Articles
Investigated the structure and properties of niobium-silicon composite, obtained by directional solidification in the liquid metal cooling method (LMC). Considered natural-the composite microstructure of the ingot after directional solidification, the analysis of the composition of the phases of the composite Nb–Si we determined the level of short-term strength at 20, 1200 and 1350°C and long-term strength at 1200°C. The level of strength at high temperatures a natural composite of Nb–Si is more than two times that of single-crystal nickel superalloys.
2. Kablov E.N., Tolorajya V.N., Orehov N.G. Monokristallicheskie nikelevye renijsoderzhashhie splavy dlya turbinnyh lopatok GTD [Single-crystal nickel reniysoderzhashchy alloys for turbine blades of GTD] // MiTOM. 2002. №7. S. 7–11.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
5. Bondarenko Yu.A., Kablov E.N., Morozova G.I. Vliyanie vysokogradientnoj napravlennoj kristallizacii na strukturu i fazovyj sostav zharoprochnogo splava tipa RENE-N5 [Influence of the high-gradient directed crystallization on structure and phase composition of hot strength alloy of the RENE-N5 type] // MiTOM. 1999. №2. S. 15–18.
6. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
7. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
8. Nauchnyj vklad v sozdanie aviacionnyh dvigatelej / pod obshh. red. V.A. Skibina, V.I. Solonina [Scientific contribution to creation of aircraft engines / gen. ed. by V.A. Skibin, V.I. Solonin. M.: Mashinostroenie, 2000. 750 s.
9. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Tugoplavkie splavy dlia novoi tekhniki [Refractory alloys for innovative equipment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 05. Available at: http://www.viam-works.ru (accessed: February 06, 2017). DOI: 10.18577/2307-6046-2016-0-10-5-5.
10. Kocherzhinskij Yu.A., Yupko L.M., Shishkin E.A. Diagrammy sostoyaniya Nb–Si [The Nb–Si phase diagram] // Izv. AN SSSR. Ser.: Metally. 1980. №1. S. 206–211.
11. Bewlay B.P., Jackson M.R., Sitliffe Y.A. et al. Solidification processing of high temperature intermetallic eutectic-based alloys // Material Science and Engineering. 1995. Part 2. No. 192/193.
P. 534–543.
12. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite // Metallurgical and Materials Transactions: A. 1996. Vol. 27A. No. 12. P. 3801–3808.
13. Bewlay B.P., Jackson M.R., Subramanian P.R. Processing high temperature refractory metal-silicide in situ composites // Journal of Metals. 1999. Vol. 51. No. 4. P. 32–36.
14. Chang K.M., Bewlay B.P., Sattley J.A., Jackson M.R. Cold-crusible directional solidification of refractory Metal-Silicide Eutectics // Journal of Metals. 1992. Vol. 44. No. 6. P. 59.
15. Guo X.P., Guan P., Ding X. et al. Unidirectional solidification of Nbss/Nb5Si3 in-situ Composite // Materials Science Forum. 2005. Vol. 475–479. P. 745–748.
16. Bewlay B.P., Jackson M.R., Gigliotti M.F.X. Niobium silicide high temperature in situ composites // Intermetallic Compounds, Principles and Practice. 2002. Vol. 3. P. 541–560.
17. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. by E.N. Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
18. Bondarenko Yu.A., Echin A.B., Kolodyazhnyj M.Yu. Osobennosti formirovaniya estestvenno-kompozicionnoj struktury evtekticheskogo splava Nb–Si pri napravlennoj kristallizacii v zhidkometallicheskom ohladitele [Features of forming of natural and composition structure of Nb-Si eutectic alloy at the directed crystallization in liquidly metal cooler] // Elektrometallurgiya. 2016. №11. S. 2–8. 19. Bondarenko Yu.A., Kablov E.N., Pankratov V.A. Osobennosti polucheniya rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTD from VKLS-20 type alloys] // Aviacionnaya promyshlennost. 1993. №2. S. 9–10.
20. Tanaka R., Kasama A., Fujikura M. et al. Research and development of niobium-based superalloys for hot components of gas turbines // Proceeding of the International Gas Turbine Congress. 2003. P. 1–5.
21. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R., Mendiratta M.G., Lewandowski J. Ultra high temperature Nb–Silicide-based composites // MRS Bulletin. 2003. Vol. 28. No. 9. P. 646–653.
