Articles
Ni-based superalloys are widely used in the aviation, energy and nuclear industries. They are used in conditions of high temperatures, stresses and corrosive medium, which is why the issue of oxidation resistance is actual. The article describes the results of recent studies aimed at increasing the corrosion resistance of high-temperature Ni-based alloys. Traditionally, the issue of increasing corrosion resistance is solved by a variation in the chemical composition. Elements such as aluminum and chromium contribute to the formation of a complex oxide film on the metal surface. This has a beneficial effect on the operational characteristics of the alloy. When analyzing the literature data, the results of studies carried out by the authors on intermetallic alloys were confirmed: doping of alloys with refractory elements such as Mo and Re has a negative effect on the corrosion resistance. Most actively carried out research work in the direction of additional alloying of materials with
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] // Tehnologiya legkih splavov. 2007. №2. S. 6–16.
3. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
4. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
5. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Alloys based on nickel aluminides // Metal Science and Heat Treatment. 1999. Vol. 41. No. 1–2. P. 36–38.
6. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
7. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
8. Padture N.P., Gell M., Jordan E.H. Thermal barrier coatings for gas-turbine engine appli-cations // Science. 2002. Vol. 296. P. 280–284.
9. Yun D.W., Seo S.M., Jeong H.W. et al. The cyclic oxidation behavior of Ni-based superalloy GTD-111 with sulphur impurities at 1100°C // Corrosion Science. 2015. Vol. 90. P. 392–401.
10. Payet M., Marchetti L., Tabarant M., Chevalier J.-P. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation // Corrosion Science. 2015. Vol. 100.
P. 47–56.
11. Cheng H., Leng B., Chen K. et al. EPMA and TEM characterization of intergranular tellurium corrosion of Ni–16Mo–7Cr–4Fe superalloy // Corrosion Science. 2015. Vol. 97. P. 1–6.
12. Xu Y., Yan J., Sun F. et al. Effect of further alloying elements on corrosion resistance of Ni–Cr alloys in molten glass // Corrosion Science. 2016. Vol. 112. P. 647–656.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. He J., Zhang Z., Peng H. et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ+β) Ni–Al alloys // Corrosion Science. 2015. Vol. 98. P. 699–707.
15. Li D., Guo H., Wang D. et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200°C // Corrosion Science. 2013. Vol. 66. P. 125–135.
16. Guo H., Li D., Zheng L. et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200°C // Corrosion Science. 2014. Vol. 88. P. 197–208.
17. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
18. Brenneman J., Wei J., Sun Z. et al. Oxidation behavior of GTD111 Ni-based super alloy at 900°C in air // Corrosion Science. 2015. Vol. 100. P. 267–274.
19. Yan K., Guo H., Gong S. High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres // Corrosion Science. 2014. Vol. 83. P. 335–342.
20. Fuhrmann L., Konrad C.H., Völkl R., Glatzel U. Transition from internal to external oxidation in binary Ni–Zr and ternary Ni–Zr–Y alloys // Corrosion Science. 2015. Vol. 94. P. 218–223.
21. He J., Luan Y., Guo H. et al.The role of Cr and Si in affecting high-temperature oxidation behavior of minor Dy doped NiAl alloys // Corrosion Science. 2013. Vol. 77. P. 322–333.
22. Liu R.D., Jiang S.M., Yu H.J. et al. Preparation and hot corrosion behaviour of Pt modified AlSiY coating on a Ni-based superalloy // Corrosion Science. 2016. Vol. 104. P. 162–172.
23. Han B., Ma Y., Peng H. et al. Effect of Mo, Ta, and Re on high-temperature oxidation behavior of minor Hf doped NiAl alloy // Corrosion Science. 2016. Vol. 102. P. 222–232.
24. Pint B.A., More K.L., Wright I.G. Effect of quaternary additions on the oxidation behavior of Hf-doped NiAl // Oxidation of Metals. 2003. Vol. 59. P. 257–283.
25. Cruchley S., Taylor M.P., Ding R. et al. Comparison of Chromia Growth Kinetics in a Ni-based Superalloy, with and without Shot-peening // Corrosion Science. 2015. Vol. 100. P. 242–252.
26. Tolpygo V.K., Clarke D.R. Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides // High Temperature Material Processes. 2000. Vol. 100. P. 59–70.
27. Yang L., Zheng L., Guo H. The residual stress of oxide scales grown on Ni–Al alloys doped with minor Dy and Y // Corrosion Science. 2016. Vol. 112. P. 542–551.
28. Huang Y., Peng X. The promoted formation of an α-Al2O3 scale on a nickel aluminide with surface Cr2O3 particles // Corrosion Science. 2016. Vol. 112. P. 226–232.
The article presents the results of the study of the effect of aging regimes on the mechanical and corrosion properties of semi-finished products from AK4-1 alloy - rolled plates from 12 to 60 mm thick and forgings 135 and 225 mm thick. The temperature of artificial aging was varied in the range 190–200C, the holding time varied from 5 hours to 22 hours. It was found that with an increase in the holding time from 5 to 18 hours at a temperature of 190 and 200°C, the temporary resistance and the yield strength of the plates is reduced by 10–30 MPa, and in the interval of exposures of 14–18 hours the relative elongation of the plates decreases, especially in the altitude direction . The influence of the temperature-time parameters of aging on the propensity of plates to delaminating and intergranular corrosion in the investigated interval of aging regimes has not been revealed. The study of forgings from the AK4-1h alloy aged at 190 and at 200°C showed that the temporary resistance (
2. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №11. S. 16–21.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Sovremennye alyuminievye i alyuminij-litievye splavy [Modern aluminum and aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 195–211.
6. Kolobnev I.F. Zharoprochnost litejnyh alyuminievyh splavov. 2-e izd. [Thermal stability of cast aluminum alloys. 2nd ed.]. M.: Metallurgiya, 1973. 320 s.
7. Fridlyander I.N., Dobromyslov A.V., Tkachenko E.A., Senatorova O.G. Perspektivnye vysokoprochnye materialy na alyuminievoj osnove [Perspective high-strength materials on aluminum basis] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №7. S. 17–23.
8. Alieva S.G., Altman M.B., Ambarcumyan S.M. i dr. Promyshlennye alyuminievye splavy. 2-e izd., pererab. i dop. [Industrial aluminum alloys. 2nd ed., rev. and. add.]. M.: Metallurgiya, 1984. 528 s.
9. Fridlyander I.N., Antipov V.V., Kolobnev N.I., Yakimova E.G. Konstrukcionnye zharoprochnye alyuminievye splavy [Structural heat resisting aluminum alloys] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehn. sb. M.: VIAM, 2007. C. 172–180.
10. Kolobnev N.I. Zharoprochnost alyuminievyh deformiruemyh splavov [Heat resistance of wrought aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 32–36. DOI: 10.18577/2107-9140-2016-0-1-32-36.
