Articles
The modern model compositions for investment casting represent the complex the mixes, possessing diverse properties that is caused by availability of the big numbers of initial components in their structure. In this regard identification of the general patterns of change of technical characteristics on model compositions in dependences on quantitative structure even basic components, and, therefore, and development of modern model compositions, the models of casting intended for manufacturing of responsible details, represents quite complex challenge quantitative and qualitative choice of initial components.
In this work this task decided by means of mathematical methods of planning of experiment that has allowed to establish the influence of basic components (mutual solvent, the polymer, strengthening component and filler) on some technological properties of model compositions.
Use of the full factor experiment when developing model compositions with the set technological by properties has allowed to determine the extent of influence of quantitative factors (the main components which are a part of model compositions) on dropping temperature and heat stability of model structures. As a result of the carried out experiments it is established that on dropping temperature the main influence renders strengthening component and polymer, and on heat stability temperature the main influence renders polymer and mutual solvent. With increase quantities of strengthening component and polymer in model compositions of its dropping temperature will decrease. Temperature of heat stability of the model compositions will decrease with increase in amount of polymer and mutual solvent in its structure. Thus maintenance of filler, as separate factor, does not make considerable impact on dropping temperature and heat stability of model compositions, but infl
2. Perov N.S. Konstruirovanie polimernykh materialov na molekulyarnykh printsipakh. I. Sozdanie polimernykh materialov s dopolnitelnymi mekhanizmami dissipatsii mekhanicheskoy energii pri nizkikh temperaturakh [Design of polymer materials on the molecular principles. I. The development of polymer materials with additional mechanisms of dissipation of mechanical energy at low temperatures] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 50–55. DOI: 10.18577/2071-9140-2017-0-3-50-55.
3. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Kondrashov S.V., Shashkeyev K.A., Popkov O.V. Sposob vychisleniya effektivnykh parametrov periodicheskoy sredy [A method for calculating effective electromagnetic parameters of a periodic medium] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №6 (54). St. 09. Available at: http://www.viam-works.ru (accessed: November 29, 2018). DOI: 10.18577/2307-6046-2017-0-6-9-9.
5. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and prospects] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
6. Filin V.Yu., Artemev D.M., Ilin A.V., Larionov A.V. O problemakh perekhoda k kolichestvennym otsenkam energoyemkosti razrusheniya pri ispytaniyakh padayushchim gruzom obraztsov naturnoy tolshchiny [Difficulties of the transition to quantitative estimation of fracture energy intensity at drop-weight tear tests of specimens in full thickness] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 87–94. DOI: 10.18577/2071-9140-2017-0-4-87-94.
7. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Kompozitsionnye materialy v avtomobilnoy promyshlennosti (obzor) [Composite materials in automotive industry (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №6 (54). St. 07. Available at: http://www.viam-works.ru (accessed: November 29, 2018). DOI: 10.18577/2307-6046-2017-0-6-7-7.
8. Lityye lopatki gazoturbinnykh dvigateley: splavy, tekhnologiya, pokrytiya / pod obshch. red. E.N. Kablova [Cast blades of gas turbine engines: alloys, technology, coating / gen. ed. By E.N. Kablov]. 2-ye izd. M.: Nauka, 2006. 632 s.
9. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and technologies of VIAM for «Aviadvigatel»] // Permskiye aviatsionnyye dvigateli. 2014. №31. S. 43–47.
10. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
11. Ospennikova O.G., Aslanyan I.R. Napravleniya razvitiya tekhnologii izgotovleniya modelnykh kompozitsiy dlya lopatok i drugikh detaley GTD [Directions of development of the technology of manufacturing model compositions for blades and other parts of the GTE] // Liteynoye proizvodstvo. 2018. №3. S. 20–24.
12. Aslanyan I.R., Ospennikova O.G. Sovremennyye tendentsii razvitiya tekhnologii izgotovleniya modelnykh kompozitsiy dlya litya zharoprochnykh splavov [Modern trends in the development of technology for manufacturing model compositions for casting high-temperature alloys] // Sb. dokl. Vseros. nauch.-tekhnich. konf. «Fundamentalnyye i prikladnyye issledovaniya v oblasti sozdaniya liteynykh zharoprochnykh nikelevykh i intermetallidnykh splavov i vysokoeffektivnykh tekhnologiy izgotovleniya detaley GTD». M.: VIAM, 2017. S. 49–58.
Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Slavutskiy L.A. Osnovy registratsii dannykh i planirovaniya eksperimenta: ucheb. posobiye [Basics of data recording and experiment planning: students guide]. Cheboksary: Izd-vo ChGU, 2006. 200 s.
15. Aslanyan I.R., Shuster L.Sh., Semenov V.I. Opredeleniye faktorov, sushchestvenno vliyayushchikh na fretting-iznashivaniye elektroliticheskikh NiP pokrytiy [Identifying factors that significantly affect the fretting wear of electrolytic NiP coatings] // Vestnik UGATU. 2012. T. 16. №1 (46). S. 57–61.
The interface in natural Nb-Si composites is analyzed for three structural modifications of Nb5Si3.On the basis of the crystal-chemical analysis of the phase conjugation surfaces, using the concept of the lattice of matching nodes, the value of the discrepancy in the interatomic distance of the mating planes is determined and the conclusion is made about the mechanisms of compensation of the lattice mismatch, the degree of deformation of the crystal lattices and the possibility of diffusion processes on the interface for Nb–Si composites with different modifications of the silicide.
Based on the crystal-chemical analysis of the interfacial boundary in the composite Nb–α-Nb5Si3 using the concept of a lattice of coincident nodes, the value of the discrepancy between the interatomic distances in the mating planes is determined: it is 3.8% in a series of atoms perpendicular to the direction of growth, and an order of magnitude less – 0.4% - along the direction of growth. At small (less than 10%) mismatch values, compensation at the interface can occur due to elastic deformations of the mating re-grids, without defects in the crystal structure.
In the composite Nb–β-Nb5Si3 based on the difference of average interatomic distances in the matrix of Nb and the silicide β-Nb5Si3, the value of the dimensional mismatch of the adjacent lattices is at 7.8%. For interphase boundaries with a mismatch of less than 10%, compensation can be achieved by elastic deformation and the formation of an average lattice with a period of ~3Å without defects in the crystal structure.
Crystallochemical analysis of the planes of the interfa
2. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
3. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
4. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnyye Nb–Si-kompozity [High-Temperature Nb – Si Composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyenie. 2011. №SP2. S. 164–173.
5. Svetlov I.L., Kuzmina N.A., Neyman A.V. i dr. Vliyaniye skorosti kristallizatsii na mikrostrukturu, fazovyy sostav i prochnost' in-situ kompozita Nb/Nb5Si3 [Influence of the crystallization rate on the microstructure, phase composition and in-situ strength of the Nb/Nb/Nb5Si3 composite] // Izvestiya Rossiyskoy akademii nauk. Ser.: Fizicheskaya. 2015. T. 79. №9. S. 1294–1299.
6. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobija, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 60–64. DOI: 10.18577/2071-9140-2015-0-1-60-64.
7. Shchetanov B.V., Efimochkin I.Yu., Paegle S.V., Karachevtsev F.N. Issledovanie vysokotemperaturnoj prochnosti in-situ-kompozitov na osnove Nb, armirovannyh monokristallicheskimi voloknami α-Al2O3 [Study of high-temperature strength of Nb–Si–Ti in-situ-composites reinforced by single-crystal α-Al2O3] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 53–59. DOI: 10.18577/2071-9140-2016-0-3-53-59.
8. Loshhinin Yu.V., Dmitrieva V.V., Pahomkin S.I., Razmahov M.G. Teplofizicheskie svojstva kompaktirovannyh kompozitov sistemy Nb–Si v diapazone temperatur ot 20 do 1400°C [Thermophysical properties of Nb–Si system compact composites with the temperature range from 20 to 1400°C] // Aviacionnye materialy i tehnologii. 2017. №2. S. 41–49. DOI: 10.18577/2071-9140-2017-0-2-41-49.
9. Kosevich V.M., Iyevlev V.M., Palatnik L.S., Fedorenko A.I. Struktura mezhkristallitnykh i mezhfaznykh granits [Structure of intergranular and interphase boundaries]. M.: Metallurgiya, 1980. S. 256.
10. Iyevlev V.M., Prizhimov A.S. Mezhzerennyye i mezhfaznyye granitsy v kristallicheskikh materialakh [Intergranular and interphase boundaries in crystalline materials] // Vestnik TGU. T. 15. Vyp. 3. 2010. S. 780–782.
11. Savitskiy E.M., Efimov Yu.V., Bodak O.I. i dr. Sistema niobiy–kremniy–uglerod [System niobium silicon–carbon] // Neorganicheskiye materialy. 1981. T. 17. №12. S. 2207–2210.
12. Kocherzhinskiy Yu.A., Yupko L.M. Shishkin E.A. Diagramma sostoyaniya Nb–Si [Kocherzhinsky Yu.A., Yupko L.M. Shishkin, E.A. Nb–Si state diagram] // Izvestiya akademii nauk SSSR. Ser.: Metally. 1980. S. 206–211.
13. Aronsson B. The crystal structure of Mo5Si3 and W5Si3 // Acta Chemica Scandinavica. 1955. Vol. 9. Р. 1107–1110.
14. Schachner H., Cerwenka E., Nowotny H.N. Neue Silizide vom M5Si3-Typ mit D 88-Struktur // Journal of the American Ceramic Society. 1982. Vol. 65. P. 260–265.