Methods atomistic computer simulations we study the geometry of the environment of impurity atoms of carbon in the crystal structures of α-, β- and γ-Nb5Si3 modifications. The calculated energy structure of the silicides with different concentrations of the element implementation of carbon for α-, β- and γ-Nb5Si3 modifications. Calculated the effect of different concentrations of impurities on the parameters of the structure. On the basis of calculated values of energy and structure parameters estimation of the solubility limit of carbon in these silicides.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Svetlov I.L. Vysokotemperaturnye Nb–Si kompozity [High-temperature Nb–Si composites] // Materialovedenie. 2010. №9–10. S. 18–38.
4. Svetlov I.L., Kuz'mina N.A., Nejman A.V. i dr. Vliyanie skorosti kristallizacii na mikrostrukturu, fazovyj sostav i prochnost in-situ kompozita Nb/Nb5Si3 [Influence of speed of crystallization on microstructure, phase structure and durability of in-situ of composite of Nb/Nb5Si3] // Izvestiya Rossijskoj akademii nauk. Ser.: Fizicheskaya. 2015. T. 79. №9. S. 1294–1299.
5. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb–Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
6. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobiya, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 60–64. DOI: 10.18577/2071-9140-2015-0-1-60-64.
7. Shchetanov B.V., Efimochkin I.Yu., Paegle S.V., Karachevcev F.N. Issledovanie vysokotemperaturnoj prochnosti in-situ-kompozitov na osnove Nb, armirovannyh monokristallicheskimi voloknami α-Al2O3 [Research of high-temperature durability of in-situ-composites on the basis of Nb reinforced by single-crystal fibers α-Al2O3] // Aviacionnye materialy i tehnologii. 2016. №3. S. 53–59. DOI: 10.18577/2071-9140-2016-0-3-53-59.
8. Loshhinin Yu.V., Dmitrieva V.V., Pahomkin S.I., Razmahov M.G. Teplofizicheskie svojstva kompaktirovannyh kompozitov sistemy Nb–Si v diapazone temperatur ot 20 do 1400°C [Thermophysical properties of Nb–Si system compact composites with the temperature range from 20 to 1400°C] // Aviacionnye materialy i tehnologii. 2017. №2. S. 41–49. DOI: 10.18577/2071-9140-2017-0-2-41-49.
9. Semenenko V.E., Pilipenko N.N. Morfologiya karbidnykh faz v evtekticheskikh splavakh, poluchennykh napravlennoj kristallizatsiej [Morphology of carbide phases in the eutectic alloys received by directed crystallization] // Voprosy atomnoj nauki i tehniki. Ser.: Vakuum, chistye materialy, sverhprovodniki. 2007. №4. S. 143–148.
10. Savickij E.M., Efimov Yu.V., Bodak O.I. i dr. Sistema niobij–kremnij–uglerod [System niobium–silicon–carbon] // Neorganicheskie materialy. 1981. T. 17. №12. S. 2207–2210.
11. Bewlay B.P., Briant C.L., Sylven E.T., Jackson M.R. The effects of substitutional additions on creep behavior of tetragonal and hexagonal Nb–Silicides // Materials Research Society Symposium Proceedings. 2003. Vol. 753. P. 321–326.
12. Subramanian P.R. et al. Compressive creep behavior of Nb5Si3 // Scripta Metallurgica et Materialia, 1995. Vol. 32. No. 8. P. 1227–1232.
13. Bewlay B.P., Briant C.L., Sylven E.T., Jackson M.R. The Effects of Substitutional Additions on Creep Behavior of Tetragonal and Hexagonal Nb–Silicides // MRS Proceedings. 2002. P. 753. DOI: 10.1557/PROC-753-BB5.24.
14. Kim W., Tanaka H., Hanada S. Effect of W Alloying and NbC Dispersion on Hight Temperature Strength at 1773 K and Room Temperature Fracture Toughness in Nb5Si3/Nb In-situ Composites // Materials Transactions. 2002. Vol. 43. No. 6. P. 1415–1418.
15. Song Zhang, Xiping Guo. Alloying effects on the microstructure and properties of Nb–Si based ultrahigh temperature alloys // Intermetallics. 2016. Vol. 70. P. 33–44.