11. Aviacionnye materialy: spravochnik v 13 t. 7-e izd., pererab. i dop. / pod obshh. red. E.N. Kablova. [Aviation materials: the directory in 13 vol. 7th ed., rev. and add. / gen. ed. by E.N. Kablov]. M.: VIAM, 2008. T. 4: Alyuminievye i berillievye splavy. Kn. 1: Deformiruemye alyuminievye splavy. 263 s.
12. Teleshov V.V., Berezin L.G., Osokin L.S. i dr. Mikrostruktura slitka splava AK4-1ch i ee nasledstvennoe vliyanie na strukturu katanoj plity [Microstructure of ingot of alloy AK4-1ch and its hereditary influence on structure of rolled plate] // Cvetnye metally i splavy. 1997. №11–12. S. 93–98.
13. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye de-formiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
14. Teleshov V.V. Razvitie konstrukcionnyh deformiruemyh alyuminievyh splavov sistem Al–Cu i Al–Cu–Mg dlya dlitelnoj raboty pri povyshennyh temperaturah [Development of structural deformable aluminum alloys of systems Al–Cu and Al–Cu–Mg for long work at elevated temperatures] // Tehnologiya legkih splavov. 2009. №4. S. 6–31.
15. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
The state-of-the-art review of domestic and foreign literature on technologies of laser-beam and hydroabrasive cutting of semi-finished products from aluminum alloys is carried out. The main tendencies of development are revealed and the assessment of the current level of researches is carried out. Technological modes of milling, hydroabrasive and laser-beam cutting of sheets from alloy V-1481T1 1,5 and 3,0 mm thick and sheets from alloy 1441Т1 the 1,5 mm thick are investigated and fulfilled. It is established that at laser-beam cutting for sheets from alloy 1481 lack of defects (fin, not cuts) is provided at the radiant power not less than 3 and 4 kW respectively, thus the best quality of edges of the machine cut corresponds to the speed of 10 m/min. for both thickness, and for sheets from alloy 1441 – at the radiant power not less than 2 kW respectively, thus the best quality of edges of the machine cut corresponds to the speed of 7,5 m/min. The best quality of edge of leaf after
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
5. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminij-litievyh splavov primenitelno k panelyam kryla samoleta [Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
6. Fomina M.A., Kutyrev A.E., Klochkova Yu.Yu., Sbitneva S.V. Issledovanie korrozionnyh harakteristik vysokoprochnogo splava sistemy Al–Cu–Li v zavisimosti ot razlichnyh rezhimov termicheskoj obrabotki [Research of corrosion characteristics of high-strength alloy of Al–Cu–Li system depending on various modes of heat treatment] // Aviacionnye materialy i tehnologii. 2016. №S2. S. 39–48. DOI: 10.18577/2071-9140-2016-0-S2-39-48.
7. Stepanova M.A. Vybor gaza dlya lazernoj rezki metallov [Gas choice for laser-beam cutting of metals] // RITM Mashinostroeniya. 2017. №4. S. 102–104.
8. Gajdachuk V.E., Kostenko A.I. Analiz effektivnosti tehnologii lazernoj obrezki listovyh detalej iz alyuminievyh splavov v aviacionnom proizvodstve [The analysis of efficiency of technology laser scraps of sheet details from aluminum alloys in aviation production] // Voprosy proektirovaniya i proizvodstva konstrukcij letatelnyh apparatov: sb. nauch. tr. Nac. aerokosm. un-ta im. N.E. Zhukovskogo «HAI». 2010. Vyp. 2 (62). S. 85–97.
9. Gajdachuk V.E., Kostenko A.I. Eksperimentalno-teoreticheskij metod optimizacii parametrov processa lazernoj rezki obrazcov materialov iz alyuminievyh splavov po kriteriyu maksimal'noj dolgovechnosti [Experimental and theoretical method of optimization of parameters of process of laser-beam cutting of samples of materials from aluminum alloys by criterion of the maximum durability] // Otkrytye informacionnye i kompyuternye integrirovannye tehnologii: sb. nauch. tr. Nac. aerokosm. un-ta im. N.E. Zhukovskogo «HAI». 2010. Vyp. 48. S. 53–61.
10. Blinkov V.V. Analiz modelej lazernoj rezki metallov v srede neaktivnogo gaza [The analysis of models of laser-beam cutting of metals in the environment of inactive gas] // Tr. in-ta teor. i prikladnoj mehaniki SO RAN. 1999. T. 7 (24). №2. S. 133–150.
11. Panchenko V.Ya., Golubev V.S., Vasilcov V.V. i dr. Lazernye tehnologii obrabotki materialov: sovremennye problemy fundamentalnyh issledovanij i prikladnyh razrabotok [Laser technologies of processing of materials: modern problems of basic researches and applied development]. M.: Fizmatlit, 2009. 664 s.
12. Shmanev V.A., Shulepov A.P., Meshheryakov A.V. Strujnaya gidroabrazivnaya obrabotka detalej GTD [Jet hydroabrasive machining of details of GTE]. M.: Mashinostroenie, 1995. 350 s.
13. Stepanov Yu.S., Barsukov G.V. Sovremennye tehnologicheskie processy mehanicheskogo i gidrostrujnogo raskroya tehnicheskih tkanej [Modern technological processes mechanical and hydrojet patterning technical fabrics]. M.: Mashinostroenie, 2004. 239 s.
14. Stepanov Yu.S., Burnashov M.A., Golovin K.A. Progressivnye tehnologii gidrostrujnogo rezaniya materialov [Progressive technologies of hydrojet cutting of materials]. Tula: Izd-vo TulGU, 2009. 318 s.
15. Kolobnev N.I., Hohlatova L.B., Antipov V.V. Perspektivnye alyuminij-litievye splavy dlya samoletnyh konstrukcij [Perspective aluminum-lithium alloys for aircraft designs] // Tehnologiya legkih splavov. 2007. №2. S. 35–38.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The binder EDT-69N is widely and efficiently used in industry as a part of different polymer composites. The article specifies the main types of materials, created on the basis of these binder, their compositions and application fields in the aviation industry. If it is necessary to obtain materials with improved properties, it is also recommended to modify the composition of the binder and its curing program. Evaluation of the influence of the filler type was carried out by comparing physico-chemical characteristics of the curing process of prepregs on the basis of the binder and the fillers used immediately after the preparation of the samples. For the analysis, thermal analysis methods (differential scanning calorimetry, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and differential thermogravimetric analysis) and IR spectroscopy were used. Comparison of IR spectra of the binder before and after curing at different temperatures made it possible to reveal th
2. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 2, 2018). DOI 10.1857/2307-6046-2016-0-2-7-7
3. Epoksidnoe svyazuyushhee: pat. 2015997 Ros. Federaciya [The epoxy binding; pat. 2015997 Rus. Federation]; opubl. 15.07.94.
4. Epoksidnoe svyazuyushhee dlya stekloplastikov: pat. 2028334 Ros. Federaciya [Epoxy binding for fibreglasses: pat. 2028334 Rus. Federation]; opubl. 19.08.91.
5. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
6. Kutinov V.F., Kireev V.A., Starcev O.V., Shevaldin V.N. Vliyanie klimaticheskogo stareniya na harakteristiki uprugosti i prochnosti polimernyh kompozicionnyh materialov [Influence of climatic aging on characteristics of elasticity and durability of polymeric composite materials] // Uchenye zapiski CAGI. 2006. №4. T. XXXVII. S. 54–64.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N. Materialy novogo pokoleniya // Zashhita i bezopasnost. 2014. №4. S. 28–29.
9. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations ] // Krylya Rodiny. 2016. №5. S. 8–18.
10. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: March 3, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
11. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M. i dr. Svyazuyushhie dlya bezavtoklavnogo formovaniya izdelij iz polimernyh kompozicionnyh materialov [Binding for nonautoclave formation of products from polymeric composite materials] // Klei. Germetiki. Tehnologii. №10. 2013. S. 18–27.
12. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushhih dlya polimernyh kompozicionnyh materialov [Development of FSUE «VIAM» in the field of molten binding for polymeric composite materials] // Polimernye materialy i tehnologii. 2016. T. 2. №2. S. 37–42.
13. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: NOT, 2008. 822 s.
14. Spravochnik po kompozicionnym materialam / pod red. Dzh. Lyubina [Directory on composite materials / ed. Jh. Lyubin]. M.: Mashinostroenie, 1988. T. 1. 448 s.
15. Perepjolkin K.E. Armiruyushhie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymeric composites]. SPb.: NOT, 2009. 386 s.
16. Molchanov B.I., Gudimov M.M. Svojstva ugleplastikov i oblasti ih primeneniya [Properties carbonfibers and areas of their application] // Aviacionnaya promyshlennost. 1997. №3–4. S. 58–60.
17. Kerber M.L., Vinogradov V.M. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2009. 560 s.
18. Aleksashin V.M., Antyufeeva N.V. Razvitie metodov termicheskogo analiza v issledo-vaniyah polimernyh kompozicionnyh materialov [Development of methods of the thermal analysis in researches of polymeric composite materials] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 245–249.
19. Antyufeeva N.V., Aleksashin V.M., Zhelezina G.F., Stolyankov Yu.V. Metodicheskie podhody termoanaliticheskih issledovanij dlya ocenki svojstv prepregov i ugleplastikov [Methodical approaches of thermoanalytical researches for assessment of properties of prepregs and carbonfibers] // Prilozhenie k zhurnalu «Vse materialy. Enciklopedicheskij spravochnik». 2012. №4. S. 18–28.
20. Kutsevich K.E., Aleksashin V.M., Petrova A.P., Antyufeeva N.V. Issledovanie kinetiki reakcij otverzhdeniya kleevyh svyazuyushhih [Research of kinetics of reactions of curing of the glue binding] // Klei. Germetiki. Tehnologii. 2014. №11. S. 27–31.
The article describes the method of mechanical alloying as an alternative for obtaining high-temperature materials based on niobium, the obtaining of which by traditional methods (casting technologies) entails great difficulties. Particular attention was paid to the control of intermediate operations related to the process of mechanical alloying. The evolution of the microstructure, phase and granulometric compositions of composite powders (CP) of the Nb–Si–Ti system at various stages of mechanical doping is considered. It is established that the process of mechanical doping consists of two processes: the actual alloying process, which is controlled by the time of powder formation with the X-ray amorphous structure and the process of creating a fractional composition controlled by a histogram of powder distribution in size. The choice of the most effective method of quality control of alloying KP was made. This method is XRF, the criterion of which is the amorphization of the structu
2. Bewlay B.P., Jackson M.R., Zhao J.-C. et al. Ultrahigh-Teperature Nb-Silicide-Based Composites // MRS Bulletin. 2003. Vol. 28. No. 9. P. 646–653.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobija, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 60–64. DOI: 10.18577/2071-9140-2015-0-1-60-64.
5. Menon E.S.K., Mendiratta M.G., Dimiduk D.M. Oxidation of complex niobium based alloys // International Symposium Niobium; Science & Technology (Orlando, Florida). December2–5, 2001. P. 121–146.
6. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
7. Benjamin J.S. Dispersion Strengthened Superalloys by Mechanical Alloing // Metallurgical Transactions. 1970. Vol. 10. P. 2943–2951.
8. Jackson M.R., Bewley B.P., Rowe R.G., Skelly D.W., Lipsitt H.A. High Temperature Refractory Metall-Intermetallic Composites // The Journal of The Minerals, Metals & Materials Society. 1996. Vol. 48. No. 1. P. 39–44.
9. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
10.Babich B.N., Kolupaeva S.Ya., Kustov Yu.A., Chernyak A.I., Shhetanov B.V. O poluchenii dispersno-uprochnennogo nikel-hromovogo splava metodom mehanicheskogo legirovaniya [About receiving disperse strengthened nickel-chrome alloy method of mechanical alloying] // Poroshkovaya metallurgiya. 1977. №2 (170). S. 53–57.
11. Babich B.N. Dispersnoe uprochnenie i mehanicheskoe legirovanie – novye puti sozdaniya vysokotemperaturnyh aviacionnyh materialov [Disperse hardening and mechanical alloying – new ways of creation of high-temperature aviation materials] // Aviacionnye materialy na rubezhe XX–XXI vekov: sb. nauch. tr. M.: VIAM, 1994. S. 304–313.
12.Shhetanov B.V., Efimochkin I.Yu., Murasheva V.V., Shheglova T.M. Issledovanie NbSi-kompozitov, armirovannyh monokristallicheskimi voloknami α-Al2O3, s barernym pokrytiem i bez nego [Research of the NbSi-composites reinforced by single-crystal fibers α-Al2O3, with barrier coating and without it] // Materialovedenie. 2015. №9. S. 48–53.
13. Zhao J.-C., Jackson M.R., Peluso L.A. Mapping of the Nb–Ti–Si phase diagram using diffusion multiples // Material Science & Engineering: A. 2004. Vol. 372. P. 21–27.
14. Wang D., Yang S., Yang M. et al. Experimental investigation of phase equilibria in the Fe–Nb–Si ternary system // Journal of Alloys and Compounds. 2014. P. 183–192.
15. Honghui X., Yong D., Zhaohui Y. et al. Phase equilibria of the Fe–Nb–Ti system at 900°C // Journal of Alloys and Compounds. 2005. P. 151–155.
Analyzing the causes of failures of units and units of GTE in the course of their long-term operation, as well as the results of bench tests, came to the conclusion that the main cause of the origin of most fatigue defects, leading to destruction, is fretting. Among the various methods of applying protective and hardening coatings on contacting surfaces to prevent fretting, the most technological are vacuum-plasma and ion-implant processing technologies, as well as their combinations. This work was carried out within the framework of strategic direction 17. «Comprehensive anticorrosive protection, hardening, wear-resistant protective and heat-protective coatings». Complex problem 17.3. «Multi-Layer heat-resistant and heat-protective coatings, nanostructured reinforcing erosion and corrosion-resistant, wear-resistant, antifretting coatings to protect parts of the hot tract and compressor GTE and GTU» («Strategic directions of development of materials and technologies for their processi
2. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 13–19.