15. Svetlov I.L. Vysokotemperaturnyye Nb–Si kompozity [High-Temperature Nb–Si Composites] // Materialovedeniye. 2010. №9–10. S. 18–38.
16. Xiao Ma, Xiping Guo, Maosen Fu, Haisheng Guo. Crystallographic characteristics of an integrally directionally solidified Nb–Ti–Si based in-situ composite // Scripta Materialia. 2017. Vol. 139. P. 108–113.
17. Sekido N., Hildal K., Sakidja R., Perepezko J.H. Stability of the Nb5Si3 phase in the Nb–Mo–Si system // Intermetallics. 2013. Vol. 41. P. 104–112.
18. Wang F., Luo L., Meng X. et al. Morphological evolution of primary β-Nb5Si3 phase in Nb–Mo–Si alloys // Journal of Alloys and Compounds. 2018. Vol. 741. P. 51–58.
19. Urusov V.S., Eremin N.N. Atomisticheskoye kompyuternoye modelirovaniye struktury i svoystv neorganicheskikh kristallov i mineralov, ikh defektov i tverdykh rastvorov [Atomistic computer simulation of the structure and properties of inorganic crystals and minerals, their defects and solid solutions]. M.: GEOS, 2012. 428 s.
20. Kablov E.N., Kuzmina N.A., Eremin N.N., Svetlov I.L., Neyman A.V. Atomnyye modeli struktury silitsidov niobiya v in-situ kompozitakh Nb–Si [Nuclear models of structure of silicides of niobium in in-situ Nb-Si composites] // Zhurnal strukturnoy khimii. 2017. №3. C. 564–570.
21. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
22. Svetlov I.L., Kuzmina N.A., Zavodov A.V., Zaytsev D.V. Termicheskaya stabilnost poverkhnostey razdela mezhdu niobiyevoy matritsey i g-Nb5Si3 silitsidom v kompozite na osnove sistemy Nb–Si [Thermal stability of interfaces between the niobium matrix and γ-Nb5Si3 silicide in eutectic Nb–Si composites] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №8 (68). St. 03. Available at: http://www.viam-works.ru (accessed: November 12, 2018). DOI: 10.18577/2307-6046-2018-0-8-28-37.
23. Marchenko E.I., Kuz'mina N.A., Eremin N.N. Lokalizatsiya pozitsij primesej ugleroda v kristallicheskikh strukturakh polimorfnykh modifikatsij Nb5Si3 po dannym atomisticheskogo komp'yuternogo modelirovaniya [Localization of positions of impurity of carbon in crystal structures of polymorphic updatings of Nb5Si3 according to atomistic computer modelling] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3 (51). St. 04. Available at: http://www.viam-works.ru (accessed: November 12, 2018) DOI: 10.18577/2307-6046-2017-0-3-4-4.
This paper is a work of investigating the structural features of VKNA-type Ni3Al-based alloys, made by selective laser melting (SLM) in several conditions: directly after synthesis, thermal and gas-static treated. The main features grain structure formation are shown depending on the content of carbon in the alloys. In previous scientific research it was established that crystallization for VIN5 and VKNA-1VR alloys obey the normal crystallization law. Right after the melting, matrix for VIN5 and VKNA-1VR is a g-solid solute, and dispersed pieces of the γ′-phase are uniformly distributed in the grain volume. Type VKNA25 (VKNA 25R) alloy has another crystallization mechanism: the distribution of alloying elements changes. γ′-phase is now the matrix after synthesis.
The carbon influence and the amount of carbides on the recrystallization process and the formation of grains in the synthesized metal in the process of HIP are considered. It is shown that VKNA25 ( HIP) has practically equi-axed grain formation. Some grains contain twins, as the cause of the formation of which can be both the recrystallization process and micro strain in the process of comprehensive compression at the HIP. VKNA25 (R) has the preferred orientation of the elongated grains in the [001] direction. VIN5 and VKNA25 alloys after the HIP have the γ′-phase particles with a predominantly cubic morphology. VKNA25 (R) has irregular shapes of the γ′-phase parts.
The properties of the short-term strength of intermetallic alloys are determined in comparison with each other in different conditions (even casted). The values of the long-term strength of the synthesized materials right after melting and subsequent HIP are determined. It is shown that the long-term st
2. Lapteva M.A., Belova N.A., Raevskih A.N., Filonova E.V. Issledovanie zavisimosti sherohovatosti, morfologii poverhnosti i kolichestva defektov struktury ot moshhnosti lazera, skorosti skanirovaniya i tipa shtrihovki v zharoprochnom splave, sintezirovannom metodom SLS [Dependence of roughness, surface morphology structure and number of defects on the power of the laser, scanning speed and the type of hatching in the high-temperature alloys synthesized by SLS] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 09. Available at: http://www.viam-works.ru (accessed: October 29, 2018). DOI: 10.18577/2307-6046-2016-0-9-9-9.
3. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Tsvetkova E.V. Osobennosti formirovaniya struktury zharoprochnogo nikelevogo splava ZHS6K-VI pri selektivnom lazernom splavlenii [Features of the formation of the structure of the heat-resistant nickel alloy ZhS6K-VI with selective laser alloying] // Tsvetnyye metally. 2016. №3. S. 57–63. DOI: 10.17580/tsm.2016.03.09.
4. Medvedev P.N., Treninkov I.A., Filonova E.V., Razuvaev E.I. Formirovanie kristallograficheskoy tekstury i struktury zharoprochnykh nikelevykh splavov v protsesse SLS [Formation of crystallographic texture and structure of high-temperature nickel alloys in the process of SLS] // Sb. tr. III Mezhdunar. konf. «Additivnyye tekhnologii: nastoyashcheye i budushcheye». Available at: https://elibrary.ru/item.asp?id=29034328 (accessed: January 28, 2018).
5. Lukina E.A., Filonova E.V., Treninkov I.A. Mikrostruktura i preimushhestvennye kristallograficheskie orientirovki zharoprochnogo nikelevogo splava, sintezirovannogo metodom SLS, v zavisimosti ot energeticheskogo vozdejstviya i termoobrabotki [The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
6. Basak A., Das S. A study on the effects of substrate crystallographic orientation on microstructural characteristics of rené n5 processed through scanning laser epitaxy // Superalloys-2016: proceedings of the 13th International Symposium on Superalloys. 2016. P. 1041–1049.
7. Zavodov A.V., Petrushin N.V., Zaytsev D.V. Mikrostruktura i fazovyy sostav zharoprochnogo splava ZhS32 posle selektivnogo lazernogo splavleniya, vakuumnoy termicheskoy obrabotki i goryachego izostaticheskogo pressovaniya [The microstructure and phase composition of the heat-resistant ZhS32 alloy after selective laser alloying, vacuum heat treatment, and hot isostatic pressing] // Pisma o materialakh. 2017. №7 (2). S. 111–116.
8. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
9. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
10. Kablov E.N. Additivnye tekhnologii – dominanta natsionalnoy tekhnologicheskoy initsiativy [Additive technologies – the dominant of the national technology initiative] // Intellekt i tekhnologii. 2015. №2 (11). S. 52–55.
11. Evgenov A.G., Bazyleva O.A., Korolev V.A., Arginbaeva E.G. Perspektivy primeneniya splava na osnove intermetallida Ni3Al tipa VKNU-4UR v additivnykh tekhnologiyakh [Prospects of Ni3Al-based intermetallic alloy VKNA-4UR application in additive technologies] // Aviacionnyye materialy i tehnologii. 2016. №S1 (43). S. 31–35. DOI: 10.18577/2071-9140-2016-0-S1-31-35.
12. Raevskikh A.N., Petrushin N.V., Chabina E.B. Issledovanie struktury splava ZhS32, poluchennogo metodom selektivnogo lazernogo splavleniya, posle vysokotemperaturnykh mekhanicheskikh ispytaniy [Investigation of the structure of the alloy ZhS32, obtained by the method of selective laser alloying, after high-temperature mechanical tests] // Sb. tr. IV Mezhdunar. konf. «Additivnye tekhnologii: nastoyashchee i budushchee». M., 2018. S. 307–320.
13. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Evgenov A.G., Korolev V.A., Shurtakov S.V. Perspektivy razrabotki vysokoproizvoditelnykh rezhimov selektivnogo lazernogo splavleniya zharoprochnykh splavov na osnove nikelya dlya izgotovleniya detaley GTD [Prospects for the development of high-performance modes of selective laser alloying of superalloy based on nickel for the manufacture of parts of the gas turbine engine] // Sb. tr. III Mezhdunar. konf. «Additivnye tekhnologii: nastoyashchee i budushchee». M., 2017. S. 23.
16. Zhou X., Zhong Y., Shen Zh., Liu W. The surface-tansion-driven Benard conventions and unique sub-grain cellular microstructures in 316L steel selective laser melting // Applied Physics, Materials Science. January, 2018. P. 32. Available at: https://arXiv:1801.01408v1 (accessed: October 9, 2018).
17. Flemings M. Protsessy zatverdevaniya [Processes of solidification]. M.: Mir, 1977. 423 s.
18. Lukina E.A., Orlov M.R., Filonova E.V., Treninkov I.A., Zaytsev D.V. Issledovanie strukturno-fazovogo sostoyaniya zharoprochnykh nikelevykh splavov v protsesse selektivnogo lazernogo splavleniya [Investigation of the structural-phase state of high-temperature nickel alloys in the process of selective laser alloying] // Sb. dokladov III Vseros. nauch.-tekhnich. konf. «Rol fundamentalnykh issledovaniy pri realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda». M.: VIAM, 2016. S. 22.
