials can be obtained by various methods, in particular, automated laying: ATL (automated laying tapes) and AFP (automated laying fibers). In these processes, despite the many advantages, there is a drawback – sensitivity to the stickiness of the prepregs. The success of the automated calculation depends on this parameter.
The material should easily be separated from the tooling, so that neither the resin nor the part of the prepreg remains on it. In this prepreg should stick to avoid peeling of the material from the tooling. Thus, stickiness characterizes the quality of adhesion. In case of poor adhesion the automated computation becomes impossible.
Stickiness is one of the most important properties, depending on many factors: environmental conditions (temperature, humidity), volatile substances and the binder. It is important to control this parameter. As a rule, to determine the stickiness, subjective tactile sensations are used, combining with the rolling method.
However, to date, the quantitative determination of stickiness is a problem, since there is no single method of measurement. Each method evaluates a certain parameter, and the stickiness of the prepregs can be compared only within one method.
The article also discussed the dependence of the tackiness from the temperature. At a certain temperature, the stickiness reaches a maximum. The analysis of this dependence will allow for the automatic layout to ensure the separation of the prepreg from the substrate, goo
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Osobennosti prepregov dlya avtomatizirovannoj vykladki metodami ATL i AFP [Features of prepregs intended for automated laying by ATL and AFP technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 06. Available at: http://www.viam-works.ru (accessed: June 20, 2018). DOI: 10.18577/2307-6046-2015-0-3-6-6.
6. Timoshkov P.N. Oborudovanie i materialy dlya tekhnologii avtomatizirovannoj vykladki prepregov [Equipment and materials for the technology of automated calculations prepregs] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
7. Sloan J. ATL and AFP: defining the megatrends in composite aerostructures // High performance composites: Garden Business Media Inc., 2008. P. 20–25.
8. Crossley R.J., Schubel P.J., Warrior N.A. The experimental characterization and Investigate on of prepreg tack // Proceedings of ICCM-18. Edinburgh, 2009. P. 1–11.
9. Postnov V.I., Nikitin K.E., Petukhov V.I., Burkhan O.L., Orzaev V.G. Metod i ustrojstvo dlya opredeleniya lipkosti prepregov [Method and the device for determination of stickiness of prepregs] // Aviacionnye materialy i tehnologii. 2009. №3. S. 29–33.
10. Dubois O., Le Cam J.-B., Beakou A. Experimental analysis of prepreg tack // Experimental Mechanics, Society for Experimental Mechanics. 2010. №50. P. 599–606.
11. Ahn K.J., Seferis J.C., Pelton T., Wihelm M. Analysis and Characterization of Prepreg Tack // Polymer Composites. 1992. Vol. 13. No. 3. P. 197–206.
12. Gillanders A.M., Kerr S., Martin T.J. Determination of prepreg tack // International Journal Adhesion and Adhesives. 1981. Vol. 1. No. 3. P. 125–134.
13. Orlov E.V., Gusev Yu.A., Khrulkov A.V., Korotkov I.A. Sravnitelnyj analiz metodov opredeleniya lipkosti preprega [Comparative analysis of stickiness determination methods of prepreg] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 09. Available at: http://www.viam-works.ru (accessed: June 27, 2018). DOI: 10.18577/2307-6046-2016-0-7-9-9.
14. ChemInstruments. Available at: http://www.cheminstruments.com/ (accessed: June 02, 2018).
15. Postnov V.I., Burkhan O.L., Mantusova O.Yu. Metodika zamera lipkosti prepregov [Technique of measurement of stickiness of prepregs] // Sb. tez. dokl. Mezhdunar. nauch.-tekhnich. konf. «Sovremennye dostizheniya v oblasti kleev i germetikov. Materialy, syr'e, tekhnologii». N. Novgorod: Gladkova O.V., 2013. 227 s.
16. Ustrojstvo dlya opredeleniya lipkosti prepregov i klejkikh lent: pat. 1716398 SSSR [The device for determination of stickiness of prepregs and sticky tapes: pat. 1716398 USSR]; zayavl.: 23.01.90; opubl.: 29.02.92.
17. Pribor dlya izmereniya lipkosti prepregov: pat. 2549469 Ros. Federatsiya [The device for measurement of stickiness of prepregs: pat. 2549469 Rus. Federation]; zayavl.: 20.02.14; opubl.: 27.04.15.
18. Strelnikov S.V., Petukhov V.I., Postnov V.I., Shvets N.I. Novye resheniya v tekhnologii izgotovleniya prepregov dlya panelej interera [New decisions in manufacturing techniques of prepregs for interior panels] // Izvestiya SamNTS RAN. 2011. T. 13. №4 (2). S. 498–507.
19. Crossley R.J., Schubel P.J., Warrior N.A. The experimental determination of prepreg tack and dynamic stiffness // Composites: Part A. 2012. No. 43. P. 423–434.
Overview and history for biomorphic composites (a wood-based promising class of materials) were presented. Methods for the preparation of such composites (liquid silicon infiltration, gaseous Si or SiO infiltration, SiO2 precursor infiltration with subsequent carbothermal reduction) were introduced. In all cases wood pyrolysis with strict control of operating temperature ensuring preparation of crack-free monoliths is used as the initial stage of the process.
Wood-derived biomorphic ceramics have developed tremendously from the late 1990s. In spite of wide range of possible application fields, some difficulties remain that preclude large-scale production of these materials. One of the main problem is the limited size of the components that can be manufactured. It may be caused by two reasons. First, the wood precursor can develop cracks during pyrolysis if heating rates are not kept low enough, due to pressure buildup inside the pores if the organic substances and volatiles can’t be transported away from the material at a fast enough rate. Second, infiltration sometimes can lead to cracking in the final component due to thermal gradients (interaction of Si and C is highly exothermic). To solve this problem, several approaches can be used, such as manufacturing complex components in several parts while still in the carbon phase and the joining them. Another possibility could be to use additive manufacturing techniques to print a porous carbon preform for subsequent infiltration
2. Singh M., Martinez-Fernandez J., De Arellano-Lopez A.R. Environmentally conscious ceramics (ecoceramics) from natural wood precursors // Current Opinion in Solid State and Materials Science. 2003. Vol. 7. P. 247–254.
3. De Arellano-Lopez A.R., Martinez-Fernandez J., Gonzalez P. et al. Biomorphic SiC: A new engineering ceramic material // International Journal of Applied Ceramic Technology. 2004. Vol. 1. No. 1. P. 56–67.