3. Kablov E.N. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tehnologii, pokrytiya. 2-e izd. [Cast blades of gas turbine engines. Alloys, technologies, coverings. 2nd ed.]. M.: Nauka, 2006. S. 531–534.
4. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
5. Gorlov D.S., Skripak V.I., Muboyadzhyan S.A., Egorova L.P. Issledovanie fretting-iznosa tverdosmazochnogo, shlikernogo i ionno-plazmennogo pokrytij [The research of fretting-wear slip and ion-plasma coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №3. St. 07. Available at: http://www.viam-works.ru (accessed: March 12, 2018). DOI: 10.18577/2307-6046-2017-0-3-7-7.
6. Lesnevskij L.N. Fretting-korroziya pokrytij tipa «tverdaya smazka» v ekstremalnyh usloviyah ekspluatacii [Fretting corrosion of coverings of the solid lubricant type in extreme operating conditions] // Vestnik nauchno-tehnicheskogo razvitiya. 2009. №2 (18). S. 31–35.
7. Putyrskij S.V., Arislanov A.A., Artemenko N.I., Yakovlev A.L. Razlichnye metody povysheniya iznosostojkosti titanovyh splavov i sravnitelnyj analiz ih effektivnosti primen-itelno k titanovomu splavu VT23M [Different methods of wear resistance increase of titanium alloys and comparative analysis of their efficiency for VT23M titanium alloy] // Aviacionnye materialy i tehnologii. 2018. №1. S. 19–24. DOI: 10.18577/2071-9240-2018-0-1-19-24.
8. Muboyadzhyan S.A., Budinovskij S.A. Ionno-plazmennaja tehnologiya: perspektivnye processy, pokrytiya, oborudovanie [Ion-plasma technology: prospective processes, coatings, equipment] // Aviacionnye materialy i tehnologii. 2017. №S. S. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
9. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S. 42–47.
10. Sibileva S.V., Kozlova L.S. Obzor tehnologij polucheniya pokrytij na titanovyh splavah plazmennym elektroliticheskim oksidirovaniem [Review of technologies of applying coatings to titanium alloys by plasma electrolytic oxidation] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 3–10. DOI: 10.18577/2071-9140-2016-0-S2-3-10.
11. Selivanov K.S., Galiakbarov R.F. Povyshenie fretting-stojkosti detalej mashin kompleksnoj vakuumnoj plazmennoj obrabotkoj [Increase fretting firmness of details of machines com-plex vacuum plasma processing] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2011. №7 (84). S. 29–32.
12. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Issledovanie struktury i svojstv zharoprochnyh splavov na osnove alyuminidov titana s mikrodobavkami gadoliniya [Research of structure and properties of hot strength alloys on the basis of titanium aluminides with gadolinium microadditives] // Materialovedenie. 2017. №3. S. 3–10.
13. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
14. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. Izuchenie vliyaniya parametrov zakalki na strukturu i tverdost intermetallidnogo titanovogo orto-splava VTI-4 [The study of the quenching parameters influence on structure and hardness of orthorhombic titanium alu-minide alloy VТI-4] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 12, 2018). DOI: 10.18577/2307-6046-2018-0-2-5-5.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Kurzina I.A., Popova N.A., Nikonenko E.L. i dr. Formirovanie nanorazmernyh in-termetallidnyh faz v usloviyah implantacii ionami alyuminiya titanovyh mishenej [Forming of nanodimensional intermetallidny phases in the conditions of implantation by ions of aluminum of titanic targets ] // Izvestiya RAN. Ser.: Fizicheskaya. 2012. T. 76. №1. S. 74–78.
Despite the increased interest of designers to composite polymeric materials (PCM), aluminum alloys are the main structural material of the aviation industry. Particular attention is paid to aluminum-lithium alloys and hybrid materials based on them, such as SIAL, which are layered materials of a new generation. SIALs are layered hybrid metal-polymer materials, which consist of thin sheets of structural aluminum alloys and GRP based on adhesive melt-type binders and glass fiber fillers with different reinforcement structures. The article provides information on the preparation of the surface of the aluminum-lithium alloy V-1469, which was selected for use in SIAL for the manufacture of wing panel panels. In this paper, the issue of protecting such alloys from corrosion and giving their surfaces special properties, in particu-lar, ensuring good adhesion of epoxy adhesive binders, is considered. Various types of anodic oxidation of the surface of aluminum alloys for bonding are conside
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotayushhih v usloviyah kosmosa [Development of corrosion protection methods for structures operating under space conditions] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 35–40.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
6. Anihovskaya L.I., Pavlovskaya T.G., Dementeva P.A., Petrova A.P. Podgotovka poverhnosti pod skleivanie [Surface preparation under pasting] // Klei. Germetiki. Tehnologii. 2008. №7. S. 32–35.
7. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
8. Kolobova Z.N., Pavlovskaya T.G., Anihovskaya L.I., Karimova S.A. Razrabotka sposobov podgotovki poverhnosti pri remonte kleenyh konstrukcij iz alyuminievyh splavov [Development of ways of surface preparation at repair of glued designs from aluminum alloys] // Aviacionnye materialy i tehnologii. M.: VIAM, 2002. Vyp.: Remontnye tehnologii v aviastroenii. S. 73–76.
9. Fridlyander I.N., Senatorova O.G., Lukina N.F., Antipov V.V. Sloistye alyumopolimernye materialy SIAL [SIAL layered aluminapolymeric materials] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 188–192.
10. Vojtovich V.A. Sposoby podgotovki poverhnosti izdelij iz metallov i splavov [Ways of surface preparation of products from metals and alloys] // Klei. Germetiki. Tehnologii. 2005. №9. S. 19–23.
11. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka alyuminievyh splavov s primeneniem anodnogo oksidirovaniya [Preparation of aluminum alloys using anodic oxida-tion] // Klei. Germetiki. Tehnologii. 2014. №1. S. 34–48.
12. Averyanov E.E. Spravochnik po anodirovaniyu [Directory on anodizing]. M.: Mashinostroenie, 1988. 132 s.
13. Karimova S.A., Kutyrev A.E., Pavlovskaya T.G., Zaharov K.E. Nizkotemperaturnoe uplotnenie anodno-oksidnyh pokrytij na detalyah iz alyuminievyh splavov [Low temperature sealing of anodic oxide coatings on parts of aluminum alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17. DOI: 10.18577/2071-9140-2014-0-4-9-17.
14. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57. DOI: 10.18577/2071-9140-2014-0-1-51-57.
15. Karimova S.A., Zhilikov V.P., Mihajlov A.P. Naturno-uskorennye ispytaniya alyuminievyh splavov v usloviyah vozdejstviya morskoj atmosfery [Natural accelerated tests of aluminum alloys in the conditions of influence of the sea atmosphere] // Korroziya: materialy i zashhita. 2012. №10. S. 1–3.