Microstructure of a rolled 35 mm thickness plate (slab) from wrought intermetallic titanium ortho alloy doped with yttrium has been shown, the microstructure being characterized by primary b-grains stretched along rolling direction, and fine precipitations of ordered intermetallic a2 phase located both inside the grains and in grain boundaries.
The influence of two-stage heat treatment (in particular the 1st stage heating temperature) on microstructure and mechanical properties of the rolled plate has been investigated. The first stage heating temperature varied in the range from 890°С to 1010°С with the step of 30°С. All other parameters (process duration, heating and cooling rates) of the two-stage heat treatment remained unchanged. Aging of the samples was performed in a two-phase (О+b/В2)-area with a subsequent cooling in a furnace at a rate of 150°C per hour.
According to the microstructure analysis results, it was observed that the samples from a rolled plate after being subjected to the selected heat treatment modes possess microstructure which is characterized by plate-like O phase particles and globular a2 phase particles in the b/B2 phase matrix. The complete transformation of a2 phase into the O phase does not occur due to the lack of diffusion mobility of atoms upon the selected aging temperature and duration.
It has been shown that the 1st stage heating temperature increase from 920°C to 980°C leads to the dissolution of large primary O phase plates and to the growth of fine secondary lamellar O phase plate-like precipitated within b-grains.
2. Titanium and titanium alloys: fundamentals and applications / ed. by C. Leyens, M. Peters. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2003. 513 p.
3. Chen W., Li J.W., Xu L., Lu B. Development of Ti2AlNb Alloys: Opportunities and Challenges // Advanced Materials and Processes. 2014. Vol. 172. P. 23–27.
4. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Banerjee D., Gogia A.K., Nandy T.K., Joshi V.A. A new ordered orthorhombic phase in a Ti3AlNb alloy // Acta Metallurgica. 1988. Vol. 36. P. 871–882.
6. Splav na osnove titana i izdelie, vypolnennoe iz nego: pat. 2210612 Ros. Federatsiya. №2001125968/02 [An alloy based on titanium and a product made of it: pat. 2210612 Rus. Federation. No. 2001125968/02]; zayavl. 24.09.01; opubl. 20.08.03.
7. Intermetallidnyy splav na osnove titana: pat. 2405849 Ros. Federatsiya. №2009139791/02 [Intermetallic alloy based on titanium: pat. 2405849 Rus. Federation. No. 2009139791/02]; zayavl. 28.10.09; opubl. 10.12.10, Byul. №34. 5 s.
8. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. Izuchenie vliyaniya parametrov zakalki na strukturu i tverdost intermetallidnogo titanovogo orto-splava VTI-4 [The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2. St. 05. Available at: http://www.viam-works.ru (accessed: November 23, 2018). DOI: 10.18577/2307-6046-2018-0-2-5-5.
9. Zhang S.Z. et al. Phase transformation and microstructure evolution of differently processed
Ti–45Al–9Nb–Y alloy // Intermetallics. 2012. Vol. 31. P. 208–216.
10. Liu Z.G., Chai L.H., Chen Y.Y. Microstructure evolution in rapidly solidified Y added TiAl ribbons // Intermetallics. 2011. Vol. 19. Is. 2. P. 160–164.
11. Zhao L.L., Li G.Y., Zhang L.Q. Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900°C // Intermetallics. 2010. Vol. 18. Is. 8. P. 1586–1596.
12. Chen Y., Si Y., Kong F. Effects of yttrium on microstructures and properties of Ti–17Al–27Nb alloy // Transactions of Nonferrous Metals Society of China. 2006. Vol. 16. Is. 2. P. 316–320.
13. Li B., Kong F., Chen Y. Effect of Yttrium Addition on Microstructures and Room Temperature Tensile Properties of Ti–47Al Alloy // Journal of Rare Earths. 2006. Vol. 24. Is. 3. P. 352–356.
14. Chen Y., Li B., Kong F. Microstructural refinement and mechanical properties of Y-bearing TiAl alloys // Journal of Alloys and Compounds. 2008. Vol. 457. Is. 1–2. P. 265–269.
15. Chen Y., Li B., Kong F. Effects of minor yttrium addition on hot deformability of lamellar
Ti–45Al–5Nb alloy // Transactions of Nonferrous Metals Society of China. 2007. Vol. 17. Is. 1. P. 58–63.
16. Si Y., Chen Y., Liu Z., Kong F. Influence of yttrium on microstructure and properties of Ti–23Al–25Nb alloy after heat treatment // Transactions of Nonferrous Metals Society of China. 2006. Vol. 16. Supplement 2. P. 849–853.
17. Chen Y., Kong F., Han J., Chen Z., Tian J. Influence of yttrium on microstructure, mechanical properties and deformability of Ti–43Al–9V alloy // Intermetallics. Vol. 13. Is. 3–4. 2005. P. 263–266.
18. Chang X., Si J., Gao F., Jing Y., Zhang J. Effect of Gd Addition on Heat Treatment Microstructure of Wought TiAl // Journal of Iron and Steel Research International. 2007. Vol. 14. Is. 5. Supplement 1. P. 26–29.
19. Lia W., Inksonb B., Horitac Z., Xia K. Microstructure observations in rare earth element
Gd-modified Ti–44 at% Al // Intermetallics. 2000. Vol. 8. Is. 5–6. P. 519–523.
20. Xia K., Li W., Liu C. Effects of addition of rare earth element Gd on the lamellar grain sizes of a binary Ti–44Al alloy // Scripta Materialia. Vol. 41. Is. 1. 1999. P. 67–73.
21. Appel F., Paul J.D.H., Oehring M. Gamma titanium aluminide alloys: science and technology. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2011. 745 p.
22. Shiryaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivaiushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of development of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
23. Nochovnaya N.A., Alekseev E.B., Panin P.V., Novak A.V. Issledovanie struktury i mekhanicheskikh svoystv deformiruemogo intermetallidnogo titanovogo splava VIT5, legirovannogo gadoliniem [Study of the structure and mechanical properties of a deformable intermetallic titanium alloy VIT5 doped with gadolinium] // Titan. 2017. №2. S. 21–29.
24. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Issledovanie struktury i svoystv zharoprochnykh splavov na osnove alyuminidov titana s mikrodobavkami gadoliniya [Study of the structure and properties of superalloys based on titanium aluminides with gadolinium microadditives] // Materialovedenie. 2017. №3. S. 3–10.
25. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Zakonomernosti formirovaniya strukturno-fazovogo sostoyaniya splavov na osnove orto- i gamma-alyuminidov titana v protsesse termomekhanicheskoy obrabotki [Patterns of formation of the structural-phase state of alloys based on titanium ortho- and gamma-aluminides in the process of thermomechanical processing] // Vestnik RFFI. 2015. №1 (85). S. 18–26.
26. Alekseev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Deformiruemyj intermetallidnyj titanovyj orto-splav, legirovannyj ittriem. Chsst 1. Issledovanie mikrostuktury slitka I postroenie reologicheskikh krivykh [Wrought intermetallic titanium ortho alloy doped with yttrium Part 1. Research on ingot microstructure and rheological curves plotting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №6 (66). St. 02. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2018-0-6-12-21.
27. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
28. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
29. Kablov E.N. Bez novykh materialov – net budushchego [Without new materials – there is no future] // Metallurg. 2013. №12. S. 4–8.
30. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallidnye splavy na osnove titana i nikelya / pod obshch. red. E.N. Kablova [Intermetallic alloys on based on titanium and nickel / gen. ed. by E.N. Kablov]. M.: VIAM, 2018. 308 s.
Today among most widely used polymer resins for high-temperature composites are polyimide resins. Despite the significant successes achieved over recent decades in the field of optimization of polymerization type polyimide resin compositions, the problems of improving the processability, as well as increasing the working temperature and strength values remain urgent pressing.
The objects of the research are solvent-free polymerization type polyimide resin VS-51 (TU 1-595-12-1682-2017) developed in FSUE “VIAM” and carbon reinforced plastic. Selected monomers and synthetic conditions allowed us to achieve near solvent-free imide-forming mixture of components. The use of ethyl alcohol as a component makes it possible to significantly reduce the toxicity of polyimide resin VS-51. It should also be noted that due to the increased concentration of the resin, the shelf life at -10 °C increases to at least 6 months.
Properties of the cured resin samples are investigated by thermal analysis. The glass transition temperature is 363 °C, the onset temperature of intensive thermal-oxidative degradation is 514 °C, and the mass loss at 500 °C is 3.0%. The heat resistance of cured resin is at the level of foreign and domestic analogues. Samples of carbon reinforced plastic based on the VTkU-2.200 carbon fabric were manufactured and investigated. Samples of carbon reinforced plastic are characterized by the following values of physical parameters: density 1.575-1.592 g/cm3; binder content 36-39%, porosity 0.4-0.6%.
The heat resistance of the obtained samples of carbon reinforced plastic was evaluated using DMA method. The glass transition temperature was 377 ° C, the temperature of the peak of the tangent of the angle of mechanical loss – 409 ° C.
2. Mikhaylin Yu.A. Tekhnologicheskiye i ekspluatatsionnyye kharakteristiki poliimidnykh svyazuyushchikh, prepregov i imidoplastov tipa PMR (obzor) [Technological and operational characteristics of polyimide binders, prepregs and imidoplast type PMR (review)] // Plasticheskiye massy. 1984. №3. S. 17–23.
3. Preparation of polyimides from mixtures of monomeric diamines and esters of polycarboxylic acids: pat. US 3745149; field 29.09.71; publ. 10.07.73.