4. Ugolev B.N. Drevesinovedenie i lesnoe tovarovedenie: ucheb. [Wood science and forest merchendizing: textbook]. M.: MGUL, 2007. 351 s.
5. Ramirez-Rico J., Martinez-Fernandez J., Singh M. Biomorphic ceramics from wood-derived precursors // International Materials Reviews. 2017. Vol. 62. No. 8. P. 465–485.
6. Ota T., Takahashi M., Hibi T. et al. Biomimetic process for producing SiC «wood» // Journal of American Ceramic Society. 1995. Vol. 78. No. 12. P. 3409–3411.
7. Byrne C.E., Nagle D.C. Carbonization of wood for advanced materials applications // Carbon. 1997. Vol. 35. No. 2. P. 259–266.
8. Byrne C.E., Nagle D.C. Carbonized wood monoliths – characterization // Carbon. 1997. Vol. 35. No. 2. P. 267–273.
9. Byrne C.E., Nagle D.C. Cellulose derived composites – a new method for materials processing // Materials Research Innovations. 1997. Vol. 1. No. 3. P. 137–144.
10. Greil P., Lifka T., Kaindl A. Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure // Journal of the European Ceramic Society. 1998. Vol. 18. No. 14. P. 1961–1973.
11. Greil P., Lifka T., Kaindl A. Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties // Journal of the European Ceramic Society. 1998. Vol. 18. No. 14. P. 1975–1983.
12. Shlejzman V.V., Peschanskaya N.N., Orlova T.S., Smirnov B.I. Mikroplastichnost biomorfnogo kompozita SiC/Al pri odnoosnom szhatii [Microplasticity of biomorphic composite of SiC/Al at uniaxial compression] // Fizika tverdogo tela. 2009. T. 51. №12. S. 2315–2319.
13. Wilkes T.E., Harder B.J., Almer J.D., Faber K.T. Load partitioning in honeycomb-like silicon carbide aluminum alloy composites // Acta Materialia. 2009. Vol. 57. No. 20. P. 6234–6242.
14. Popovska N., Almeida-Streitwieser D., Xu C. et al. Kinetic analysis of the processing of porous biomorphic titanium carbide ceramics by chemical vapor infiltration // Chemical Vapor Deposition. 2005. Vol. 11. No. 3. P. 153–158.
15. Rambo C.R., Cao J., Rusina O., Sieber H. Manufacturing of biomorphic (Si, Ti, Zr)-carbide ceramics by sol-gel processing // Carbon. 2005. Vol. 43. No. 6. P. 1174–1183.
16. Rambo C.R., Cao J., Sieber H. Biomorphic (Si, Ti, Zr)-carbide synthesized through sol-gel process. // Ceramic Transactions. 2005. Vol. 166. P. 49–55.
17. Greil P., Vogli E., Fey T. et al. Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics // Journal of the European Ceramic Society. 2002. Vol. 22. No. 14–15. P. 2697–2707.
18. Munoz A., Martinez-Fernandez J., Singh M. High temperature compressive mechanical behavior of joined biomorphic silicon carbide ceramics // Journal of the European Ceramic Society. 2002. Vоl. 22. No. 14–15. P. 2727–2733.
19. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
21. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: July 31, 2018). DOI: 10.18577/2307-6046-2016-0-5-6-6.
22. Sevastjanov D.V., Doriomedov M.S., Daskovskij M.I., Skripachev S.Ju. Samoarmirovannye po-limernye kompozity – klassifikacija, poluchenie, mehanicheskie svojstva i primenenie (obzor) [Single-polymer composites – classification, synthesis, mechanical properties and application (re-view)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 12. Available at: http://www.viam-works.ru (accessed: July 31, 2018). DOI: 10.18577/2307-6046-2017-0-4-12-12.
23 Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: July 31, 2018).
24. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlya modelnykh kompozitsij na osnove prirodnykh voskov [Development and plasticizer research for model compositions on the basis of natural waxes] // Aviacionnye materialy i tehnologii. 2002. №3. S. 68–70.
Analysis of mechanical properties for biomorphic composites was performed. It was shown that properties in axial direction exceeded the ones in radial and tangential directions. This fact can be explained by the preservation of microstructure on going from a piece of wood to a biomorphic composite. Prospects for application of biomorphic composites in various industrial fields (as catalyst support, high-temperature gas filtration materials, armor materials as well as in medicine, radio electronics, and power engineering) were discussed.
In addition to the dimensional limitation of the components based on biomorphic composites (see the Part 1), the second disadvantage of biomorphic materials is the lack of mechanical strength. Biomorphic ceramics from Si vapor infiltration or carbothermal reduction suffer from low compressive and bending strength due to the lack of connectivity between struts and between grains inside the struts. It is possible to obtain porous biomorphic SiC with reasonable mechanical strength by chemical etching of the silicon in melt-infiltrated biomorphic SiC, but the large quantities of dangerous acids such as HF or HNO3 required make this route inviable for large-scale production, for both economic and environmental reasons. An alternative is the modification of a wood precursor.
As compared to widely used C/C and C/SiC composites, wood-derived biomorphic materials are characterized by lower level of mechanical properties. On the other hand, biomorphic composites possess flexibility in selection of the required microstructure and the optimum strength-to-density ratio.
2. Ramirez-Rico J., Martinez-Fernandez J., Singh M. Biomorphic ceramics from wood-derived precursors // International Materials Reviews. 2017. Vol. 62. No. 8. P. 465–485.
3. Qiao G., Ma R., Cai N., Zhang C., Jin. Z. Mechanical properties and microstructure of Si/SiC materials derived from native wood. // Materials Science and Engineering A. 2002. Vol. 323. No. 1–2. P. 301–305.
4. Presas M., Pastor J.Y., Llorca J. et al. Mechanical behavior of biomorphic Si/SiC porous composites. // Scripta Materialia. 2005. Vol. 53. No. 10. P. 1175–1180.
5. Kaul V.S., Faber K.T., Sepulveda R. et al. Precursor selection and its role in the mechanical properties of porous SiC derived from wood // Materials Science and Engineering A. 2006. Vol. 428. No. 1–2. P. 225–232.
6. Singh M., Martinez-Fernandez J., De Arellano-Lopez A.R. Environmentally conscious ceramics (ecoceramics) from natural wood precursors // Current Opinion in Solid State and Materials Science. 2003. Vol. 7. P. 247–254.