16. Petrova A.P., Donskoj A.A. Kleyashhie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. 589 s.
17. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: Marcht 20, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
Features of destruction of samples from steel 30ХГСА with galvanotermic coatings on the basis of zinc are analyzed. At formation of a break of the samples tested for grain-boundary brittle destruction, three areas differing on a structure are created. In a near surface zone under a sheeting the area of the maleficiated relief with destruction on the mechanism of a viscous cut is formed. Further the area with a rough relief in which it is possible to allocate a zone of the slowed-down destruction with brittle facets and a zone viscous dimple rupture is created. It is established that when testing for low-cycle fatigue samples from steel 30ХГСА with galvanotermic coatings the centers of destruction are risks or other defects on a steel surface under a covering. In an focal zone the fan-shaped relief is most often observed. In process of removal from the center of destruction fatigue plateaus and grooves are created. In break viscous poles are formed. Research of the destroyed axis made
2. Kobayashi J., Ina D., Yoshikawa N., Sugimoto K. Effects of the addition of Cr, Mo and Ni on the microstructure and retained austenite characteristics of 0,2% C–Si–Mn–Nb ultra-highstrength TRIP-aided bainitic ferrite steels // ISIJ International. 2012. Vol. 52. No. 10. P. 1894–1901.
3. Samojlovich Yu.A. Povyshenie prochnosti zheleznodorozhnyh relsov putem izotermicheskoj zakalki na nizhnij bejnit [Increase of durability of railway rails by isothermal hardening on the lower bainite] // Metallurg. 2012. №10. S. 70–76.
4. Stali i splavy. Marochnik / pod red. V.G. Sorokina, M.A. Gervaseva i dr. [Steels and alloys. Grade guide / ed. by V.G. Sorokin, M.A. Gervasev et al.]. M.: Intermet Inzhiniring, 2001. 608 s.
5. Karimova S.A., Chesnokov D.V. Metallicheskie i nemetallicheskie neorganicheskie pokrytiya dlya zashhity izdelij, ekspluatiruyushhihsya vo vseklimaticheskih usloviyah [Metallic and nonmetallic inorganic coatings for protection of the products which are maintaining in all climatic conditions] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №11. S. 36–41.
6. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
7. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatelya» // Permskie aviacionnye dvigateli: inform. byul. 2014. №S. S. 43–47.
8. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnye pokrytiya dlya zashhity ot korrozii uglerodistyh stalej [Perspective coverings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.
9. Nikiforov A.A., Zakirova L.I., Vinogradov S.S. Termoimmersionnoe pokrytie cink + olovo kontaktnoe [Thermoimmersion covering zinc + tin contact ] // Korroziya: materialy, zashhita. 2016. №8. S. 34–41.
10. Taranceva K.R., Nikolotov A.D. Elektroosazhdenie splava olovo-cink iz stabilizirovannogo pirofosfatnogo elektrolita kak alternativa kadmievomu pokrytiyu [Alloy electrosedimentation tin-zinc from the stabilized pirofosfatny electrolit as alternative to cadmic covering] // Korroziya: materialy, zashhita. 2014. №3. S. 27–30.
11. Grinevich A.V., Erasov V.S., Yakusheva N.A., Terehin A.L. Ustalostnaya dolgovechnost stali VKS-9 v usloviyah simmetrichnogo nagruzheniya «rastyazhenie–szhatie» i «izgib s vrashheniem» [Fatigue life of steel VKS-9 in conditions of symmetric loading «tension–compression» and «bending with rotation»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9. St. 11. Available at: http://www.viam-works.ru (accessed: February 05, 2018.). DOI: 10.18577/2307-6046-2017-0-9-11-11.
12. Gromov V.I., Krotov V.N., Kurpyakova N.A., Sedov O.V., Doroshenko A.V. Vliyanie ostatochnogo austenita na strukturu i svojstva diffuzionnogo sloya stali martensitnogo klassa posle vakuumnoj cementacii [Influence of residual austenite on the structure and properties of diffusion layer of martensitic grade steel after vacuum carburization] // Aviacionnye materialy i tehnologii 2016. №4 (45) S. 3–8. DOI: 10.18577/2071-9140-2016-0-4-3-8.
13. Gordeeva T.A., Zhegina I.P. Analiz izlomov pri ocenke nadezhnosti materialov [The analysis of breaks at assessment of reliability of materials]. M.: Mashinostroenie, 1978. 200 s.
14. Fonshtejn N.M., Bronfin B.M., Shirman A.Z. et al. Kolichestvennoe mikrofrak-tograficheskoe issledovaniya vyazkogo razrusheniya v nizkolegirovannyh stalyah [Quantitative microfractographic researches of viscous destruction in low-alloy steels] // Fizika metallov i metallovedenie. 1982. T. 53. №1. S. 174–179.
15. Badikov K.A., Savkin A.N., Andronik A.V. Ocenka treshhinostojkosti nizkolegirovannoj stali pri neregulyarnom ciklicheskom nagruzhenii [The evaluation of fracture toughness of low-alloy steels by irregular cyclic loading] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 20–26. DOI: 10.18577/2071-9140-2015-0-S1-20-26.
16. Erasov V.S., Nuzhnyj G.A., Grinevich A.V. Ob ocenke povrezhdaemosti metallicheskih materialov metodami mehanicheskih ispytanij [About assessment of damageability of metal materials methods of mechanical tests] // Deformaciya i razrushenie materialov. 2015. №3. S. 42–47.
17. Kudrya A.V., Sokolovskaya E.A., Le Haj Nin, Trachenko V.A., Skorodumov S.V. i dr. Ocenka stroeniya izlomov i struktur v konstrukcionnyh stalyah s ispol'zovaniem kompyuterizirovannyh procedur [Assessment of structure of breaks and structures in constructional stalyakh with use of the computerized procedures] // Vektor nauki TGU. 2015. №4. S. 44–52.
18. Matvienko Yu.G. Modeli i kriterii mehaniki razrusheniya [Models and criteria of fracture mechanics]. M.: Fizmatlit, 2006. 328 s.
19. Grinevich A.V., Nuzhnyj G.A., Bakanov A.V., Ulkin M.Yu., Odincev I.N. Ocenka nesushhej sposobnosti elementov krepezha iz polimernyh kompozicionnyh materialov [As-sessment of bearing capacity of elements of fixture from polymeric composite materials ] // Deformaciya i razrushenie materialov. 2015. №12. S. 38–42.
20. Orlov M.R., Ospennikova O.G., Gromov V.I. Zamedlennoe razrushenie stali 38HN3MA v processe dlitelnoj ekspluatacii [Steel 38ХН3МА delayed fracture in the course of long opera-tion] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. Specialnyj vypusk: Perspektivnye konstrukcionnye materialy i tehnologii. S. 5–10.
21. Bytsenko O.A., Grigorenko V.B., Lukina E.A., Morozova L.V. Razvitie metodov metallofizicheskih issledovanij: metodologicheskie voprosy i prakticheskaya znachimost [Development of methods for metal-physical research: methodological issues and practical significance] // Aviacionnye materialy i tehnologii. 2017. №S. S. 498–515. DOI: 10.18577/2071-9140-2017-0-S-498-515.