4. Wilson D. PMR-15 Processing, Properties and Problems – a Review // British Polymer Journal 1988. No. 20. P. 405–416.
5. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Issledovanie vozmozhnosti sozdaniya termoreaktivnogo svyazujushhego na rabochuju temperaturu do 400°C [Study of possibility of thermoset binder creation for operating temperature up to 400°C] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 58–61.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Gulyaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravleniya razvitiya termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Development Directions of heat-resistant carbon–fiber–reinforced–plastics based on polimide and heterocyclic polymers] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 04. Available at: http://www.viam-works.ru (accessed: November 23, 2018). DOI: 10.18577/2307-6046-2014-0-1-4-4.
8. Mikhaylin Yu.A. Termoustoychivyye polimery i polimernyye materialy [Heat-resistant polymers and polymeric materials]. SPb.: Professiya, 2006. 624 s.
9. Muhametov R.R., Dolgova E.V., Merkulova Yu.I., Dushin M.I. Razrabotka bismaleimidnogo termostoikogo svyazuiushchego dlya kompozitsionnyh materialov aviacionnogo naznacheniya [Development of heat-resistant bismaleimide binder for composites for aeronautical application] // Aviacionnye materialy i tehnologii. 2014. №4 (33). S. 53–57. DOI: 10.18577/2071-9140-2014-0-4-53-57.
10. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
11. Guseva M.A. Cianovye efiry – perspektivnye termoreaktivnye svyazujushhie (obzor) [Cyanic esters are prospective thermosetting binders (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 45–50.
12. Pater R.H. The 316 C and 371 C composite properties of an improved PMR polyimide: LaRC-RP46 // The 36th International SAMPE Symposium and Exhibition. San Diego, CA. 1991. R. 15–18.
13. Low toxicity high temperature PMR polyimides: pat. US 5171822 A; field 11.02.92; publ. 15.12.92.
14. Low-toxcity, High-Temperature Polyimides: pat. US 6184333 B1; field 15.01.99; publ. 06.02.01.
15. Kuznetsov A.A., Semenova G.K. Perspektivnyye vysokotemperaturnyye termoreaktivnyye cvyazuyushchiye dlya polimernykh kompozitsionnykh materialov [Perspective high-temperature thermosetting binders for polymer composite materials] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 53. №4. S. 86–96.
Increasing demand for powerful gas turbine and propulsion engines leads to harsher operational conditions (i.e., higher temperature, speed, more tension, aggressive environments, etc.) which in turn require complex processing decisions. Increased efficiency of aircraft engines has been achieved by new design scheme, development of advanced materials and technologies.
The use of ceramic thermal barrier coatings enabled to increase the temperature in hot areas of gas turbines to the maximum value of higher than 1500 °C thus resulting in superior engine performance and efficiency. Although ceramic matrix composites (CMCs) are still prospective materials for the use in gas turbines, their implementation is around the corner due to their improved toughness compared to monolithic ceramics, higher temperature and lower density compared to superalloys.
CMCs are likely to be envisaged for middle and large-sized gas turbine engines as structural material for simple-shaped and thin components like burner linings, sealings, shrouds, etc.
This article highlights the studies on ceramic materials with the «self-healing» effect. It was shown that the use of CMCs with a «self-healing» ability enables elimination of small defects originating during the engine work, thus there is no necessity for landing, emergency engine stops, repairs, etc. In the beginning «self-healing» effect took around 1000 hours, but then researchers shortened the time to a minute at 1000oC by adding a small amount of Mn which in their understanding helps to promote such an ability.
2. Rozenenkova V.A., Kablov E.N., Solntsev St.S., Mironova N.A. Polifunktsionalnyye zashchitnyye tekhnologicheskiye pokrytiya (ZTP) dlya izotermicheskoy shtampovki na vozdukhe v rezhime sverkhplastichnosti diskov iz superzharoprochnykh nikelevykh splavov [Polyfunctional protective technological coatings (PTC) for isothermal punching in air in the mode of superplasticity of disks made of super-strong nickel alloys] // Sb. dokl. konf. «Sovremennyye vysokotemperaturnyye kompozitsionnyye materialy i pokrytiya». M.: VIAM, 2013. S. 10.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2018).
4. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
6. Karimbayev T.D., Luppov A.A., Afanasyev D.V., Palchikov D.S. O formirovanii tekhnicheskikh trebovaniy na polimernyy material perspektivnoy rabochey lopatki ventilyatora TRDD [On the formation of technical requirements for polymer material of a promising working blade of a turbofan] // Dvigatel. 2015. №1 (97). S. 2–8.
7. Karimbayev T.D., Luppov A.A., Afanasyev D.V. Rabochiye lopatki ventilyatorov iz ugleplastika dlya perspektivnykh dvigateley [Working blades of carbon fiber fans for advanced engines] // Dvigatel. 2011. №6 (78). S. 2–9.
8. Eaton H.E., Linsey G.D., Sun E.Y. et al. EBC Protection of SiC/SiC Composites in the Gas Turbine Combustion Environment-Continuing Evaluation and Refurbishment Considerations // ASME Proceedings. Ceramic. 2001. Paper No. 2001-GT-0513.
9. Paul A., Jayaseelan D.D., Venugopal S. UHTC composites for hypersonic applications // American Ceramic Society Bulletin. 2012. Vol. 91. No. 1. P. 22–29.
10. Bongiorno A., Först C.J., Kalia R.K. A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics // MRS Bulletin. 2006. Vol. 31. Р. 410–418.
11. Justin J.F., Jankowlak A. Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability // Aerospace Lab. 2011. Is. 03–08. P. 1.
12. Zhestkov B.E., Terentyeva V.S. Issledovaniye mnogofunktsionalnogo pokrytiya MAI D5, prednaznachennogo dlya zashchity osobozharoprochnykh materialov [Study of the multifunctional coating MAI D5, intended for the protection of extra heat-resistant materials] // Metally. 2010. №1. S. 39–48.
13. Solntsev S.S., Shalin R.e., Isayeva N.V. Reaktsionnospekayemyye keramicheskiye pokrytiya [Reactable ceramic coatings] // Sb. tr. 8-y Vsemir. konf. po keramike i novym materialam. 1995. T. 9. S. 237–242.
14. Cabet C. Review: Oxidation of SiC/SiC Composites in Low Oxidizing and High Temperature Environment // Materials Issues for Generation IV Systems. 2008. Р. 351–366.
15. Solntsev S.S., Isayeva N.V., Shvagireva V.V., Maksimov V.I. Vysokotemperaturnye pokrytiya dlya zashchity splavov i uglerodkeramicheskikh kompozitsionnykh materialov ot okisleniya [High-temperature coatings for the protection of alloys and carbon-ceramic composite materials from oxidation] // Konversiya v mashinostroyenii. 2004. №4. S. 77–80.
16. Ceramic matrix composites take flight in LEAP jet engine. Available at: https://phys.org/news/2017-01-ceramic-matrix-composites-flight-jet.html#jCphttps://phys.org/news/2017-01-ceramic-matrix-composites-flight-jet.html (ac-cessed: March 22, 2018).
17. Takeda M., Sakamoto J., Saeki A., Imai Y., Ichikawa H. High Performance Silicon Carbide Fiber Hi-Nicalon for Ceramic Matrix Composites // Ceramic Engineering and Science Proceedings. 2005. Vol. 16 (4). P. 37–44.
18. Ichikawa H. High Performance SiC Fibers from Polycarbosilane for High Temperature Applications, Key Engineering Materials. 2007. Vol. 352. P. 59–64. DOI: 10.4028/www.scientific.net/KEM.352.59.
19. Yun H.M., Wheeler D., Chen Y., DiCarlo J.A. Thermo-Mechanical Properties of Super, Sylramic SiC Fibers // Ceramic Engineering and Science Proceedings. 2005. Vol. 26 (2). P. 59–65. Available at: https://doi.org/10.1002/9780470291221.ch8 (accessed: March 22, 2018).
20. Ishikawa T. Advances in Inorganic Fibers // Advances in Polymer Science. 2005. Vol. 178. P. 109–144. DOI: 10.1007/b104208.
21. Van Roode M., Price J., Kimmel J. et al. Ceramic Matrix Composite Combustor Liners: A Summary of Field Evaluations // Journal of Engineering for Gas Turbines and Power. 2005. Vol. 129 (1). P. 21–30. DOI:10.1115/1.2181182.
22. Self-Repairing Ceramic Eyed For Aircraft Engines, Shinkansen. Available at: https://www.japanbullet.com/features/self-repairing-ceramic-eyed-for-aircraft-engines-shinkansen (accessed: March 23, 2018).
By production of PKM use binding and the fibrous filler, thus the binding carries out number of functions: will define way of receiving composite material and its such properties, as durability, chemical resistance, warm and moisture resistance, climatic firmness, technological conditions of processing, etc.
In this regard it is important to know properties binding and to provide stability in the course of receiving. Therefore it is necessary to carry out control of the main properties binding both at receiving stage, and in the course of processing in PKM to provide implementation of the guaranteed requirements for their properties.
In article properties binding which are control for carrying out target and incoming inspection thermosetting polymeric binding, and also at stage of tests binding with reference to technology of their processing and receiving PKM on their basis are considered.
At the first stage – receiving binding – important parameters are appearance, the maintenance of flying products, viability, viscosity, gelation time, density. As a rule, these parameters are used at carrying out target and incoming inspection.
At stage of receiving PKM important parameters binding are rheological properties and the curing mode which observance provides obtaining necessary physicomechanical characteristics otverzhdenny binding, thermal effects of transients.
As a part of PKM important parameters otverzhdenny binding are glass transition temperature, tensile strength, compression, bend, relative lengthening, impact strength, adhesion binding to fibrous filler.