7. Presas M., Pastor J.Y., Llorca J. et al. Microstructure and fracture properties of biomorphic SiC // International Journal of Refractory Metals & Hard Materials. 2006. Vol. 24. No. 1–2. P. 49–54.
8. Singh M., Salem J.A. Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors // Journal of the European Ceramic Society. 2002. Vol. 22. No. 14–15. P. 2709–2717.
9. Sieber H., Hoffmann C., Kaindl A., Greil P. Biomorphic cellular ceramics // Advanced Engineering Materials. 2000. Vol. 2. No. 3. P. 105–109.
10. Park H.S., Jang J.J., Lee K.H. et al. Effects of microstructure on flexural strength of biomorphic C/SiC composites // International Journal of Fracture. 2008. Vol. 151. P. 233–245.
11. Kardashev B.K., Nefagin A.S., Smirnov B.I. i dr. Uprugie i neuprugie svojstva biomorfnykh kompozitov SiC/Si i biomorfnykh SiC na osnove duba i evkalipta [Elastic and not elastic properties of biomorphic composites of SiC/Si and biomorphic SiC on the basis of oak and eucalyptus] // Fizika tverdogo tela, 2006. T. 48. №9. C. 1617–1621.
12. Kardashev B.K., Orlova T.S., Smirnov B.I. i dr. Modul Yunga i vnutrennee trenie biomorfnogo kompozita SiC/Si na osnove biomatritsy dereva sapeli [The elasticity modulus and internal friction of biomorphic composite of SiC/Si on the basis of biomatrix of tree snuffled] // Fizika tverdogo tela. 2009. T. 51. №4. S. 709–712.
13. Kardashev B.K., Orlova T.S., Smirnov B.I. i dr. Uprugost i neuprugost biomorfnykh ugleroda, karbida kremniya i kompozita SiC/Si, poluchennykh na osnove mikrodrevesnoj fibry MDF [Elasticity and not elasticity of biomorphic carbon, silicon carbide and composite of SiC/Si received on the basis of microwood fiber of MDF] // Fizika tverdogo tela. 2010. T. 52. №10. S. 1937–1942.
14. Bautista M.A., Quispe Cancapa J., Martinez-Fernandez J. et al. Microstructural and mechanical evaluation of porous biomorphic silicon carbide for high temperature filtering applications // Journal of the European Ceramic Society. 2011. Vol. 31. No. 7. P. 1325–1332.
15. Gordic M.V., Babic B.M., Static J.M. et al. Mechanical properties of biomorphic silicon carbide ceramics // Science of Sintering. 2011. Vol. 43. No. 2. P. 215–223.
16. Yan Z., Liu J., Zhang J. et al. Biomorphic silicon/silicon carbide ceramics from birch powder // Ceramics International. 2011. Vol. 37. No. 3. P. 725–730.
17. Lee D.J., Jang J.J., Park H.S. et al. Fabrication of biomorphic SiC composites using wood preforms with different structures // Ceramics International. 2012. Vol. 38. No. 4. P. 3089–3095.
18. Wang Q., Sun W.-Z., Jin G.-Q. et al. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas // Applied Catalysis B: Environmental. 2008. Vol. 79. No. 4. P. 307–312.
19. Church T.L., Fallani S., Liu J. et al. Novel biomorphic Ni/SiC catalysts that enhance cellulose conversion to hydrogen // Catalysis Today. 2012. Vol. 190. No. 1. P. 98–106.
20. Arzac G.M., Rico-Ramirez J., Gutierrez-Pardo A. et al. Monolithic supports based on biomorphic SiC for the catalytic combustion of hydrogen // RSC Advances. 2016.Vol. 6. P. 66373–66384.
21. Zampieri A., Sieber H., Selvam T. Biomorphic cellular SiSiC/Zeolite ceramic composites: from rattan palm to bioinspired structured monoliths for catalysis and sorption // Advanced Materials. 2005. Vol. 17. No. 3. P. 344–349.
22. Zampieri A., Kullmann S., Selvam T. et al. Bioinspired rattan-derived SiSiC/Zeolite monoliths: preparation and characterization // Microporous and Mesoporous Materials. 2006. Vol. 90. No. 1–3. P. 162–174.
23. Rambo C.R., Junkes J., Sieber H., Hotza D. Biomorphic ceramics as porous supports for zeolite coating // Advances in Science and Technology. 2006. Vol. 45. P. 819–828
24. Wang Y.-Y., Jin G.-Q., Guo X.-Y. Growth of ZSM-5 coating on biomorphic porous silicon carbide derived from durra // Microporous and Mesoporous Materials. 2009. Vol. 118. No. 1–3. P. 302–306.
25. Gomez-Martin A., Orihuela M.P., Becerra J.A. et al. Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters // Materials and Design. 2016. Vol. 107. No. 5. P. 450–460.
26. Bautista M.A., Quispe Cancapa J., Martinez-Fernandez J. et al. Microstructural and mechanical evaluation of porous biomorphic silicon carbide for high temperature filtering applications // Journal of the European Ceramic Society. 2011. Vol. 31. No. 7. P. 1325–1332.
27. Alonso-Farinas B., Lupion M., Rodriguez-Galan M., Martinez-Fernandez J. New candle prototype for hot gas filtration industrial applications // Fuel. 2013. Vol. 114. P. 120–127.
28. Gonzalez P., Borrajo J.P., Serra J. et al. A new generation of bio-derived ceramic materials for medical applications // Journal of Biomedical Materials Research Part A. 2009. Vol. 88A. No. 3. P. 807–813.
29. Gonzalez P., Borrajo J.P., Serra J. et al. Extensive studies on biomorphic SiC ceramics properties for 9medical applications // Key Engineering Materials. 2004. Vol. 254–256. P. 1029–1032.
30. Borrajo J.P., Serra J., Liste S. et al. Pulsed laser deposition of hydroxylapatite thin films on biomorphic silicon carbide ceramics // Applied Surface Science. 2005. Vol. 248. No. 1–4. P. 355–359.
31. Will J., Hoppe A., Muller F.A. et al. Bioactivation of biomorphous silicon carbide bone implants // Acta Biomaterialia. 2010. Vol. 6. No. 12. P. 4488–4494.
32. Mahmoodi M., Ghazanfari L. Fundamentals of biomedical applications of biomorphic SiC // Properties and Applications of Silicon Carbide. 2011. P. 297–344.