Passenger evacuation in the event of a flight accident is often carried out using of inflatable life designs, and in the event of a fire it is important to save the air-tightness and efficiency of the life rafts. In defence of the membranous tissue materials, whereof inflatable life designs are manufacture, heat-reflecting enamel VE-72 is developed from influence of thermal radiation. Research has shown that the heat-reflecting coating of the VE-72 has high technical charac-teristics and also has proved the high efficiency of the heat-reflecting properties of the coating: the duration of the preset overpressure preservation of 20 kPa from exposure of an external heat current of 1,7 W/c2 is 15 minutes even with glue seams, which is 5 times higher than the requirements of the standard TSO-C69c and 3 times higher than the foreign equivalent of art. M-11673 (Air Cruisers Company, USA). Tests of materials on the preservation of leakage under the influence of radiant heat current were carr
2. Technical Standard Order TSO-C69c, Emergency Evacuation Slides, Ramps, Ramp/Slides, And Slide/Rafts. Department of Transportation Federal Aviation Administration Aircraft Certification Service. Washington, DC. 1999. 47 p.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Sposob izgotovleniya ognestojkogo materiala: pat. 2210648 Ros. Federaciya [Way of manufacturing of fire-resistant material: stalemate. 2210648 Rus. Federation]; zayavl. 29.04.02; opubl. 20.08.03.
5. Aqueous epoxy modified acrylic heat-reflecting thermo-insulating coating: pat. CN1434063; filed. 13.02.03; publ. 06.08.03.
6. Escape device for aircraft: pat. US5542629; filed. 31.05.94; publ. 06.08.96.
7. Platonov M.M., Nazarov I.A., Nesterova T.A., Bejder E.Ya. Tkaneplenochnyj material VRT-9 dlya naduvnoj obolochki aviacionnyh spasatelnyh trapov [Membranous tissue material VRT-9 for inflatable shell of rescue ladders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 05. Available at: http://viam-works.ru (accessed: March 22, 2018).
8. Platonov M.M., Nesterova T.A., Nazarov I.A., Bejder E.Ya. Pozharobezopasnyj material na tekstilnoj osnove s poliuretanovym pokrytiem dlya naduvnoj obolochki spasatelnogo trapa [Fabric-based fireproof material with polyurethane coating for inflatable shell of rescue ladder] // Aviacionnye materialy i tehnologii. 2013. №2. S. 50–54.
9. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
10. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
11. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
12. Aircraft Materials Fire Test Handbook: Technical Document DOT/FAA/AR-00/12. U.S. Department of Transportation Federal Aviation Administration. 2000. 235 p.
13. Marker T.R. Refinement of the Radiant Heat Test for Evacuation Slide Materials // International Aircraft Materials Fire Test Working Group (Savannah, GA, US. March 4, 2014). 2014. 12 p.
14. Marker T.R. Evacuation Slide Test Method: Comparison Test Results // International Aircraft Materials Fire Test Working Group Meeting (Solothurn, Switzerland. June 25–26, 2014). 2014. 10 p.
15. Marker T.R. Evacuation Slide Test Method: Comparison of HFG and Power Controller Calibration Methods // International Aircraft Materials Fire Test Working Group (Atlantic City, NJ, US. October 27, 2014). 2014. 12 p.
16. Marker T.R. Slide Evacuation Test Method: Standardization of power control for electrical furnace // International Aircraft Materials Fire Test Working Group Meeting (February 24, 2015). 2015. 13 p.
17. Marker T.R. Evacuation SlideTest Method: Round Robin 4 // International Aircraft Materials Fire Test Working Group Meeting (Bremen, Germany. June 3–4, 2015). 2015. 16 p.
18. Marker T.R. Evacuation Slide Test Method: Standardization of the Power Required for Proper Heat Output of the Furnace; Elimination of the Heat Flux Transducer for Calibration // International Aircraft Materials Fire Test Working Group Meeting (Atlantic City, NJ, US. October 19–20, 2015). 2015. 14 p.
19. Marker T.R. Evacuation Slide Test Method: Update on Recent Tests // International Aircraft Materials Fire Test Working Group (Bordeaux, France. March 16–17, 2016). 2016. 18 p.
20. Marker T.R. Development of a New Test Method for Evacuation Slide Materials: Updated to New Test Method // International Aircraft Materials Fire Test Working Group Meeting (Kansas City, MO, US. June 7, 2016). 2016. 13 p.
21. Marker T.R. Evacuation Slide Materials Test Method: Round Robin 5 // International Aircraft Materials Fire Test Working Group (Mobile, AL. March 7, 2017). 2017. 18 p.
22. Marker T.R. Evacuation Slide Test Method: Comparison of Radiant Heaters Used for Revised Evacuation Slide Test Method // International Aircraft Materials Fire Test Working Group (Cologne, Germany. June 7–8, 2017). 2017. 13 p.
23. Do D. Evacuation Slide Test Method: The Revised Test Method used for The Evacuation Slide Test // International Aircraft Materials Fire Test Working Group (Atlantic City, NJ, US. October 30–31, 2017). 2017. 14 p.
24. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramidnye organoplastiki novogo pokoleniya dlya aviacionnyh konstrukcij [Aramide organic plastics of new generation for aviation designs] // Aviacionnye materialy i tehnologii. 2017. №S. S. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
25. Polimernaya teplootrazhayushhaya kompoziciya dlya pokrytiya: pat. 2467042 Ros. Federaciya [Polymeric heatreflecting composition for coating: pat. 2467042 Rus. Federation]; zayavl. 07.06.11; opubl. 20.11.12.
26. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
In article results of research of tribological properties of model systems of nonskid coatings based on one-component alkyd binding with abrasive fillers like sand and electrocorundum of different fractions was applied. Submitted data can be used when developing nonskid coatings which are actively applied, both in the aviation industry, and in other spheres of national economy. Intelligent approach to the nature and the size of the chosen filler will allow not only to improve considerably functionality of nonskid coating, but also to increase term of its operation. Values of friction coefficient, as one of the main characteristics of this type of coatings, are given. Observations concerning surface qualities and resistance to abrasion are showed. Definition of friction coefficient were carried out on the tribometer CETR UMT-3MT with use of drive of R33HE350 for reciprocating motion on the mode modeling the beginning of slipping of shoe sole on dry nonskid coating. It is shown that ex
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
5. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih soz-daniya i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
6. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
7. Mudrov O.A., Savchenko I.M., Shitov V.S. Spravochnik po elastomernym pokrytiyam i germetikam v sudostroenii [The directory on elastomeric coverings and hermetics in ship-building]. L.: Sudostroenie, 1982. 184 s.
8. Drinberg A.S., Kalinskaya T.V., Udenko I.A. Tehnologiya sudovyh pokrytij [Technology of ship coverings]. M.: LKM-press, 2016. 672 s.
9. Rozenfeld I.L., Rubinshtejn F.I., Zhigalova K.A. Zashhita metallov ot korrozii lakokraso-chnymi pokrytiyami [Protection of metals against corrosion by paint coatings]. M.: Himiya, 1987. 224 s.