For definition of the resource characteristics necessary for establishment
2. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Avi-acionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
3. Nikolayev E.V., Lutsenko A.N., Barbotko S.L., Pavlov M.R., Abramov D.V. Kompleksnyy metodicheskiy podkhod k opredeleniyu sokhranyaemosti svoystv polimernogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove pri vozdeystvii klimaticheskikh i ekspluatatsionnykh faktorov [Comprehensive methodical approach to determining the persistence properties of polymer binder and polymer composite materials based on it under the influence of climatic and operational factors] // Sb. tez. dokl. konf. «Fundamentalnye issledovaniya i poslednie dostizheniya v oblasti zashchity ot korrozii, stareniya i biopovrezhdeniy materialov i slozhnykh tekhnicheskikh sistem v razlichnykh klimaticheskikh usloviyakh». M.: VIAM, 2016. St. 13.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innova-tive developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i be-zopasnost. 2014. №4. S. 28–29.
6. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ikh soz-daniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
7. Babin A.N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: November 14, 2018).
8. Babin A.N., Petrova A.P. Metody ispytaniy i issledovaniy osnovnykh svoystv polimernykh svyazuyushchikh dlya konstruktsionnykh PKM [Test methods and studies of the basic properties of polymeric binders for structural PCM] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №3. S. 52–59.
9. Petrova A.P., Lukina N.F., Melnikov D.A., Besednov K.L., Pavlyuk B.F. Issledovanie svojstv ot-verzhdennyh kleevyh svyazuyushchikh [Research of properties of cured adhesive binders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 06. Available at: http//www.viam-works.ru (accessed: November 14, 2018). DOI: 10.18577/2307-6046-2017-0-10-6-6.
10. Kirienko T.F., Lukina N.F., Kutsevich K.E., Petrova A.P. A Study of the reological proper-ties of Adhesive binders // Polymer Science. Ser.: D. 2016. T. 9. No. 3. P. 295–297.
11. Grashchenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
12. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja po-limernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
13. Antyufeeva N.V., Aleksashin V.M., Zhelezina G.F., Stolyankov Yu.V. Metodicheskie pod-khody termoanatomicheskikh issledovaniy dlya otsenki svoystv prepregov i ugleplastikov [Methodical approaches of thermoanatomical studies for the evaluation of the properties of prepregs and carbon plastics // Vse materialy. Entsiklopedicheskiy spravochnik. Kommentarii k standartam, TU, sertifikatam. 2012. №4. S. 18–22.
14. Antyufeeva N.V., Komarova O.A., Pavlovskij K.A., Aleksashin V.M. Opyt primeneniya kalorimetricheskogo kontrolya reakcionnoj sposobnosti preprega KMU-11tr [Practice of the calorimetric control reactionary ability prepreg KMU-11tr] // Trudy VIAM. 2014. №2. St. 06. Available at: http://viam-works.ru (accessed: November 15, 2018). DOI: 10.18577/2307-6046-2014-0-2-6-6.
15. Deyev I.S., Kobets L.P. Issledovanie mikrostruktury i osobennostey razrusheniya epoksidnykh matrits [Study of the microstructure and features of the destruction of epoxy matrices] // Klei. Germetiki. Tekhnologii. 2013. №5. S. 19–27.
16. Kobets L.P., Deyev I.S. Strukturoobrazovanie v termoreaktivnykh svyazuyushchikh i matrit-sakh kompozitsionnykh materialov na ikh osnove [Structure formation in thermosetting binders and matrices of composite materials based on them] // Rossiyskiy khimicheskiy zhurnal. 2010. LIV. №1. S. 67–78.
Abstract of the article "The effect of gaps and overlaps on the mechanical properties of polymer composite materials (review)."
This article discusses the effect of such defects in polymer composite materials as gaps and overlaps, their effect on the strength and rigidity of the material being manufactured.
As is known, the use of polymer composite materials in industry is currently increasing. One of the methods for obtaining parts from composite materials is the automated layout of narrow bands - AFP and the automated layout of wide bands - AFP. Automation is of great importance for the industry, as productivity increases, costs are reduced, waste is reduced. Manual layout can not meet the needs of a developing industry.
However, in the production of complex structures, defects can form - gaps and overlaps, parallel to the direction of the fiber. These defects can reduce the physical and mechanical properties of the material, change the local geometry and microstructure.
Recently, AFP and ATL have been modernized through mathematical modeling, but small gaps and overlaps are still present in the structure of the material and cannot be removed, since these defects are an integral part of the material layout. Gaps and defects of no more than 1.5 - 2 mm in size are allowed.
The results of various experiments showed that the shear strength readings decrease by an average of 5–15%, compressive strength by 12–20%, flexural strength by 12%, and with a combination of several defects, compressive strength can be reduced by 55% .
Since in the manufacture of complex parts it is impossible to remove small gaps and overlaps, it is necessary to reduce their nu
2. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innova-tive developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Hoa S.V. Automated composites manufacturing // Science and Engineering of Composite Material. 2015. No. 3. P. 113.
6. Gharabegi N. Composite Laminates Made by Automated Fiber Placement of Dry Fibers and Vacuum Assisted Resin Transfer Molding. Canada, 2018. 124 p.
7. Timoshkov P.N. Oborudovanie i materialy dlya tekhnologii avtomatizirovannoj vykladki pre-pregov [Equipment and materials for the technology of automated calculations prepregs] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
8. Lan M., Cartié D., Davies P., Baley Ch. Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon-epoxy laminates // Composites: Part A. 2016. No. 82. P. 198–207.
9. Lukaszewicz D.H.-J.A., Ward C., Potter K.D. The engineering aspects of automated prepreg layup: History, present and future // Composites Part B: Engineering. 2012. No. 43. P. 997–1009.
10. Composites World. Available at: http://www.compositesworld.com/articles/a350-xwb-update-smart-manufacturing/ (accessed: October 11, 2018).
11. Seattle Times. URL: http://www.seattletimes.com/business/boeing-aerospace/massive-speedy-robots-ready-to-build-composite-wings-for-boeing-777x/ (accessed: October 11, 2018).
12. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Osobennosti prepregov dlya avtomatizirovannoj vykladki metodami ATL i AFP [Features of prepregs intended for automated laying by ATL and AFP technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 06. Available at: http://www.viam-works.ru (accessed: October 11, 2018). DOI: 10.18577/2307-6046-2015-0-3-6-6.
13. Gunyaev G.M., Gofin M.Ya. Uglerod-uglerodnye kompozicionnye materialy [Carbon-carbon composite materials] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 62–90.
14. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polimernyye kompozitsionnyye materialy dlya izgotovleniya pylezashchitnogo ustroystva perspektivnogo vertoletnogo dvigatelya [Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine] // Aviacionnyye materialy i tehnologii. 2018. №1 (50). S. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
15. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
16. Dushin M.I., Hrulkov A.V., Karavaev R.Yu. Parametry, vliyayushhie na obrazovanie poris-tosti v izdeliyah iz polimernyh kompozicionnyh materialov, izgotavlivaemyh bezavtoklavnymi metodami (obzor) [Parameters that influence the formation of porosity in the products made of polymer composite materials (PCM) produced by out-of-autoclave methods (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 11. Available at: http://www.viam-works.ru (accessed: October 11, 2018). DOI: 10.18577/2307-6046-2015-0-2-10-10.
17. Aviatsiya Rossii [Aviation of Russia]. Available at: https://aviation21.ru/ms-21/ (accessed: September 24, 2018).
18. Lopes C.S., Gürdal Z., Camanho P.P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates // Computers & Structures. 2008. No. 86. P. 897–907.
19. Arian N.M., Fayazbakhsh K., Pasini D., Lessard L. A comparative study of metamodeling methods for the design optimization of variable stiffness composites // Composite Structures. 2014. No. 107. P. 494–501.
20. Pasini Group. Available at: http://pasini.ca (accessed: November 02, 2018).
21. Li X., Hallett S.R., Wisnom M.R. Modelling the effect of Gaps and Overlaps in Automated Fibre Placement (AFP) manufactured laminates // Science and Engineering of Composite Materials. 2015. No. 22 (2). P. 115–129.
22. Vashukov Yu.A. Tekhnologiya i oborudovanie sborochnykh protsessov: ucheb. posobie [Technology and equipment of assembly processes: students guide]. Samara: SGAU, 2011. 179 s.
23. Murashov V.V., Rumyantsev A.F. Defekty monolitnykh detaley i mnogosloynykh kon-struktsiy iz polimernykh kompozitsionnykh materialov i metody ikh vyyavleniya. Chast 1. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Defects of monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 1. Defects of monolithic parts and multilayer structures made of polymer composite materials] // Kontrol. Diagnostika. 2007. №4. S. 23–31.
24. Belnoue J.P.-H., Mesogitis T., Nixon-Pearson O.J. et al. Understanding and predicting defect formation in automated fibre placement pre-preg laminates // Composites: Part A. 2017. No. 102. P. 196–206.
25. Croft K., Lessard L., Pasini D., Hojjati M., Chen J., Yousefpour A. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates // Composites: Part A. 2011. No. 42. P. 484–491.
26. Nik M.A., Fayazbakhsh K., Pasini D., Lessard L. Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement // Composite Structures. 2014. No. 107. P. 160–166.
27. Blom A.W., Lopes C.S., Kromwijk P.J. et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates // Journal of Composite Materials. 2009. No. 43. P. 403–425.