33. Heidenreich B., Krenkel W., Lexow B. Development of CMC-materials for lightweight armor // Ceramic Engineering and Science Proceedings. 2003. Vol. 24. P. 375–381.
34. Heidenreich B., Crippa M., Voggenreiter H. Development of biomorphic SiSiC- and C/SiSiC-materials for lightweight armor // Advances in Ceramics Armor VI. 2010. Vol. 31. Issue 5. P. 207–220.
35. Heidenreich B., Gahr M., Medvedovski E. Biomorphic reaction bonded silicon carbide ceramics for armor applications // Ceramic Transactions. 2006. Vol. 178. P. 45–53.
36. Zaenchkovskij P.V., Makarov O.Yu. Perspektivy primeneniya keramicheskikh materialov v radioelektronnoj promyshlennosti [Perspectives of application of ceramic materials in the radio-electronic industry] // Vestnik VGTU. 2009. T. 5. №7. S. 47–50.
37. Ershov A.E. Poluchenie prostranstvenno-uporyadochennykh biomorfnykh kompozitov, ikh svojstva i primenenie: avtoref. dis. … kand. tekhn. nauk [Receiving the space arranged biomorphic composites, their properties and application: thesis abstract, Cand. Sc. (Tech.)]. Chernogolovka, 2016. 22 s.
38. Heidenreich B., Schmidt J., Denis S. et al. CMC materials and biomorphic SiSiC for energy applications // Ceramic Transactions. 2010. Vol. 210. P. 115–123.
39. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
40. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
41. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: July 31, 2018).
42. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlya modelnykh kompozitsij na osnove prirodnykh voskov [Development and plasticizer research for model compositions on the basis of natural waxes] // Aviacionnye materialy i tehnologii. 2002. №3. S. 68–70.
43. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. Vysokotemperaturnye metallomatrichnye kompozicionnye materialy, armirovannye chasticami i voloknami tugoplavkih soedinenij [High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds] // Aviacionnye materialy i tehnologii. 2017. №S. S. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
44. Kablov D.E., Simonov V.N., Alekseeva M.S. Issledovanie stroeniya filtra i osobennostej filtracii primesej poristoj keramikoj iz oksida alyuminiya Al2O3 [Research of structure of the filter and features of impurity filtering by porous ceramics from Al2O3 aluminum oxide] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 47–53. DOI: 10.18577/2071-9140-2016-0-4-47-53.
At solution of the problem of increase of efficiency of gas turbine engines the important role is allocated for reduction of gaps between tips of blades and working rings, and also gaps in labyrinth seals. Indispensable condition for minimization of size of radial gap is application of the special materials connected with stator which are easily abraded at interaction with tips of blades or combs of labyrinths, eliminating that their possible excessive wear and even destruction. Efficiency of application of such sealing materials depends on their abradability together with material of rotor and erosion resistance. The ratio of wear of sealing covering usually is accepted to abradability of sealing material on stator and blades. The size of the radial gap which is forming as a result of wear of details of rotor or stator at their contact, and, therefore, size of gas leaks depends on abradability of sealing material. Erosion resistance of sealing material is defined as time spent for erosive wear process of unit of volume of material. On the basis of erosion resistance the resource of sealing material is evaluated. Abradability and erosion resistance depend on strength properties of materials and are inversely proportional sizes therefore creation of effective abraded sealing materials is one of the most complex and actual challenges of aviation materials science. In FSUE «VIAM» techniques are developed and the specialized test equipment is created, allowing in vitro to evaluate number of office characteristics of sealing materials, including their abradability together with compressor blades and turbines GTE.
In article results of comparative researches of abradability and erosion resistance of the sealing materials applied in compressors and turbines of modern GTE, and also the pilot materials developed by VIAM Federal State Unitary Enterprise are provided. Tests were carried out within
2. Smarsly W., Zheng N., Buchheim C.S. et al. Advanced High Temperature Turbine Seals Materials and Designs // Material Science Forum. 2005. Vol. 492–493 P. 21–26.
3. Farafonov D.P., Migunov V.P., Degovets M.L., Aleshina R.Sh. Perspektivy razvitiya i primeneniya istiraemyh uplotnitelnyh materialov iz metallicheskih volokon v protochnom trakte turbiny aviacionnyh dvigatelej [Development prospects of abradable sealing materials made from metal fibers for application in flow duct of aircraft engine turbine] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 51–59. DOI: 10.18577/2071-9140-2015-0-3-51-59.
4. Farafonov D.P., Degovets M.L., Aleshina R.SH. Metallicheskie volokna iz zharostojkikh splavov, legirovannykh metallami platinovoj gruppy [The metal fibers of heat-resistant alloys alloyed by platinum group metals] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 44–52. DOI: 10.18577/2071-9140-2016-0-1-44-52.
5. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
6. Simms N.J., Norton J.F., McColvin G. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres // Materials and Corrosion. 2005. Vol. 56. P. 765–777.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
9. Migunov V.P., Farafonov D.P. Issledovanie osnovnyh ekspluatacionnyh svojstv novogo klassa uplotnitelnyh materialov dlya protochnogo trakta GTD [Research of the main operational properties of new class of sealing materials for flowing path of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 15–20.
10. Serov M.M., Borisov B.V. Poluchenie metallicheskikh volokon i poristykh materialov iz nikh metodom ekstraktsii visyashchej kapli rasplava [Receiving metal fibers and porous materials from them method of extraction of hanging drop melt] // Tekhnologiya legkikh splavov. 2007. №3. C. 62–65.
11. Kablov E.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunktsionalnye vysokotemperaturnye pokrytiya dlya nikelevykh splavov, uplotnitelnykh metallicheskikh voloknistykh materialov i berillievykh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal fibrous materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 05. Available at: http://www.materialsnews.ru (accessed: June 18, 2018).
12. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Vysokotemperaturnye tonkoplenochnye pokrytiya dlya uplotnitelnyh materialov iz metallicheskih volokon [High-temperature thin-film coverings for sealing materials from metal fibers] // Aviacionnye materialy i tehnologii. 2012. №1. S. 30–36.