16. Kablov E.N., Kuzmina N.A., Eremin N.N., Svetlov I.L., Nejman A.V. Atomnye modeli struktury silicidov niobiya v in-situ kompozitah Nb–Si [Nuclear models of structure of silicides of niobium in in-situ Nb–Si composites] // Zhurnal strukturnoj himii. 2017. №3. C. 564–570.
17. Urusov V.S., Eremin N.N. Atomisticheskoe kompyuternoe modelirovanie struktury i svojstv neorganicheskih kristallov i mineralov, ih defektov i tverdyh rastvorov [Atomistic computer modeling of structure and properties of inorganic crystals and minerals, their defects and solid solutions]. M.: GEOS, 2012. 428 s.
18. Muromcev N.A., Marchenko E.I., Eremin N.N., Kuzmina N.A. Teoreticheskij kristallohimicheskij analiz pustot v kristallicheskih strukturah polimorfnyh modifikacij Nb5Si3 [Theoretical crystal chemical analysis of emptiness in crystal structures of polymorphic updatings of Nb5Si3] // Sb. 8-j Vseros. konf. «Mineraly: stroenie, svojstva, metody issledovaniya». Ekaterinburg, 2016. S. 100–101.
19. Gale G.D., Gle J.D. GULP: A computer program for the symmetry adapted simulation // Journal of the Chemical Society. Faraday Transactions 1997. Vol. 93 (4). P. 629–637.
20. Yakushev D.A., Kuz'mina N.A., Eremin N.N., Marchenko E.I. Osobennosti kristallicheskih struktur silicidov niobiya, soderzhashhih primesi ugleroda i bora po dannym superkompyuternyh raschetov [Features of crystal structures of silicides of the niobium containing impurity of carbon and boron according to supercomputer calculations] // Sb. Tez. Vsesoyuz. ezhegod. seminara po eksperimentalnoj mineralogii, petrologii i geohimii. M.: GEOHI RAN, 2017. S. 145.
21. Aronsson B. The crystal structure of Mo5Si3 and W5Si3 // Acta Chemica Scandinavica. 1955. No. 9. P. 1107–1110.
22. Kocherzhinsky Yu.A., Yupko L.M., Shishkin E.A. The Nb–Si phase diagram // Russian Metallurgy. 1980. Vol. 11. P. 206–211.
23. Schachner H., Cerwenka E., Nowotny H. Neue Silizide vom M5Si3-Typ mit D 88-Struktur // Monatshefte fuer Chemie und verwandte Teile anderer Wissenschaften. 1954. Vol. 85. P. 245–245.
A study was made of the possibility of determining the mass fraction of carbon and sulfur in an alloy based on Nb by burning in an induction furnace a gas analyzer CS-444 from Leco, followed by detection in an infrared cell of a spectrometer. A catalyst is selected, with a specially selected composition, which allows full recovery of carbon and sulfur from the analyzed material. Determination of the content of the oxygen and nitrogen mass fraction in the Nb-based alloy was carried out by reductive melting in a stream of an inert carrier gas, followed by detection of oxygen in an infrared cell and nitrogen in a conductometric cell of a TC-600 from Leco gas analyzer. The catalysts required for the complete extraction of these elements from an Nb-based alloy were selected
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
4. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
5. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb-Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
6. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
7. Sidorov V.V., Timofeeva O.B., Kalitsev V.A., Goryunov A.V. Vliyanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashheniya v intermetallidnom splave VKNA-25-VI [Influence of microalloying of RZM on properties and structural phase changes in intermetallidny alloy VKNA-25-VI] // Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
8. Svetlov I.L., Abuzin Yu.A., Babich B.N. i dr. Vysokotemperaturnye Nb–Si kompozity, uprochnennye silicidami niobiya [High-temperature Nb–Si the composites strengthened by silicides of niobium] // Zhurnal funkcionalnyh materialov. 2007. T. 1. №2. S. 48–52.
9. Bewlay B.P., Jackon M.R., Zhao H.C. et al. Ultrahigh-Temperature Nb-Silicide-Based Composites // Mrs. Bulletin. Spt., 2003. P. 646–653.