10. Denker I.I. Tehnologiya okraski samoletov i vertoletov: ucheb. posobie [Technology of coloring of airplanes and helicopters: manual]. M.: Mashinostroenie, 1980. 190 s.
11. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
12. Nefyodov N.I., Semyonova L.V. Nanesenie lakokrasochnyh pokrytij metodom «syroj po syromu» [The application of paint and varnish coatings by method «crude on crude»] // Aviacionnye materialy i tehnologii. 2013. №4. S. 39–42.
13. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Lakokrasochnye pokrytiya dlya zashhity metallicheskih i polimernyh kompozicionnyh materialov ot stareniya, korrozii i biopovrezhdeniya [Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration] // Aviacionnye materialy i tehnologii. 2017. №S. S. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
14. Semenova L.V., Novikova T.A., Nefedov N.I. Klimaticheskaya stojkost i starenie lakokrasochnogo pokrytiya [Climatic stability and ageing paint coating] // Aviacionnye ma-terialy i tehnologii. 2014. №S3. S. 31–34. DOI: 10.18577/2071-9140-2017-0-S-393-404.
15. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Sistemy lakokrasochnyh pokrytij dlya vertoletnoj tehniki [Systems of paint coatings for helicopter equipment] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
16. Livshic M.L., Pshiyalkovskij B.I. Lakokrasochnye materialy: spravochnoe posobie [Paint and varnish materials: handbook]. M.: Himiya, 1982. 360 s.
17. Patton T.K. Tehnologiya alkidnyh smol. Sostavlenie receptur i raschety [Technology of the alkyd pitches. Creation of compoundings and calculations]. M.: Himiya, 1970. 128 s.
18. Antislip coating materials: pat. KR20150024368 (A); publ. 06.03.15.
19. Antiskid elastic coating and mfg. technology thereof: pat. CN1483518 (A); publ. 24.03.04.
20. Williamson N., O’Donoghue M., Datta V.J. Overview of Anti-Slip Coatings for Structural Steel // Journal of Protective Coatings & Linings. 2003. June. P. 41–49. Available at: http://www.paintsquare.com/jpcl/ (accessed: March 20, 2018).
21. Alifanov E.V., Chajkun A.M., Gorlov D.S., Venediktova M.A. Osobennosti mehanizma treniya elastomernyh materialov razlichnyh tipov. Teoreticheskie i prakticheskie aspekty (obzor) [Features of the mechanism of friction of elastomeric materials of different types. Theoretical and practical aspects (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1 (61). St. 08. Available at: http://www.viam-works.ru (accessed: March 20, 2018). DOI: 10.18577/2307-6046-2018-0-1-8-8.
22. Mur D. Trenie i smazka elastomerov [Friction and lubricant of elastomer]. M.: Himiya, 1977. 262 s.
Selective laser melting (SLM) is a promising technology for complicated configuration details manufacture. Al-Si alloys are the most investigated alloys in selective laser melting manufacture at the time. A mechanical, corrosion and operational performance of SLM and as-cast details are deeply vary because cast structure stands in stark difference to SLM structure. In this article a corrosion behavior of synthesized and heat treated Al–Si–Mg alloy is shown. Also the results of general and intergranular corrosion are shown. The corrosion behavior of AlSi10Mg aluminum alloy with additives of Cu, Zr, Al–Si–Mg system Ce directly depends on structure of a material which in turn depends on manufacturing techniques and modes of thermal processing. In a cast condition the material shows the lowered corrosion resistance owing to formation of large dentritny structure in the course of crystallization. Development of corrosion processes in an alloy made by a SLS method, depends on quantity, the
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Buchbinder D. High Power Selective Laser Melting of Aluminum Parts // Physics Procedia. 2011. Vol. 12. P. 271–278. DOI: 10.1016/j.phpro.2011.03.035.
4. Sercombe T.B., Li X. Selective laser melting of aluminium and aluminium metal matrix composites: review // Materials Technology. 2016. Vol. 31:2. P. 77–85. DOI: 10.1179/1753555715Y.0000000078.
5. Dynin N.V., Ivanova A.O., Hasikov D.V., Oglodkov M.S. Selektivnoe lazernoe splavlenie alyuminievyh splavov (obzor) [Selective laser melting of aluminium alloy (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №8. St. 02. Available at: http://www.viam-works.ru (accessed: March 19, 2018). DOI: 10.18577/2307-6046-2017-0-8-2-2.
6. Aboulkhai N.T., Maskery I., Tuck C. The microstructure and mechanical properties of se-lectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment // Materials Science & Engineering: A. 2016. Vol. 667. P. 139–146. DOI: 10.1016/j.msea.2016.04.092.
7. Read N., Wang W., Essa K. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development // Materials and Design. 2015. Vol. 65. P. 417–424. DOI: 10.1016/j.matdes.2014.09.044.
8. Aboulkhai N.T., Tuck C., Ashcroft I. et al. On the precipitation hardening of selective laser melted AlSi10Mg //The Minerals, Metals & Materials Society and ASM International 2015. Metallurgical and materials transactions A. Vol. 46a, August 2015–3337. DOI:10.1007/s11661-015-2980-7.
9. Pei W., Zhengying W., Zhen C. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior // Applied surface sci-ence. 2007. DOI: 10.1016/j.apsusc.2017.02.215.
10. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science & Engineering: A. 2014. Vol. 590. P. 153–160.
11. Kimura T. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting // Materials Science & Engineer-ing: A. November 17, 2016. DOI: 10.1016/j.msea.2016.11.059.
12. Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting // The Minerals, Metals & Materials Society. January, 2017. DOI: 10.1007/s11837-016-2230-5.
13. Ryabov D.K., Antipov V.V., Korolev V.A., Medvedev P.N. Vliyanie tehnologicheskih faktorov na strukturu i svojstva silumina, poluchennogo s ispolzovaniem tehnologii sel-ektivnogo lazernogo sinteza [Effect of technological factors on structure and properties of Al–Si alloy obtained by selective laser melting] // Aviacionnye materialy i tehnologii. 2016. №S1 (43). S. 44–51. DOI: 10.18577/2071-9140-2016-0-S1-44-51.
14. Ryabov D.K., Morozova L.V., Korolev V.A., Ivanova A.O. Izmenenie mehanicheskih svojstv splava AK9ch., poluchennogo po tehnologii selektivnogo lazernogo splavleniya [Alternation of mechanical features of alloy AK9ch manufactured by selective laser melting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9 (45). St. 02. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2016-0-9-2-2.
15. Ryabov D.K., Zajcev D.V., Dynin N.V., Ivanova A.O. Izmenenie struktury splava AK9ch., poluchennogo selektivnym lazernym spekaniem, v processe termicheskoj obrabotki [Alternation of structure of selective laser melted aluminum alloy AK9ch during heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 03. Available at: http://www.viam-works.ru (accessed: March 19, 2018). DOI: 10.18557/2307-6046-2016-0-9-3-3.