13. Afanasev-Khodykin A.N., Rylnikov V.S., Farafonov D.P. Tekhnologiya pajki poristo-voloknistogo materiala iz splava tipa «fekhral» dlya uplotneniya protochnoj chasti GTD [Technology soldering porous fibrous material of the alloy of the «fehral» to seal the flow part of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 02. Available at: http://www.viam-works.ru (accessed: June 15, 2018). DOI: 10.18577/2307-6046-2014-0-1-2-2.
14. Fei W., Kuiry S.C., Seal S. Inhibition of Metastable Alumina Formation on Fe–Cr–Al–Y Alloy Fibers at High Temperature Using Titania Coating // Oxidation of Metals. 2004. Vol. 62. Issue 1–2. P. 29–44.
15. Sporer D., Refke A., Dratwinski M. et al. Increased Efficiency of Gas Turbines // Sulzer Technical Review. Available at: http://www.sulzer.com/-/media/files/about-us/sulzer-technical-review/str-archive/2008/_2_4_sporer_e.ashx (accessed: June 25, 2018).
In the present days scientific and technical progress requires from the scientists new materials, capable to keep the working capacity in the conditions of high power and heat loads. In this regard it is perspective to use ultrahigh-temperature oxygen-free ceramics as material for the space equipment, bearing functional loadings at ultrahigh temperatures. In article the main properties, methods of synthesis and perspective of use of ultrahigh-temperature ceramics based on hafnium borides and zirconium, metal composite materials based on titanium, reinforced by continuous fibers of silicon carbide, and also crystal indicators of maximum temperatures are considered.
On the basis of the analysis of literary data it is established that at high temperatures on ceramics surface based on hafnium borides and zirconium the oxide layer possessing sufficient for expected operating conditions mechanical strength and interfering further oxidation of material that has to promote the greatest possible preservation of geometry of the product influencing aerodynamic characteristics is formed.
It is shown that reinforcing of titanium matrix by ceramic fibers of silicon carbide allows to increase mechanical strength in the cross direction in one and a half time that gives the chance to apply such composites in designs of jet engines as the material keeping working capacity at high temperatures.
Expediency of use of crystal indicators of maximum temperatures based on silicon carbide along with traditional measuring instruments for ensuring control of temperatures of elements of the heat-shielding working at high temperatures is established.
By results of work prospects of oxygen-free ceramics as material for manufacturing of thermal protection of reusable spacecrafts, leading edges and stabilizers of aviation
2. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozitsionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij khimicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Vysokotemperaturnye konstruktsionnye kompozitsionnye materialy na osnove stekla i keramiki dlya perspektivnykh izdelij aviatsionnoj tekhniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
4. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran» / ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
6. Jastin J.F., Jankowiak A. Ultra high temperature ceramics: densification, properties and thermal stability // Aerospace Lab. 2011. No. 3. P. 1–11.
7. Grigorev O.N., Frolov G.A., Evdokimenko Yu.I., Kisel V.M. i dr. Ultravysokotemperaturnaya keramika dlya aviatsionno-kosmicheskoj tekhniki [Ultrahigh-temperature ceramics for aerospace equipment] // Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2012. №8. S. 119–127.
8. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: March 18, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
9. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
10. Lyamin Yu.B., Pojlov V.Z., Pryamilova E.N., Zhakova O.V. Poluchenie ultravysokotemperaturnykh materialov spekaniem kompozitsij na osnove boridov tsirkoniya i gafniya [Receiving ultrahigh-temperature materials by agglomeration of compositions on the basis of zirconium and hafnium borides] // Vestnik PNIPU. Ser.: Mashinostroenie, materialovedenie. 2016. T. 18. №1. S. 147–158.
11. Sorokin O.Yu., Solntsev S.St., Evdokimov S.A., Osin I.V. Metod gibridnogo iskrovogo plazmennogo spekaniya: princip, vozmozhnosti, perspektivy primeneniya [Hybrid spark plasma sintering method: principle, possibilities, future prospects] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 11–16. DOI: 10.18577/2071-9140-2014-0-s6-11-16.
12. Kelina I.Yu., Shatalin A.S., Chevykalova L.A. i dr. Sostoyanie i perspektivy razrabotki ultravysokotemperaturnykh keramicheskikh materialov dlya primeneniya v giperzvukovykh aviakosmicheskikh oektakh [Condition and perspectives of development of ultrahigh-temperature ceramic materials for application in hyper sound aerospace objects] // Aviatsionnaya promyshlennost. 2011. №1. S. 40–45.
13. Pryamilova E.N., Pojlov V.Z., Lyamin Yu.B. Termokhimicheskaya stojkost keramiki na osnove boridov tsirkoniya i gafniya [Thermochemical firmness of ceramics on the basis of zirconium and hafnium borides] // Vestnik PNIPU. Ser.: Khimicheskaya tekhnologiya i biotekhnologiya. 2014. №4. S. 55–67.
14. Savino R., De Stefano Fumoa M., Silvestroni L., Sciti D. Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials // Journal of the European Ceramic Society 2008. Vol. 28. P. 1899–1907.
15. Fahrenholtz W.G., Wuchina E.J., Lee W.E., Zhou Y. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications. The American Ceramic Society, 2014. P. 441.
16. Izotova A.YU., Grishina O.I., SHavnev A.A. Kompozitsionnye materialy na osnove titana, armirovannye voloknami (obzor) [Fiber-reinforced titanium based composites (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №5 (53). St. 05. URL: http://www.viam-works.ru (accessed: May 07, 2018). DOI: 10.18577/2307-6046-2017-0-5-5-5.
17. Grishina O.I., Kochetov V.N., Shavnev A.A., Serpova V.M. Aspecty primeneniya vysokoprochnyh i vysokomodulnyh voloknistyh metallicheskih kompozitsionnyh materialov aviatsionnogo naznacheniya (obzor) [Aspects of application of high-strength and high-modulus fiber metal composite materials for aeronautical purpose (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 05. URL: http://www.viam-works.ru (accessed: May 07, 2018). DOI: 10.18577/2307-6046-2014-0-10-5-5.
18. Nochovnaya N.A., Alekseev E.B., Izotova A.YU., Novak A.V. Pozharobezopasnye titanovye splavy i osobennosti ikh primeneniya [Fireproof titanium alloys and features of their application] // Titan. 2012. №4 (38). S. 42–46.
19. Shchetanov B.V. Material plitki dlya vneshnego vysokotemperaturnogo teplozashchitnogo pokrytiya orbitalnogo korablya «Buran» [Tiles for external heat-protective coating for «Buran» reusable spaceship] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 41–50.