10. High Temperature Niobium alloy: pat. 7632455 US; publ. 15.12.09.
11. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
12. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovaniya i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
13. Alekseev A.V., Yakimovich P.V., Min P.G. Opredelenie primesej v splave na osnove Nb metodom ISP-MS. Chast I [Determination of impurities in Nb-based alloy by ICP-MS method. Part I] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 04. Available at: http://www.viam-works.ru (accessed: December 08, 2017). DOI: 10.18557/2307-6046-2015-0-6-4-4.
14. Alekseev A.V., Yakimovich P.V., Min P.G. Opredelenie primesej v splave na osnove niobiya metodom ISP-MS. Chast II [Determination of impurity in alloy based on Nb by ICP-MS. Part II] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 03. Available at: http://www.viam-works.ru (accessed: December 08, 2017). DOI: 10.18557/2307-6046-2015-0-7-3-3.
15. ASTME E1019-08. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. 2008. 21 p.
Based on the analysis of scientific and technical literature, the main trends in the development of manufacturing technologies in the field of rare-earth metals were revealed. These trends include recovery of rare earths from end-of-life products (fluorescent lamps, permanent magnets, Ni-MH batteries) and industrial waste as well as production of high-purity rare earth metals. The special features of the applied technologies and the further development of technological solutions in this area were presented.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
3. Jha M.K., Kumari A., Panda R. et al. Review on hydrometallurgical recovery of rare earth metals // Hydrometallurgy. 2016. Vol. 165. P. 2–26.
4. Binnemans K., Jones P.T., Blanpain B. et al. Recycling of rare earths: A critical review // Journal of Cleaner Production. 2013. Vol. 51. P. 1–22.
5. Wu Y., Yin X., Zhang Q. et al. The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies // Resources, Conservation and Recycling. 2014. Vol. 88. P. 21–31.
6. Binnemans K., Jones P.T. Perspectives for the recovery of rare earths from end-of-life fluorescent lamps // Journal of Rare Earths. 2014. Vol. 32. No. 3. P. 195–200.
7. Method for recovering rare-earth elements from a solid mixture containing a halophosphate and a compound of one or more rare earth elements: pat. US8501124B2; publ. 06.08.13.
8. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. i dr. Sravnenie temperaturnoj stabilnosti magnitov na osnove SmCo i PrDy–FeCo–B [Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2. S. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
9. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
10. Tanaka M., Oki T., Koyama K. et al. Recycling of rare earths from scrap // Handbook on the Physics and Chemistry of Rare Earths. 2013. Vol. 43. P. 159–211.
11. Zhang Z., Jia Q., Liao W. Progress in the separation processes for rare earth resources // Handbook on the Physics and Chemistry of Rare Earths. 2015. Vol. 48. P. 287–376.
12. Takeda O., Okabe T.H. Current status on resource and recycling technology of rare earths // Metallurgical and Materials Transactions: E. 2014. Vol. 1A. No. 2. P. 160–173.
13. Ferron C.J., Henry P. A review of the recycling of rare earth metals // Canadian Metallurgical Quarterly. 2015. Vol. 54. No. 4. P. 388–394.
14. Kolobov G.A., Karpenko A.V. Rafinirovanie legkih redkih, redkozemel'nyh i radioaktivnyh metallov [Refinement of light rare, rare earth and radioactive metals ] // Voprosy atomnoj nauki i tehniki. 2016. №1 (101). S. 3–9.
15. Zhang Z., Wang Z., Chen D. et al. Purification of praseodymium to 4N5+ purity // Vacuum. 2014. Vol. 102. P. 67–71.
16. Pang S., Chen D., Li Z. et al. Theory and technology of vacuum distillation method for preparing high-purity metal neodymium // Journal of the Chinese Rare Earth Society. 2013. Vol. 1. P. 14–19.
17. Cheng W., Li Z., Chen D. et al. Preparation of high purity lanthanum by combined method of
lithium-thermal reduction and vacuum distillation // Chinese Journal of Rare Metals. 2011. Vol. 35. P. 781–785.
18. Novel method for utilizing hydrogen plasma electric arc melting technology to prepare high-purity rare earth gadolinium elementary substance: pat. CN10340650B; publ. 12.11.14.
19. Li G., Guo H., Li L. et al. Purification of terbium by means of argon and hydrogen plasma arc melting // Journal of Alloys and Compounds. 2016. Vol. 659. Р. 1–7.