16. Ivanova A.O., Zavodov A.V., Dynin N.V., Fomina M.A. Effektivnost vvedeniya malyh dobavok perehodnyh metallov v splavy tipa AlSi10Mg, prednaznachennye dlya polucheniya izdelij po tehnologii selektivnogo lazernogo splavleniya [Efficiency of complex alloying AlSi10Mg type alloy with transition metals for selective laser melting technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7 (55). St. 01. Available at: http://www.viam-works.ru (accessed: March 19, 2018). DOI: 10.18577/2307-6046-2017-0-7-1-1.
17. Kablov E.N., Lukina E.A., Sbitneva S.V., Hohlatova L.B., Zajcev D.V. Formirovanie metastabilnyh faz pri raspade tverdogo rastvora v processe iskusstvennogo stareniya Al-splavov [Forming of metastable phases at disintegration of solid solution in the course of artificial aging of Al-alloys] // Tehnologiya legkih splavov. 2016. №3. S. 7–17.
18. Sinyavskij V.S., Valkov V.D., Budov G.M. Korroziya i zashhita alyuminievyh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1979. 224 s.
19. Fomina M.A., Kutyrev A.E., Klochkova Yu.Yu., Sbitneva S.V. Issledovanie korrozionnyh harakteristik vysokoprochnogo splava sistemy Al–Cu–Li v zavisimosti ot razlichnyh rezhimov termicheskoj obrabotki [Research of corrosion characteristics of high-strength alloy of Al–Cu–Li system depending on various modes of heat treatment] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 39–48. DOI: 10.18577/2071-9140-2016-0-S2-39-48.
20. Karimova S.A., Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modelirovanie processa vozdejstviya agressivnyh komponentov promyshlennoj atmosfery na metallicheskie materialy v kamere solevogo tumana [Modeling of process of influence of aggressive components of the industrial atmosphere on metal materials in the salt spray chamber] //Aviacionnye materialy i tehnologii. 2015. №1. 86–94.
21. Cabrini M., Lorenzi S., Pastore T. et al. Corrosion behavior of aluminum-silicon alloys obtained by Direct Metal Laser Sintering // Proceedings of the European Corrosion Congress (EUROCORR 2017). 2017. P. 150–158.
22. Revilla R., Liang J., Godet S., De Graeve I. Local Corrosion Behavior of Additive Manu-factored AlSiMg Alloy Assessed by SEM and SKPFM // Journal of Electrochemical Society. 2017. Vol. 164. P. C27–C35.
23. Cabrini M., Lorenzi S., Pastore T. et al. Effetto di trattamenti termici sul comportamento a corrosione di una lega AlSiMg ottenuta mediante Direct Metal Laser Sintering (DMLS) // Atti delle Giornate Nazionali sulla Corrosione e Protezione. XI ed. Ferrara, Italia, 2015 (СD-R).
24. Feliu Jr.S., Maffiotte C., Samaniego A. et al. Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys // Applied Surface Science. Vol. 4. 2011. Р. 257.
25. Liu Y., Wang Z., Ke W. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al // Corrosion. Science. 2014. Vol. 80. P. 169–178.
26. Cabrini M., Lorenzi S., Pastore T. et al. Corrosion resistance of direct metal laser sintering AlSiMg alloy // Surface and Interface Analysis. 2016. Vol. 48. P. 818.
27. Cabrini M., Lorenzi S., Pastore T. et al. Evaluation of corrosion resistance of Al–10Si–Mg alloy obtained by means of Direct Metal Laser Sintering // Journal of Materials Processing Technology. 2016. Vol. 231. P. 326.
28. Cabrini M., Lorenzi S., Pastore T. et al. Effect of heat-treatment on corrosion resistance of DMLS AlSi10Mg alloy // Electrochimica Acta. 2016. Vol. 206. P. 346.
29. ECSS-Q-70-37C. European Cooperation for Space Standartization. Determination of the susceptibility of metals to stress-corrosion cracking. Requirements & Standards Division. Noordwijk, 2008. P. 31.
The studies, showed, that the structure of the manufactured semi-finished products from the alloys VT23M and VT43 is typical for deformable semi-finished of (α+β) titanium alloys. It was noted that the average size of structural components of semi-finished products of VT43 alloy is smaller than that of VT23M semi-finished products. Tensile tests to determine the mechanical properties of samples from sheets and bars of VT23M and VT43 alloys were carried out at room temperature (20°C) and lowered (-60°C) temperatures. Since the sheets of the VT43 alloy were first obtained within the framework of this work, in order to evaluate the anisotropy of the mechanical properties, tensile tests at a temperature of +20°C were carried out in the longitudinal and transverse directions of hot rolling. It is shown that under the same production conditions for the of sheets from the investigated alloys, the alloy VT43 has a 9,6% higher strength, with an equal elongation. The comparison is given for th
2. Aviacionnye materialy: spravochnik v 13 t. 7-e izd., pererab. i dop. / pod obshh. red. E.N. Kablova [Aviation materials: directory in 13 vol., rev. and add. / gen. ed. by E.N. Kablov]. M.: VIAM, 2010. T. 6: Titanovye splavy. 96 s.
3. Shiriaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakaliva-iushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of de-velopment of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviatsionnye materialy i tekhnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
4. Yakovlev A.L., Filatov A.A., Burhanova A.A., Popova Yu.A., Nochovnaya N.A Effektivnost primeneniya titanovogo splava VT23 v novyh izdeliyah «OKB Suhogo» [Efficiency of application of VT23 titanium alloy in new products of «Sukhoi Design Bureau»] // Titan. №2 (40). 2013. S. 39–42.
5. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
6. Lopatin N.V., Bubnov M.V., Rogalev A.M., Korobova N.V., Sidorov A.A. Izotermicheskaya shtampovka zagotovok diska iz splava EP741-NP, poluchennyh metodami poroshkovoj metallurgii [Isothermal forging of EP741-NP alloy disc billets produced by powder metallurgy methods] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 31–37. DOI: 10.18577/2071-9140-2014-0-S5-31-37.
7. Hopev A.I. Kompleksno-legipovannyj titanovyj splav VT23 univepsalnogo ppimeneniya [Complex toughened VT23 titanium alloy of universal application] // Tehnologiya mash-inostpoeniya. 2007. №7. S. 5–11.
8. Hopev A.I. Pazpabotka titanovyh splavov metodom kompleksnogo legipovaniya [De-velopment of titanium alloys by method of complex alloying] // Fiziko-himicheskaya mehanika matepialov. 2006. T. 42. №5. S. 45–50.
9. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: March 20, 2018).
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Stra-tegicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
12. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
13. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanopolimernye sloistye materialy [Titanium-polymer laminated materials] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
14. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
15. Lukina N.F., Dementeva L.A., Serezhenkov A.A. i dr. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
16. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
17. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Perspektivy ispolzovaniya titanovyh splavov v sloistyh kompozicionnyh materialah [Prospects for the use of titanium alloys in laminated composite materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 04. Available at: http://www.viam-works.ru (accessed: March 20, 2018). DOI: 10.18577/2307-6046-2015-0-10-4-4.
18. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.