28. Bokhoeva L.A., Chermoshentseva A.S., Ergonov V.P. Issledovanie defektov tipa «otsloy-enie» v elementakh konstruktsiy iz kompozitsionnykh materialov [Investigation of defects of the «detachment» type in structural elements made of composite materials] // Problemy mekhaniki sovremennykh mashin: materialy V Mezhdunar. konf. Ulan-Ude: Izd-vo VSGUTU, 2012. T. 4. S. 18.
29. Iarve E.V., Kim R. Strength prediction and measurement in model multilayered discontinu-ous tow reinforced composites // Journal of Composite Materials. 2004. Vol. 38 (1). P. 5–18.
30. Sawicki A.J., Minguet P.J. The Effect of intraply overlaps and gaps upon the compression strength of composite laminates // Thirty-nineth AIAA structural, dynamics, & materials conferences. Long Beach, CA. 1998. P. 744–54.
31. Fayazbakhsh K., Nik M.A., Pasini D., Lessard L. The effect of gaps and overlaps on the in-plane stiffness and buckling load of variable stiffness laminates made by automated fiber placement // 15th European conference on composite materials. Venice, Italy. June 24–28, 2012. P. 1–8.
Many works were devoted to the influence of the magnetic field of 0.05 - 30 T induction and the duration of exposure in the magnetic field from 1 µs to several days on the mechanical properties of polymers, ion crystals, semiconductors, transition metals, fullerites, technological alloys. A brief analysis of the results in the study of magnetoplastic effects (the phenomena of changes in the plasticity and strength of metals under the action of a magnetic field) was done.
The classification of known and physically justified effects on the basis of thermodynamic analysis of the energy is reported for the systems and the relaxation time of changes induced by the field. Controversial experimental results and their interpretations are discussed. Unified physical mechanisms controlling magnetoplasticity stimulated discussion of magnetoplastic effects simultaneously in nonmetallic solids, where the magnetic field also change structurally sensitive properties.
Most of the magnetoplastic effects, regardless of the type of material, obey a simple rule: transition time decreases with the growth of the magnetic field and the energy transmitted to the crystal lattice. Magnetoplastic effects which, obey this law can be called as "power" effects, i.e. those, which has a value of the magnetic force on the structural elements of the crystal or defects. Another part is characterized by more exotic mechanisms of influence of the field, not limited by the transfer of energy necessary for overcoming potential barriers. It is shown, that the effect of the magnetic field on the subsystem of structural defects is irreversible in many cases, while there are completely irreversible magneto plastic effects. In this case, the system does not return to its original free energy state even if its plastic properties seem to be restored.
<p st
2. Kostorz G., Müllner P. Basic – magnetoplasticity // Zeitschrift für Metallkunde. 2005.
Vol. 96. Is. 7. Р. 703–709.
3. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. Resonance magnetoplasticity in ultralow magnetic fields // Dislocations in solids. Amsterdam: Elsevier, 2008. Vol. 14. Ch. 86. P. 333.
4. Alshits V.I., Darinskaya E.V., Koldayeva M.V., Petrzhik E.A. Magnitoplasticheskiy effekt: osnovnye svoystva i fizicheskie mekhanizmy [Magnetoplastic effect: basic properties and physical mechanisms] // Kristallografiya. 2003. T. 48. №5. S. 826–854.
5. Golovin Yu.I. Magnitoplastichnost tverdykh tel (obzor) [Magnetoplasticity of solids (review)] // Fizika tverdogo tela. 2004. T. 46. Vyp. 5. S. 769–863.
6. Morgunov R.B. Spinovaya mikromekhanika v fizike plastichnosti [Spin micromechanics in plasticity physics] // Uspekhi fizicheskikh nauk. 2004. № 2. S. 131–153.
7. Buchachenko A.L. MASS-Independent Isotope Effects // Journal of Physical Chemistry. B. 2013. Vol. 117. No. 8. P. 2231–2238.
8. Beaugnon E. Physical modeling of anisotropic grain growth at high temperature in local strong magnetic force field // Science Technology of Advanced Materials. 2008. Vol. 9. P. 356–401.
9. Molodov D.A., Bollmann C., Gottstein G. Impact of a magnetic field on the annealing be-havior of cold rolled titanium // Materials Science and Engineering A. 2007. Vol. 467. P. 71–80.
10. Yonenaga I., Takahashi K. Effect of magnetic field on dislocation-oxygen impurity in-teraction in silicon // Journal of Applied Physics. 2007. Vol. 101. P. 568–576.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the pe-riod until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
13. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
14. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termosta-bil'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
15. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
The creation and development of new polymer composites requires continuous improvement of their physicomechanical and performance characteristics. PCMs breakdown begins from their surface often and it is important to provide its solidity and water repellent properties, including for improvement of performance characteristics of materials.
In the aviation industry, hydrophobic compounds are mainly applied at present to tooling processing at molding processes of polymer binders to prevent their adhesion.
Compounds based on organosilicon monomers and oligomers are the most widely used due to their efficiency and availability. One of the essential disadvantages of the use of such compositions is the need for curing to prevent their transfer to material moldable. Therefore, it is important to research the influence of cold curing catalysts on coatings properties and choose optimal ones.
In this work, the anti-adhesive characteristics of several organosilicon compounds – K-21 anti-adhesive lubricant, 136-157M water repellent liquid and GK-10 polymethylphenylsiloxane with hydride groups – were estimated and compared. Coatings were prepared from a solution in hexane by dipping. The best coating was chosen by adhesive strength of materials cured glued together by polyurethane glue PU-2. The completeness of curing of the anti-adhesive coatings was also estimated according to adhesive strength of materials cured before and after extraction with hexane in a Soxhlet device.
The work shows the effective use of catalysts 230-15 and AGM-9 and their optimal content is selected, the optimal composition and concentration of the anti-adhesive coating, as well as the curing mode to achieve the required characterist
2. Nefedov N.I., Haskov M.A., Petrova A.P., Buznik V.M. Issledovanie termicheskih svojstv ftorparafinov i gidrofobnyh pokrytij na ih osnove [Study of the thermal properties of fluori-nated paraffins and hydrophobic coatings on their base] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2017. №2. St. 11. Available at: http://www.viam-works.ru (accessed: Octo-ber 25, 2018). DOI: 10.18577/2307-6046-2017-0-2-11-11.
3. Zhdanov A.A. Gidrofobizatory kremniyorganicheskiye: entsiklopediya polimerov [Orga-nosilicon water repellents: polymers encyclopedia]. M.: Sovetskaya entsiklopediya, 1972. T. 1. S. 625–632.
4. Voronkov M.G., Lasskaya E.A., Pashenko A.A. O prirode svyazi vodoottalkivayushchikh kremniyorganicheskikh pokrytiy s poverkhnostyu gidrofobizirovannykh materialov [On the nature of the connection of water-repellent silicone coatings with the surface of hydro-phobized materials] // Zhurnal prikladnoy khimii. 1965. T. 38. Vyp. 7. S. 1483–1487.
5. Deryagin B.V., Churayev N.V., Muller V.M. Poverkhnostnyye sily [Surface forces]. M.: Nauka, 1985. 398 s.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innova-tive developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
8. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh soz-daniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
9. Panina N.N., Kim M.A., Gurevich Ya.M., Grigoryev M.M., Chursova L.V., Babin A.N. Svyazuyushchiye dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binders for non-autoclaving molding products from polymer composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
10. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE «VIAM» in the field of melt binders for polymer composite materials] // Polimernyye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
11. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
12. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Is-sledovaniye epoksidno-polisulfonovykh polimernykh sistem na osnove vysokoprochnykh kleyev aviatsionnogo naznacheniya [Study of epoxy-polysulfone polymer systems based on high-strength adhesives for aviation purposes] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 7–12.
13. Vorobyev A. Poliefirnyye smoly [Polyester resins] // Komponenty i tekhnologii. 2003. №32. S. 182–185.
14. Dholakiya B. Unsaturated Polyester Resin for Specialty Applications // Polyester. Intechopen access publisher. 2012. P. 167–202. DOI: 10.5772/48479.
15. Gooch J.W. Vinyl Ester Resin // Encyclopedic Dictionary of Polymers. Springer, Sci-ence+Business Media, LLC, 2011. P. 794.
16. Babin A.N., Guseva M.A. Ispolzovaniye reologicheskogo metoda dlya issledovaniya oso-bennostey rastvorimosti komponentov v polimernom svyazuyushchem [The use of rheo-logical methods for study of the solubility of components in polymeric binder] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 05. Available at: http://www.viam-works.ru (accessed: October 25, 2018). DOI: 10.18577/2307-6046-2016-0-6-5-5.
17. Kitaeva N.S., Mukhanova E.E., Deyev I.S. Vysokoteplostoykiye gidrofobnyye pokrytiya dlya teplozashchitnogo materiala na osnove kvartsevogo volokna [High-heatresistant water-proof covering for heat-shielding material on the base of quartz fiber] // Trudy VIAM: el-ektron. nauch.-tekhnich. zhurn. 2013. №6. St. 03. Available at: http://www.viam-works.ru (accessed: October 25, 2018).
18. Boynovich L.B., Emelyanenko A.M., Muzafarov A.M. i dr. Sozdaniye pokrytiy dlya pridaniya supergidrofobnykh svoystv poverkhnosti silikonovykh rezin [Creating coatings to impart superhydrophobic surface properties of silicone rubbers] // Rossiyskiye nanotekhnologii. 2008. T. 3. №9–10. S. 100–105.
19. Galyamov M.O., Nikitin L.N., Nikolayev A.Yu. i dr. Formirovaniye ultragidrofobnykh poverkhnostey osazhdeniyem pokrytiy iz sverkhkriticheskoy dvuokisi ugleroda [Formation of ultrahydrophobic surfaces by deposition of supercritical carbon dioxide coatings] // Kolloidnyy zhurnal. 2007. T. 69. №4. S. 448–462.