20. Li G., Li L., Yang C. et al. Removal of gaseous impurities from terbium by hydrogen plasma arc melting // International Journal of Hydrogen Energy. 2015. Vol. 40. No. 25. P. 7943–7948.
21. Maslov V.P., Polyakov E.G., Polyakova L.P., Stangrit P.T. Elektroliticheskoe nanesenie pokrytij i elektrorafinirovanie redkih metallov v solevyh rasplavah [Electrolytic drawing coverings and electrorefinement of rare metals in salt melt] // Cvetnye metally. 2000. №10. S. 66–70.
The paper presents the comparative investigation results of phase composition influence of new economically alloying MA20-SP alloy and commercial MA2-1 alloy on their based properties under room and elevated temperatures. It was found out the parameters of bending and deep drawing of sheets. It was showed, that alloying MA20-SP alloy by zirconium and cerium (0,25–0,30 mass %) promotes the forming of high dispersed hardening precipitates of phases, the emergence of uniaxial and refine structure and helps to achieve the higher level of mechanical and technological properties in comparison with MA2-1 alloy.
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Volkova E.F., Akinina M.V., Mostyaev I.V. Puti povysheniya osnovnyh mehanicheskih harakteristik magnievyh deformiruemyh splavov [The ways of rising of wrought magnesium alloys main mechanical characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 02. Available at: http://www.viam-works.ru (accessed: November 20, 2017). DOI: 10.18577/2307-6046-2017-0-10-2-2.
4. Volkova E.F., Duyunova V.A. O sovremennyh tendenciyah razvitiya magnievyh splavov [About current trends of development of magnesium alloys] // Tehnologiya legkih splavov. 2016. №3. S. 94–105.
5. Kablov E.N., Volkova E.F., Filonova E.V. Issledovanie vliyaniya RZE na fazovyj sostav i svojstva novogo zharoprochnogo magnievogo splava sistemy Mg–Zn–Zr–RZE [Research of influence of REE on phase structure and properties of new heat resisting magnesium alloy of Mg-Zn-Zr-REE system] // MiTOM. 2017. №7. S. 19–26.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
7. Dobatkin S.V., Rohlin L.L., Dobatkina T.I. Issledovanie magnievyh splavov sistemy
Mg–Sm–Y, podvergnutyh intensivnoj plasticheskoj deformacii i posleduyushhej termicheskoj obrabotke [Research of magnesium alloys of system Mg–Sm–Y subjected to intensive plastic strain and the subsequent thermal processing] // Metally. 2011. №4. S. 32–37.
8. Furro R., Saccone A., Delfino S. Magnesium alloys of the rare earth metals systematics and properties // Metallurgical Science and Technology. 1998. Vol. 16 (1–2). P. 25–44.
9. Kainer K.U. Magnesium alloys for structural application // Miner. Metals and Mater. Soc., 2000. Vol. 52. No. 11. P. 198–199.
10. Sankaranarayanan Seetharaman, Zi Hao Lennon Loy, Sravya Tekumalla et al. Development and characterization of new Magnesium–Yttrium–Calcium alloys // Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications (Mg–2015). 2015. P. 31–37.
11. Luyao Jiang, Dingfei Zhang, Xiaowei Fan. et al. Influence of 0-2 wt.% Sn addition on the microstructure and mechanical properties of extruded AZ80 alloy // Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications (Mg–2015). P. 128–136.
12. Shao X.H., Yang Z.Q., Ma X.L. Strengthening and toughening mechanisim in Mg–Zn–Y alloy with a long period stacking ordered structure // Acta Mater. 2010. Vol. 58. No. 14. P. 4760–4771.
13. Watanabe H., Mukai T., Higashi K. Grain refinement in superplasticity in magnesium alloys // Ultrafine Grained Materials II.TMS, Warrendale, PA, 2002. P. 469–476.
14. Sharon J.A., Zhang Y., Mompiou F., Legros M., Hemker K.J. Discerning size effect strengthening in ultrafine grained Mg thin films // Scripta Mater. 2014. Vol. 75. P. 10–13.
15. Lashko N.F., Zaslavskaya L.V., Kozlova M.N. i dr. Fiziko-himicheskij fazovyj analiz stalej i splavov [Physical and chemical phase analysis staly and alloys]. M.: Metallurgiya, 1978. 336 s.