20. Mikheev S.V., Stroganov G.B., Romashin A.G. Keramicheskie i kompozitsionnye materialy v aviatsionnoj tekhnike [Ceramic and composite materials in aviation engineering]. M.: Alteks, 2002. 276 s.
21. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
22. Buchilin N.V., Lyulyukina G.Yu., Varrik N.M. Vliyanie rezhima obzhiga na strukturu i svojstva vysokoporistyh keramicheskih materialov na osnove mullita [Influence of the mode of roasting on structure and property of high-porous ceramic mullite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5. St. 04. Available at: http://www.viam-works.ru (accessed: May 07, 2018). DOI: 10.18577/2307-6046-2017-0-5-4-4.
23. Vlasov V.I., Zalogin G.N., Zemlyanskij B.A., Kusov A.L. i dr. Ob izmereniyakh temperatury poverkhnosti materialov, nagrevaemykh potokom plazmy [About temperature measurements of surface of the materials which are heated up by flow of plasma] // Fiziko-khimicheskaya kinetika v gazovoj dinamike. 2008. №6. S. 203–234.
Weights of samples, acid mixtures and methods for dissolving samples for determination of harmful impurities and impurities by the mass spectrometric method of analysis were selected. The settings of the attachment of hydride vapor generation were determined to determine the content of Se and As in nickel alloys by mass spectrometric analysis with hydride vapor generation.
The conditions for preparing the surface of samples of nickel alloys, the effect of surface roughness on the RMS of the results obtained for the optical-emission and mass spectrometric methods with laser sampling are chosen. The conditions for measuring and adjusting the instruments for all the above methods are estimated and chosen.
Based on the studies carried out, the following are developed and certified:
– MI 1.2.052–2013 «Method for measuring the mass fraction of harmful impurities (P, Mn, Fe, Cu, Zn, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi) in nickel alloys by the mass method spectrometry with inductively coupled plasma»;
– MI 1.2.053–2013 «Method for measuring the mass fraction of impurities (B, Si, Ca, Mg) in nickel alloys by inductively coupled plasma mass spectrometry»;
– MI 1.2.060–2014 «Method for measuring the mass fraction of harmful impurities (As, Se) in nickel alloys by mass spectrometry with inductively coupled plasma with hydride vapor generation";
– MI 1.2.061–2014 «Method for measuring the mass fraction of alloying elements and impurities in nickel alloys using the optic-emission method of analysis»;
– MI 1.2.071–2015 «Methods for measuring the mass fraction of alloying elements and im
2. Zagvozdkina T.N., Karachevtsev F.N., Dvoretskov R.M., Mekhanik E.A. Primenenie optiko-fizicheskikh metodov izmerenij dlya issledovanij sostava novykh aviatsionnykh materialov [Application of optic physical methods of measurements for researches of structure of new aviation materials] // Metrologiya. 2015. №1. S. 60–68.
3. Kablov E.N., Petrushin N.V., Parfenovich P.I. Konstruirovanie litejnykh zharoprochnykh nikelevykh splavov s polikristallicheskoj strukturoj [Designing of cast heat resisting nickel alloys with polycrystalline structure] // Metallovedenie i termicheskaya obrabotka metallov. 2018. №2 (752). S. 47–55.
4. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologij ikh proizvodstva dlya aviatsionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
5. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
6. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
7. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnykh aviatsionnykh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
8. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
9. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
10. Ovsepyan S.V., Lomberg B.S., Grigoreva T.I., Bakradze M.M. Zharoprochnyj deformiruemyj svarivaemyj splav dlya detalej GTD s nizkim temperaturnym koeffitsientom linejnogo rasshireniya [Heat resisting deformable welded alloy for GTE details with low temperature coefficient of linear dilatation] // Metallurg. 2013. №7. C. 61–65.
11. Yakimovich P.V., Alekseev A.V. Opredelenie galliya, germaniya, myshyaka i selena v zharoprochnyh nikelevyh splavah, mikrolegirovannyh RZM, metodom ISP-MS [Determination of gallium, germanium, arsenic and selenium contents in heat-resistant nickel alloys microalloyed by REM using ICP-MS] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 09. Available at: http://viam-works.ru (accessed: June 15, 2018). DOI: 10.18577/2307-6046-2015-0-3-9-9.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Karachevtsev F.N., Alekseev A.V., Letov A.F., Dvoretskov R.M. Plazmennye metody analiza elementnogo khimicheskogo sostava nikelevykh splavov [Plasma methods of nickel alloys elemental chemical composition analysis] // Aviacionnye materialy i tehnologii. 2017. №S. S. 483–497. DOI: 10.18577/2071-9140-2017-0-S-483-497.
14. Striganov A.R., Odintsova G.A. Tablitsy spektralnykh linij atomov i ionov: spravochnik [Tables of spectral lines of atoms and ions: directory]. M.: Energoizdat, 1982. 600 c.
15. Vajnshtejn L.A., Sobelman I.I., Yukov E.A. Vozbuzhdenie atomov i ushirenie spektralnykh linij [Excitation of atoms and broadening of spectral lines]. M.: Nauka, 1979. 320 s.
Features of destruction of steel ropes (cables) from steels 60 and 55 with galvanothermic coatings on the basis of zinc, and springs from steel 51ХФА are considered.
The studies were carried out with a scanning electron microscope JSM-6490LV with an attachment for X-ray spectral analysis of INCA x-sight. Also, the optical microscope Olympus GX51F was used.
Analysis of the chemical composition of the materials was performed by infrared absorption spectroscopy on a LECO CS-600 instrument and atomic emission method with inductively coupled plasma on a Varian 730 ES device in accordance with GOST 22536.0-GOST 22536.9. Tests of cables and individual wires on stretching were performed on an electromechanical testing machine Zwick / Roell Z100; tests on the wear of springs in the joint were carried out for 900 hours.
The conducted studies showed that the material of the products (steel 60, steel 55 and steel 51ХФА) meets the requirements of the normative documentation on the composition, structure and content of non-metallic inclusions. The presence of zinc coating on wire ropes does not affect the nature of the destruction.
The cause of the destruction of the steel rope was a significant plastic deformation near the tip due to the action of the complex static load. It is shown that the breakage of individual wires of the cable of the foot control is associated with the formation of risks or other defects on their surface, which leads to the formation and growth of fatigue cracks. The cause of premature failure of the springs during the tests was the presence of contact fatigue, which was promoted by a high level of stress under asymmetric loading. It is shown that the operation of springs under conditions of increased stresses leads to the formation of fragile intergranular fracture in the fatigue zones.