20. Bespalov A.S., Buznik V.M., Grashchenkov D.V. i dr. Gidrofobizatsiya poristykh keramich-eskikh materialov s primeneniyem dioksida ugleroda [Hydrophobization of porous ceramic materials using carbon dioxide] // Neorganicheskiye materialy. 2016. T. 52. №4. S. 431–437.
21. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnykh tekhnicheskikh ustroystv arkticheskogo primeneniya [Materials for complex technical devices of arctic use] // Nauchno-tekhnicheskiye problemy osvoyeniya Arktiki. M.: Nauka, 2015. S. 275–285.
22. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
23. Boynovich L.B., Emelyanenko A.M. Gidrofobnyye materialy i pokrytiya: printsipy soz-daniya. Svoystva i primeneniye [Hydrophobic materials and coatings: the principles of crea-tion. Properties and application] // Uspekhi khimii. 2008. T. 77. №7. S. 619–638.
24. Emelyanenko A.M., Boynovich L.B. Primeneniye dinamicheskoy porogovoy obrabotki videoizobrazheniy dlya opredeleniya poverkhnostnogo natyazheniya zhidkostey i uglov smachivaniya [The use of dynamic threshold video processing to determine the surface ten-sion of liquids and wetting angles] // Pribory i tekhnika eksperimenta. 2002. №1. S. 52–57.
25. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: eh-lektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 25, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
In the course of the work, the causes of cracks formation on a large-size item (compressor disk) of VT8 alloy, working as a part of GTU, are investigated. Visual inspection of the disc was carried out. At the rear end of the disk hub there are two cracks that bend around the end of the hub in a perpendicular direction and have an outlet to the inner and outer surfaces of the disk. On the facet, close to a development of cracks are observed in dark areas of the surface. Inspection of the disk surface and microstructural studies have shown that the item was exposed to temperatures above 400°C for a long time. Near the chamfer, the thinning of some parts of the silver coating of the inner surface of the disk hub was revealed. It is most likely that there was mechanical abrasion of the coating in this area. Near the chamfer, the thinning of some parts of the silver coating of the inner surface of the disk hub was revealed. It is most likely that there was mechanical abrasion of the coating in this area.
The study of the fracture surface revealed brittle facets on the fracture and a large number of branching secondary cracks. Multiple cracking found on the microsection made across the failure surface. The material composition of the dark areas on the surface of the chamfer includes silver, oxygen and chlorine.
Samples of the alloy ВТ8 were tested in static loading in a 2% HCl solution according to STO 1-595-30-468-2015. It is shown that the type of the fracture surface of the experimental and operational samples is identical. The results of studies indicate that the development of cracks occurred on the mechanism of stress corrosion cracking in the presence of chlorine ions. Thermodynamic analysis is carried out. It is shown that the reaction of the interaction of silver with chlorine and hydrochloric acid occurs at temperatures of 150-2000&
2. Orlov M.R., Puchkov Yu.A., Napriyenko S.A., Lavrov A.V. Issledovaniye ekspluatatsionnogo razrusheniya lopatki ventilyatora aviatsionnogo gazoturbinnogo dvigatelya iz titanovogo splava VT3-1 [Investigation of the operational destruction of a fan blade of an aviation gas turbine engine made of titanium alloy VT3-1] // Titan. 2014. №4 (46). S. 23–30.
3. Orlov M.R., Napriyenko S.A., Lavrov A.V. Fraktograficheskiy analiz ekspluatatsionnogo razrusheniya diska kompressora vysokogo davleniya iz splava VT18U [Fractographic analysis of the operational destruction of the high-pressure compressor disk from the alloy VT18U] // Titan. 2014. №2 (44). S. 16–21.
4. Labkovich D.V. Opyt servisnogo obsluzhivaniya energeticheskikh gazoturbinnykh ustanovok v Respublike Belarus [Experience in servicing power gas turbine plants in the Republic of Belarus] // Novosti teplosnabzheniya. 2014. №4 (164). S. 37–40.
5. Tekhnologicheskiye i ekspluatatsionnyye svoystva titanovykh splavov: ucheb. posobiye / A.G. Illarionov, A.A. Popov [Technological and operational properties of titanium alloys: studies. allowance / A.G. Illarionov, A.A. Popov]. Ekaterinburg: Izd-vo Ural. un-ta, 2014. 137 c.
6. Pavlova T.V., Kashapov O.S., Nochovnaya N.A. Titanovyye splavy dlya gazoturbinnykh dvigateley [Titanium alloys for gas turbine engines] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №5. S. 8–14.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
8. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Vliyanie soderzhaniya zhele-za na mehanicheskie svojstva prutkov iz zharoprochnogo titanovogo splava VT41 [An effect of iron content on mechanical properties of bars made of heat-resistant titanium alloy VТ41] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 02. Available at: http://www.viam-works.ru (accessed: November 07, 2018). DOI: 10.18577/2307-6046-2015-0-3-2-2.
9. Gorbovec M.A., Nochovnaya N.A. Vliyanie mikrostruktury i fazovogo sostava zharo-prochnyh titanovyh splavov na skorost' rosta treshhiny ustalosti [Influence of microstructure and phase composition of heat-resisting titanium alloys on the fatigue crack growth rate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 03. Available at: http://www.viam-works.ru (accessed: October 03, 2018). DOI: 10.18577/2307-6046-2016-0-4-3-3.
10. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
11. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Razrabotka opytno-promyshlennoy tekhnologii izgotovleniya polufabrikatov iz psevdo-alfa-titanovogo splava VT41 [Development of experimental-industrial technology for manufacturing semi-finished products from pseudo-alpha-titanium alloy VT41] // Titan. 2016. №2 (52). S. 33–42.
12. Finkel V.M. Portret treshchiny [Portrait of a crack]. M.: Metallurgiya, 1989. 192 s.
13. Rabinovich V.A., Khavin Z.Ya. Kratkiy khimicheskiy spravochnik [Brief chemical ref-erence]. L.: Khimiya, 1991. 432 s.
14. Lynch S.P. Mechanistic and fractographic aspects of stress-corrosion cracking (SCC) // Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011. P. 3–89.
15. Lynch S.P. Hydrogen Embrittlement (HE) phenomena and mechanisms // Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011. P. 90–130.
To improve the accuracy of quantitative evaluation of the phase composition of high-alloyed alloys, electrolytic phase extraction is used, which includes anodic dissolution of the alloy sample in a specially selected electrolyte for passivation of the corresponding components, study of the phase and chemical composition of the passivated anodic residue and using the results of these studies for calculating the mass fraction of phases in the sample alloy and distribution of elements between phases. A scheme has been proposed for studying the quantitative phase composition of nickel alloys using electrolytic extraction of phases in which the chemical composition of the anodic residue is determined by the difference in the concentrations of elements in the alloy and in the electrolyte after the extraction. To determine the elements dissolved in the electrolyte, the method of atomic emission spectrometry with inductively coupled plasma was used. The model solutions were used to investigate the interfering effects of the components of five electrolytes in the inductively coupled plasma atomic emission analysis of electrolytes after electrolytic extraction of the phases of nickel alloys. In order to minimize the influence of electrolyte components on the analytical signal of the elements being detected, it is recommended to electrolytically dissolve samples of nickel alloys to a mass of not less than 0.25 g per 250 ml of electrolyte, so that the electrolyte can be diluted. Methods for compensating disturbing influences are chosen - using solutions of standard samples of nickel alloys and internal standardization. An internal standard line Indium 230.606 nm is selected. The suitability of the presented research scheme for evaluation of the quantitative phase composition of samples of ZhS6K and VZh159 alloys using electrolytic extraction and inductively coupled plasma atomic emission analysis of the electrolytes was carried out. A compari
2. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharo-prochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
3. Shein E.A. Tendentsii v oblasti legirovaniya i mikrolegirovaniya zharoprochnykh monokris-tallicheskikh splavov na osnove nikelya (obzor) [Tendencies in the field of alloying and microalloying of heat resisting single-crystal alloys on the basis of nickel (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №3. St. 02. Available at: http://viam-works.ru (accessed: November 10, 2018). DOI: 10.18557/2307-6046-2016-0-3-2-2.
4. Kuznetsov V.P., Lesnikov V.P., Popov N.A., Vasilyev A.S., Popova Ye.N. Fazovyye prev-rashcheniya v monokristallicheskom zharoprochnom nikelevom splave, legirovannom tan-talom, reniyem i ruteniyem [Phase transformations in a single-crystal superalloy nickel alloy doped with tantalum, rhenium and ruthenium] // Metallovedeniye i termicheskaya obrabotka metallov. 2018. №2 (752). S. 41–46.
5. Solntsev Yu.P., Pryakhin E.I. Materialovedeniye [Materials Science]. SPb.: Khimizdat, 2007. S. 144–159.
6. Kablov E.N., Golubovskiy Ye.R. Zharoprochnost nikelevykh splavov [Heat resistance of nickel alloys]. M.: Mashinostroyeniye, 1998. 464 s.
7. Chabina E.B., Lomberg B.S., Filonova E.V., Ovsepyan S.V., Bakradze M.M. [Change of structural and phase condition of heat resisting deformable nickel alloy at alloying tantalum and rhenium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 03. Available at: http://www.viam-works.ru (accessed: November 10, 2018). DOI: 10.18577/2307-6046-2015-0-9-3-3
8. Petrushin N.V., Elyutin E.S., Nazarkin R.M., Pakhomkin S.I. i dr. Segregatsiya legiruyush-chikh elementov v napravlenno zakristallizovannykh zharoprochnykh nikelevykh splavakh, soderzhashchikh reniy i ruteniy [Segregation of alloying elements in directionally crystallized nickel-containing superalloys containing rhenium and ruthenium] // Voprosy ma-terialovedeniya. 2015. №1 (81). S. 27–37.