16. Emli E.F. Osnovy tehnologii proizvodstva i obrabotki magnievyh splavov [Bases of the production technology and processing of magnesium alloys]. M.: Metallurgiya, 1972. S. 203–204.
17. Magnievye splavy: spravochnik / pod red. M.B. Altmana, M.E. Drica, M.A. Timonova i dr. [Magnesium alloys: the directory / ed. by M.B. Altman, M.E.Drits, Timonov and dr.]. M.: Metallurgiya, 1978. T. I. S. 116–118.
Chemical composition studies have been carried out for a large-dimensioned experimental-industrial 1,5 tons ingot from high-alloyed high-strength metastable β-titanium alloy VT47, the ingot having been obtained by threefold vacuum-arc remelting in PSC «VSMPO-AVISMA Corporation». A comparative analysis has been completed for the results of 30 kg laboratory ingots investigation (obtained by VIAM experimental production) and those for the large-dimensioned ingot in order to evaluate the scale factor influence on quality characteristics of VT47 ingots. The possible ways of further metallurgical quality increase have been proposed for large-dimensioned industrial ingots from VT47 alloy.
2. Moiseev V.N. Beta-titanovye splavy i perspektivy ih razvitiya [Beta titanium alloys and perspectives of their development] // MiTOM. 1998. №12. S. 11–14.
3. Shiryaev A.A., Nochovnaya N.A. Issledovanie struktury i himicheskogo sostava slitkov opytnogo vysokolegirovannogo titanovogo splava [Study of structure and chemical com-position of pilot high-alloyed titanium alloy ingots] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 06. Available at: http://www.viam-works.ru (accessed: November 30, 2017). DOI: 10.18577/2307-6046-2015-0-9-6-6
4. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
5. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
6. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
8. Vysokoprochnyj splav na osnove titana i izdelie, vypolnennoe iz vysokoprochnogo splava na osnove titana: pat. 2569285 Ros. Federaciya. №2014153690/02 [High-strength alloy on the basis of titanium and the product executed from high-strength alloy on the basis of titanium: pat. 2569285 Rus. Federation. No. 2014153690/02]; zayavl. 29.12.14; opubl. 20.11.15, Byul. №32.
9. Zhijun Yang, Hongchao Kou, Fengshou Zhang, Xiangyi Xue, Jinshan Li, Lian Zhou. The Effect of VAR Process Parameters on Beta Flecks Formation in Ti–10V–2Fe–3Al // Pro-ceedings of the 12th World Conference on «Titanium Ti-2011 Science and Technology». Beijing, 2012. Vol. 1. P. 601–604.
10. Andreev A.L., Anoshkin N.F. i dr. Titanovye splavy. Plavka i lite titanovyh splavov [Titanium alloys. Melting and molding of titanium alloys]. M.: Metallurgiya, 1978. 384 s.
11. Savickij E.M., Livanov V.A., Nuss P.A. i dr. Splavy titana s redkozemelnymi metallami [Titanium alloys with rare earth metals] // Titan v promyshlennosti. M.: Oborongiz, 1961. S. 85–89.
12. Khorev A.I. Alloying titanium alloys with rare-earth metals // Russian Engineering Research. 2011. Vol. 31. No. 11. P. 1087–1094.
13. Yu-Yong Chen, Yu-Feng Si, Fan-Tao Kong et al. Effects of yttrium on microstructures and properties of Ti–17Al–27Nb alloy // Transactions of Nonferrous Metals Society of China. 2006. Vol. 16. No. 2. P. 316–320.
14. Skupov A.A., Panteleev M.D., Ioda E.N., Movenko D.A. Effektivnost primeneniya redkozemelnyh metallov dlya legirovaniya prisadochnyh materialov [The efficiency of rare earth metals for filler materials alloying] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 14–19. DOI: 10.18577/2071-9140-2017-0-3-14-19.
15. Horev A.I., Muhina L.G., Zhegina I.P. Vliyanie redkozemelnyh elementov na svojstva titanovyh splavov [Influence of rare earth elements on properties of titanium alloys] // Legirovanie i termicheskaya obrabotka titanovyh splavov. M.: VIAM, 1977. S. 106–113.