The descriptions of the differences in the structure of the fractures obtained from the action of the complex stati
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation are the base of innovations, technological leadership and national security of Russia ] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsij [Of what to make the future? Materials of new generation, technology of their creation and processing are the base of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
4. Stali i splavy. Marochnik / pod red. V.G. Sorokina, M.A. Gervaseva [There were also alloys. Grade guide / ed. by V.G. Sorokin, M.A. Gervasev]. M.: Intermet Inzhiniring, 2001. 608 s.
5. GOST 7372–79. Provoloka stalnaya kanatnaya. Tekhnicheskie usloviya [State Standard 7372–79. Wire the steel rope. Specifications]. M.: Izd-vo standartov, 2003. 17 s.
6. GOST 1050–2013. Metalloproduktsiya iz nelegirovannykh konstruktsionnykh kachestvennykh i spetsialnykh stalej. Obshchie tekhnicheskie usloviya [State Standard 1050–2013. Steel products from undoped constructional qualitative and special the staly. General specifications]. M.: Standartinform, 2014. 32 s.
7. GOST 14959–2016. Metalloproduktsiya iz ressorno-pruzhinnoj nelegirovannoj i legirovannoj stali. Tekhnicheskie usloviya [State Standard 14959–2016. Steel products from spring and spring undoped and alloy steel. Specifications]. M.: Standartinform, 2017, 28 s.
8. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Zashchita ot korrozii uglerodistykh stalej [Protection against corrosion of carbon steel] // Aviacionnye materialy i tehnologii. 2017. №S. S. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
9. GOST 2172–80. Kanaty stalnye aviatsionnye. Tekhnicheskie usloviya [State Standard 2172–80. Ropes the steel aviation. Specifications]. M.: Izd-vo standartov, 2003. 8 s.
10. Badikov K.A., Savkin A.N., Andronik A.V. Ocenka treshhinostojkosti nizkolegirovannoj stali pri neregulyarnom ciklicheskom nagruzhenii [The evaluation of fracture toughness of low-alloy steels by irregular cyclic loading] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 20–26. DOI: 10.18577/2071-9140-2015-0-S1-20-26.
11. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
12. Kudrya A.V., Sokolovskaya E.A., Nin Khaj Le, Kha Ngok Ngo. Svyaz morfologii vyazkikh izlomov razlichnoj prirody i svojstv konstruktsionnykh stalej [Communication of morphology of ductile fractures of the different nature and properties constructional steels] // Metallovedenie i termicheskaya obrabotka metallov. 2018. №4. S. 36–41.
13. Kudrya A.V., Sokolovskaya E.A, Trachenko V.A. i dr. Izmerenie neodnorodnosti razrusheniya v konstruktsionnykh stalyakh s raznorodnoj strukturoj [Measurement of heterogenity of destruction in constructional stalyakh with diverse structure] // Metallovedenie i termicheskaya obrabotka metallov. 2015. №4. S. 12–18.
14. Kudrya A.V., Sokolovskaya E.A., Nin Khaj Le i dr. Otsenka stroeniya izlomov i struktur v konstruktsionnykh stalyakh s ispolzovaniem kompyuterizirovannykh protsedur [Assessment of structure of breaks and structures in constructional stalyakh with use of the computerized procedures] // Vektor nauki TGU. 2015. №4. S. 44–52.
15. Grigorenko V.B., Morozova L.V. Primenenie rastrovoj elektronnoj mikroskopii dlya izucheniya nachal'nykh stadij razrusheniya [Application of the scanning electron microscopy for studying of initial destruction stages] // Aviacionnye materialy i tehnologii. 2018. №1 (50). S. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
Additive technologies at the moment are one of the advanced ways of producing modern materials. The advantages of these technologies include the ability to manufacture products of virtually any shape, the absence of a large amount of waste, flexible production control with the ability to correct the synthesized product during the manufacturing process, the use of 3D modeling with the subsequent «three-dimensional printing»
At the same time, with the use of additive technologies, it is extremely important to control the quality of the feedstock. As regards powder metallurgy, the chemical composition of the powders of metals and alloys, in particular the content of harmful impurities such as oxygen and nitrogen, is of great importance.
One of the most successfully used methods for determining nitrogen and oxygen in metals and alloys is reductive melting in a vacuum or in the flow of an inert carrier gas. When using this method of analysis to determine oxygen and nitrogen in alloy powders, it was necessary to select a catalyst, a substance that accelerates and supports the burning of metals in the furnace of the device, and also selects the mass of the sample weighed.
In the course of the work, an analysis of the powders of three alloys – EP648, VPr50 and VZh159 was performed. It was found that the mass of the sample does not affect the results of the determination of oxygen and nitrogen in any way, but to obtain the maximum analytical signal the sample should be the largest. The best powder analysis results were obtained using tungsten with tin (LECOCELIIHP 502-173) as a catalyst, with complete convergence of the oxygen and nitrogen contents for the two samples of the same material, and these values are maximum, indicating complete recovery of oxygen and nitrogen from the samples and, as a consequence, the exa
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
4. Rodionov A.I., Efimochkin I.Ju., Bujakina A.A., Letnikov M.N. Sferoidizacija metallicheskih po-roshkov (obzor) [Sphereidizatsiya of metal powders (review)] // Aviacionnye materialy i tehnologii. 2016. №S1 (43). S. 60–64. DOI: 10.18577/2071-9140-2016-0-S1-60-64.
5. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
6. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Materialy Evrazii. 2012. №3. S. 10–15.
7. Grashchenkov D.V., Shchetanov B.V. Efimochkin I.Yu. Razvitie poroshkovoj metallurgii zharoprochnykh splavov [Development of powder metallurgy of hot strength alloys] // Vse materialy. Entsiklopedicheskij spravochnik. 2011. №5. S. 13–26.
8. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
9. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: July 05, 2018). DOI: 10.18577/2307-6046-2014-0-3-1-1.
10. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: July 05, 2018). DOI: 10.18577/2307-6046-2014-0-5-4-4.
11. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Otsenka sootvetstviya novykh materialov s ispolzovaniem SO i MI vysokogo urovnya [Assessment of compliance of new materials with use WITH and MI of high level] // Kompetentnost. 2017. №2. C. 40–46.