9. Kurikhina T.V. Kinetika obrazovaniya klasterov fazy Ni3Al pri raspade tverdogo rastvora [The kinetics of the formation of clusters of the Ni3Al phase during decomposition of the solid solution] // Rossiyskiye nanotekhnologii. 2015. T. 10. №1–2. S. 72–75.
10. Sims CH., Khagel V. Zharoprochnyye splavy [High-temperature alloys]. M.: Metallurgiya, 1976. 568 s.
11. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Ten-dencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
12. Morozova G.I. Fenomen γ-fazy v zharoprochnykh nikelevykh splavakh [The γ-phase phenomenon in heat-resistant nickel alloys] // Doklady akademii nauk SSSR. 1992. T. 325. №6. C. 1193–1198.
13. Kolobov Yu.R., Kablov E.N., Kozlov E.V., Koneva N.A. i dr. Struktura i svoystva interme-tallidnykh materialov s nanofaznym uprochneniyem [Structure and properties of intermetallic materials with nanophase hardening]. M.: Izd. dom MISiS, 2008. S. 41–45.
14. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Strukturno-fazovyye kharakter-istiki i mekhanicheskiye svoystva monokristallov zharoprochnykh nikelevykh reniysoderzhashchikh splavov s intermetallidno-karbidnym uprochneniyem [Structural-phase characteristics and mechanical properties of single crystals of heat-resistant nickel-rhenium-containing alloys with intermetallic-carbide hardening] // Metally. 2016. №4. S. 57–70.
15. Zaitsev D.V., Treninkov I.A., Alekseev A.A. Ultradispersnye plastinchatye vydeleniya v zharoprochnyh nikelevyh splavah [Ultrafine lamellar precipitation in Ni-based superalloys] // Aviacionnye materialy i tehnologii. 2015. №1. S. 49–55.
16. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov M.R. Neobratimyye iz-meneniya tonkoy struktury monokristallov zharoprochnykh nikelevykh splavov v protsesse dlitelnoy ekspluatatsii turbinnykh lopatok [The irreversible structural modification of single crystals fine structure of Ni-based superalloys at enduring operation of turbine blades] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 03. Available at: http://www.viam-works.ru (accessed: November 10, 2018). DOI: 10.18577/2307-6046-2015-0-12-3-3.
17. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskih zharoprochnyh nikelevykh splavov [The metal-lurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel al-loys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
18. Morozova G.I. Kompensatsiya disbalansa legirovaniya zharoprochnykh nikelevykh splavov [Compensation of imbalance in alloying of heat-resistant nickel alloys] // MiTOM. 2012. №12. C. 52–56.
19. Umanskiy Ya.S., Skakov Yu.A. i dr. Kristallografiya, rentgenografiya i elektronnaya mikros-kopiya [Crystallography, radiography and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
20. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
21. Malakhov V.V. Problemy diagnostiki funktsionalnykh materialov (obzor) [Problems of diagnostics of functional materials (review)] // Zavodskaya laboratoriya Diagnostika materi-alov. 2011. T. 77. №2. S. 3–10.
22. Chabina Ye.B., Zaytsev D.V., Alekseyev A.A., Sbitneva S.V. Issledovaniye struktury i raz-rabotka komplekta standartnykh obraztsov sostava i struktury zharoprochnykh nikelevykh i intermetallidnykh splavov [Study of the structure and development of a set of standard sam-ples of the composition and structure of high-temperature nickel and intermetallic alloys] // Standartnyye obraztsy. 2016. №1. S. 21–30.
23. Rid S.Dzh.B. Elektronno-zondovyy mikroanaliz i rastrovaya elektronnaya mikroskopiya v geologii [Electron probe microanalysis and scanning electron microscopy in geology]. M.: Tekhnosfera, 2008. S. 17.
24. Moroz A.N., Terekhov V.N., Kanyuka V.I. Metodicheskiye aspekty mikrorentgenospek-tralnogo analiza faz i vklyucheniy razmerom meneye 1 mkm v stalyakh i splavakh [Methodi-cal aspects of micro X-ray analysis of phases and inclusions smaller than 1 micron in steels and alloys] // Metallovedeniye i termicheskaya obrabotka metallov. 2008. №7 (637). S. 30–33.
25. Morozova G.I. Znachenie metoda fiziko-himicheskogo fazovogo analiza v razvitii avi-acionnogo metallovedeniya i sozdanii zharoprochnyh nikelevyh splavov [The importance of physicochemical phase analysis technique in the development of aviation metallic material science and creation of Ni-based superalloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1 (37). St. 07. Available at: http://www.viam-works.ru (accessed: November 10, 2018). DOI: 10.18577/2307-6046-2016-0-1-50-55.
26. Titov V.I., Tarasenko L.V., Utkina A.N., Shalkevich A.B. Fazovyy analiz novoy kompozitsii vysokoprochnoy konstruktsionnoy stali [Phase analysis of the new composition of high-strength structural steel] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №2. S. 35–39.
27. Golubtsova R.B. Fazovyy analiz nikelevykh splavov [Phase analysis of nickel alloys]. M.: Nauka, 1969. 234 s.
28. ASTM E963–95. Standard Practice for Electrolytic Extraction of Phases from Ni and Ni–Fe Base Superalloys Using a Hydrochloric-Methanol Electrolyte. 2017. Available at: https://www.astm.org/Standards/E963.htm (accessed: November 12, 2018). DOI: 10.1520/E0963-95R17.
29. Karpov Yu.A. Analiticheskiy kontrol metallurgicheskogo proizvodstva [Analytical control of metallurgical production]. M.: Metallurgiya, 1995. S. 97–107.
30. Letov A.F., Karachevtsev F.N., Zagvozdkina T.N. Razrabotka kompleksa metodik izmereniy khimicheskogo sostava splavov na nikelevoy osnove [Development the set of methods measurements of the chemical composition of nickel-based alloys] // Trudy VIAM: el-ektron. nauch.-tekhnich. zhurn. 2018. №8 (68). S. 89–97. Available at: http://www.viam-works.ru (accessed: November 10, 2018). DOI: 10.18577/2307-6046-2018-0-8-89-97.
31. Pupyshev A.A., Danilova D.A. Ispolzovaniye atomno-emissionnoy spektrometrii s in-duktivno-svyazannoy plazmoy dlya materialov i produktov chernoy metallurgii [Using atomic emission spectrometry with inductively coupled plasma for materials and products of ferrous metallurgy] // Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
32. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
33. Dvoretskov R.M., Karachevtsev F.N., Zagvozdkina T.N., Mekhanik E.A. Opredeleniye legiruyushchikh elementov nikelevykh splavov aviatsionnogo naznacheniya metodom AES-ISP v sochetanii s mikrovolnovoy probopodgotovkoy [Determination of alloying elements of nickel alloys for aviation purposes by AES-ICP method in combination with microwave sample preparation] // Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
34. Lashko N.F., Zaslavskaya L.V., Kozlova M.N. i dr. Fiziko-khimicheskiy fazovyy analiz staley i splavov [Physico-chemical phase analysis of steels and alloys]. M.: Metallurgiya, 1970. 476 s.
35. Lee H.-Y., Demura M., Xub Y. et al. Selective dissolution of the g phase in a binary Ni(γ)/Ni3Al(γ) two-phase alloy // Corrosion Science. 2010. Vol. 52. P. 3820–3825.
36. Bellot C., Lamesle P. Quantitative measurement of gamma prime precipitates in two indus-trial nickel-based superalloys using extraction and high resolution SEM imaging // Journal of Alloys and Compounds. 2013. Vol. 570. P. 100–103.
37. Roy G. Baggerly Electrolytic phase extraction: A useful technique to evaluate precipitates in nitinol // Powder Diffraction. 2012. Vol. 27. No. 2. P. 136–139.
38. Chylinska R., Garbiak M., Piekarski B. Electrolytic Phase Extraction in Stabilised Austenitic Cast Steel // Materials Science. 2005. Vol. 11. No. 4. P. 348–351.
39. Li R.B., Yao M., Liu W.C., He X.C. Isolation and determination for δ, γ, γʺ phases in Inconel 718 alloy // Scripta Materialia. 2002. Vol. 46. P. 635–638.
40. Lidin R.A. Konstanty neorganicheskikh veshchestv: spravochnik [Inorganic Constants: A Handbook]. M.: Drofa, 2006. C. 350–352.
41. Lukina E.A., Bazaleyeva K.O., Petrushin N.V., Tsvetkova E.V. Osobennosti formirovaniya struktury zharoprochnogo nikelevogo splava ZhS6K-VI pri selektivnom lazernom plavlenii [Features of the formation of the structure of the heat-resistant nickel alloy ZhS6K-VI with selective laser melting] // Tsvetnyye metally. 2016. №3 (879). S. 57–62.
42. Prager S.M., Solodova T.V., Tatarenko O.Yu. Issledovaniye mekhanicheskikh svoystv i struktury obraztsov, poluchennykh metodom selektivnogo lazernogo splavleniya (SLS) iz splava VZH159 [Research of mechanical properties and microstructure of samples obtained by SLS from metal powder composition of VZh159 alloy] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №11 (59). St. 01. Available at: http://www.viam-works.ru (accessed: November 10, 2018). DOI: 10.18577/2307-6046-2017-0-11-1-1.