12. GOST 17745–90. Stali i splavy. Metody opredeleniya gazov [State Standard 17745–90. There were also alloys. Methods of definition of gases]. M.: Izd-vo standartov, 1990. S. 12.
13. GOST 22598–93. Nikel i nizkolegirovannye splavy nikelya. Metody opredeleniya kisloroda [State Standard 22598-93. Nickel and nickel low-doped alloys]. M.: Izd-vo standartov, 1994. S. 8.
14. ASTME E1019-11. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. ASTM International, 2011. P. 24.
15. Alekseev A.V., Rastegaeva G.Yu., Pakhomkina T.N. Opyt opredeleniya ugleroda, sery, kisloroda i azota v splavakh na osnove niobiya na gazoanalizatorakh firmy Leco [Experience of the determination of carbon, sulfur, oxygen and nitrogen in alloys based on niobium on the gas-analyzers of the Leco firm] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1. St. 03. URL: http://www.viam-works.ru (accessed: July 05, 2018). DOI: 10.18557/2307-6046-2018-0-1-3-3.
During operation, various kinds of oscillations arise in the gas turbine engine blades. The source of oscillations excitation of the blades is the gas influence, moreover, oscillations can arise due to deformation of the rotor. Various damping mechanisms are used to damp vibrations of the blades.
One way to reduce alternating stresses in resonance is to apply special coatings.
This article is focused on the influence of the coating types on damping capacity of a flat specimen in a technological capture with a rig for a vibrodynamic stand in vibration tests based on the first flexural shape.
It is shown that, due to the application of coatings on the edge part, it is possible to improve the damping characteristics of the compressor’s blade roots.
Among the types of studied coatings, the most effective one for increasing the damping capacity and having the lowest Q-factor of the vibrational system is the anti-friction coating VFP-5 based on molybdenum disulfide and graphite, the application of which allows to reduce the amplitude of oscillations of the free end of the sample by 22–29%. A minor effect was shown by a coating based on an aluminum alloy VSDP28, deposited with the ion-plasma method, which reduces the amplitude of oscillations of the free end of the sample by 5–12%. When coatings of TiN / CrN, Ti-TiN and nickel-based alloy SPD-2 are applied on the edges of the samples, an increase of the amplitude of the oscillations of the free end of the samples is observed.
The dependence of the quality factor of the vibrational system on various types of coatings ~30 μm thick was determined, and tribological characteristics of the coatings studied.
A solid lubricating coating of grade VFP-5, deposite
2. Matveev V.V. Dempfirovanie kolebanij deformiruemykh tel [Vibration damping of deformable bodies]. Kiev: Naukova dumka, 1985. 264 s.
3. Adamenko A.Ya. Dempfiruyushchaya sposobnost parnykh rabochikh lopatok gazoturbinnykh dvigatelej v usloviyakh vozdejstviya tsentrobezhnykh sil i temperatury: dis. … kand. tekhn. nauk [Damping capacity of pair working blades of gas turbine engines in the conditions of influence of centrifugal forces and temperature: thesis, Cand. Sc. (Tech.)]. Kiev, 1984. 238 s.
4. Pisarenko G.S., Yakovlev A.P., Matveev V.V. Vibropogloshchayushchie svojstva konstruktsionnykh materialov: sprav. [Vibe absorbing properties of constructional materials: directory]. Kiev: Naukova dumka, 1971. 376 s.
5. Pisarenko G.S., Kaminer A.A. Aerodinamicheskoe dempfirovanie kolebanij lopatok turbomashin [Aerodynamic vibration damping of blades of turbomachines]. Kiev: Naukova dumka, 1991. 302 s.
6. Repetskij O.V. Kompyuternyj analiz dinamiki i prochnosti turbomashin [Computer analysis of dynamics and durability of turbomachines]. Irkutsk: Izd-vo IrGTU, 1999. 301 s.
7. Matveev V.V., Yakovlev A.P., Balyuk A.D., Rzhavin L.N. Issledovanie dempfiruyushchikh svojstv zamkovogo soedineniya kompressornykh lopatok pri povyshennoj temperature [Research of damp properties of lock connection of compressor blades at elevated temperature] // Termoprochnost materialov i konstruktivnykh elementov. Kiev: Naukova dumka, 1967. Vyp. 4. S. 396–401.
8. Ospennikova O.G., Muboyadzhyan S.A., Doronin O.N., Gorlov D.S. Issledovanie dempfiruyushchej sposobnosti ploskikh obraztsov iz titanovogo splava VT6 s pokrytiem [Research of damping capacity of flat samples from BT6 titanium alloy with covering] // Metally. 2018. №2. S. 11–20.
9. Tokar I.G., Zinkovskij A.P., Matveev V.V. K voprosu o vozmozhnostyakh povysheniya dempfiruyushchej sposobnosti rabochikh lopatok sovremennykh gazoturbinnykh dvigatelej [To question of opportunities of increase of damping capacity of working blades of modern gas turbine engines] // Problemy prochnosti. 2003. №4. S. 58–68.
10. Gorlov D.S., Shchepilov A.V. Issledovanie dempfiruyushchej sposobnosti kompozitsii «splav–pokrytie» posle ispytanij na zharostojkost i korrozionnuyu stojkost [Study of the damping capacity of the «alloy–coating» composition after tests on heat resistance and corrosion resistance] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 62–69. DOI: 10.18577/2071-9140-2017-0-4-62-69.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov YA.A. Ionno-plazmennye zashchitnye pokrytiya dlya lopatok gazoturbinnykh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S. 42–47.
12. Muboyadzhyan S.A., Budinovskij S.A. Ionno-plazmennaya tehnologiya: perspektivnye protsessy, pokrytiya, oborudovanie [Ion-plasma technology: prospective processes, coatings, equipment] // Aviacionnye materialy i tehnologii. 2017. №S. S. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
13. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennykh detalej gazoturbinnykh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
14. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
15. Sibileva S.V., Karimova S.A. Obrabotka poverhnosti titanovyh splavov s celyu obespecheniya adgezionnyh svojstv [Surface treatment of titanium alloys to provide adhesion properties] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 25–35.
16. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Uprochnenie poverkhnosti titanovykh splavov metodom ionnoj implantatsii i ionnogo modifitsirovaniya [Hardening of the surface of titanium alloys by ion implantation method and ionic modification] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.