16. Kyosuke Ueda, Shinichiro Nakaoka, Takayuki Narushima. β-Grain Refinement of α+β-Type Ti–4,5Al–6Nb–2Fe–2Mo Alloy by Using Rare-Earth-Oxide Precipitates // Materials Transactions. 2013. Vol. 54 (2). P. 161–168.
The effect of heating temperature and cooling rate on phase composition, structure, and hardness has been studied for bulk metal and weld joint as well as the hereinbefore mentioned parameters influence on bulk metal mechanical properties for a 80 mm thickness plate of VT23 (Ti–5,5Al–2Mo–4,5V–1Cr–0,6Fe, wt.%) titanium alloy. It has been shown, that two-step heat treatment including annealing at a temperature 100–130С lower than polymorphic transformation temperature with a subsequent air cooling and ageing at 625С gives the opportunity both to form a homogeneous structure along the weld joint section and to obtain bulk metal tensile strength higher than 1100 MPa wherein impact toughness is more than 0,3 MJ/m2.
2. Frolov V.A. Tehnologiya svarki plavleniem i termicheskoj rezki metallov: ucheb. posobie [Welding technology melting and thermal cutting of metals: manual]. M.: Alfa M, Infra-M. 2011. 447 s.
3. Vozdvizhenskij V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Splavy cvetnyh metallov dlya aviacionnoj tehniki [Non-ferrous alloys for aviation engineering]. Rybinsk: RGATA, 2002. 219 s.
4. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanovye splavy raznyh stran [Titanium alloys of the different countries]. M.: VILS, 2000. 318 s.
5. Kolachev B.A., Becofen S.Ya., Bunin S.Ya., Volodin V.A. Fiziko-mehanicheskie svojstva legkih konstrukcionnyh materialov [Physicomechanical properties of easy constructional materials]. M.: Metallurgiya, 1995. 442 s.
6. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering ] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
7. Bratuhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tehnologiya proizvodstva titanovyh samoletnyh konstrukcij [Production technology of titanic aircraft designs]. M.: Mashi-nostroenie, 1995. 448 s.
8. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: November 28, 2017).
9. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
10. Frolov V.A., Peshkov V.V., Salikov V.A. i dr. Tehnologicheskie osnovy svarki i pajki v avi-astroenii: uchebnik dlya studentov vuzov. 2-e izd. [Technological bases of welding and the soldering in aircraft industry: the textbook for students of higher education institutions. 2nd ed.]. M.: Intermet Inzhiniring, 2004. 576 s.
11. Lyasockaya V.S. Termicheskaya obrabotka svarnyh soedinenij titanovyh splavov [Thermal processing of welded compounds of titanium alloys]. M.: Ekomet, 2003. 352 s.
12. Kollerov M.Yu., Il'in A.A., Filatov A.A., Mamaev V.S. Uprochnyayushhaya termicheskaya obrabotka krupnogabaritnyh polufabrikatov i izdelij iz vysokoprochnyh titanovyh splavov [Strengthening thermal processing of large-size semi-finished products and products from high-strength titanium alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №5. S. 14–17.
13. Nochovnaya N.A., Panin P.V. Analiz ostatochnyh makronapryazhenij v svarnyh soedineniyah titanovyh splavov raznyh klassov [Residual Macrostress Analysis in Welded Junctions of Different Titanium Alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 02. Available at: http://www.viam-works.ru. (accessed: November 28, 2017). DOI: 10.18577/2307-6046-2014-0-5-2-2.
14. Ilin A.A., Skvorcova S.V., Popova Yu.A., Kudelina I.M. Vliyanie termicheskoj obrabotki na formirovanie struktury i svojstv krupnogabaritnyh polufabrikatov iz splava VT23 [Influence of thermal processing on forming of structure and properties of large-size semi-finished products from alloy ВТ23] // Titan. 2010. №4. S. 48–53.
15. Skvorcova S.V., Popova Yu.A., Panin P.V. i dr. Vliyanie termicheskoj obrabotki na strukturu i svojstva svarnyh soedinenij iz titanovogo splava VT23 [Influence of thermal pro-cessing on forming of structure and properties of large-size semi-finished products from alloy VT23] // Titan. 2011. №2. S. 16–21.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
18. Moiseev V.N., Kulikov F.R., Kirillov Yu.G., Vaskin Yu.V. Svarnye soedineniya titanovyh splavov (struktura i svojstva) [Welded compounds of titanium alloys (structure and properties)]. M.: Metallurgiya, 1979. 248 s.
19. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik dlya vuzov. 3-e izd., ispr. i dop. [Theory of thermal processing of metals: the textbook for higher education institutions. 3rd ed., rev. and add.] M.: Metallurgiya, 1978. 392 s.
The overview is devoted to the analysis of the mechanism of friction of elastomeric materials. Products from them are in large quantities applied as accessories in products of aviation engineering. Theoretical and practical aspects of friction and wear of polymeric materials including elastomer features of application of lubricant and its influence on character of friction and wear of elastomer Are shown are analyzed. Features of the mechanism of friction of elastomeric materials of different classes are given. Modern development of VIAM Federal State Unitary Enterprise in the field of nonskid polymer coatings for aviation application is shown. Are noted their basic components and defined their technical characteristics.
2. Bartenev G.N., Lavrentev V.V. Trenie i iznos polimerov [Friction and wear of polymers]. M.: Himiya, 1984. 224 s.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
5. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
6. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment ] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
7. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
8. Shajdakov V.V. Svojstva i ispytanie rezin [Properties and testing of rubbers]. M.: Himiya, 2002. 231 s.
9. Mur D. Trenie i smazka elastomerov [Friction and lubricant of elastomer]. M.: Himiya, 1977. 262 s.
10. Erasov V.S., Oreshko E.I., Lutsenko A.N. Povrezhdaemost materialov pri staticheskom rastyazhenii [Damageability of materials in tension testing] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 91–94. DOI: 10.18577/2071-9140-2015-0-4-91-94.
11. Krylov V.D., Yakovlev N.O., Kurganova Yu.A., Lashov O.A. Mezhsloevaya treshchinostoikost konstruktsionnykh polimernykh kompozitsionnykh materialov [Mezhsloyevy crack firmness of constructional polymeric composite materials] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 79–85. DOI: 10.18577/2071-9140-2016-0-1-79-85.
12. Murashov V.V. Ocenka stepeni nakopleniya mikropovrezhdenij struktury PKM v detalyah i konstrukciyah nerazrushayushhimi metodami [Assessment of accumulation degree of microdamages of PCM structure in structures determined by nondestructive methods] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 73–81. DOI: 10.18577/2071-9140-2016-0-3-73-81.
13. Koshelev F.F., Kornev A.E., Bukanov A.M. Obshhaya tehnologiya reziny [General technology of rubber]. M.: Himiya, 1978. 527 s.
14. Slovar-spravochnik po treniyu, iznosu i smazke detalej mashin [The dictionary reference on friction, wear and lubricant of details of machines]. Kiev: Naukova dumka, 1979. 188 s.
15. Bulgin D., Hubbard G.D., Walters M.H. Road and laboratory studies of friction of elastomers // Rubber technology conference. London, 1962. P. 173–188.
16. Kummer H.W., Meyer W.E. New theory permits better frictional coupling between tire and rout // Automobile congress. Munich, 1966. Paper №B11.
17. Denny D.F. The influence of load surface roughness on the friction of rubber-like materials // Proceeding of the Royal Society. 1953. Vol. 66. P. 386.
18. Moore D.F. An elastohydrodynamic theory of tire skidding // Automobile congress FISITA. Barcelona, 1968. Paper No. 11.
19. Chaikun A.M., Naumov I.S., Alifanov E.V. Rezinovye uplotnitelnye materialy (obzor) [Rubber sealing materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №1 (49). St. 12. Available at: http //www.viam-works.ru (accessed: December 04, 2017). DOI: 10.18577/2307-6046-2017-0-1-12-12.
20. Mashinostroitelnyj gidroprivod / pod red. V.N. Prokofeva [Machine-building hydraulic actuator / ed. by V.N. Prokofev]. M.: Mashinostroenie, 1978. 495 s.
21. Evzovich V.E., Rajbman P.G. Avtomobilnye shiny i kolesa. Naznachenie, ekspluataciya. 2-e izd. [Automobile tires and wheels. Assignment, operation. 2nd ed.]. M.: MIROS, 2012. 160 s.
The principles of creating frost-resistant sealing materials are considered. The influence of components (fillers, plasticizers and crosslinking agents) on the frost resistance of sealants was investigated. Two methods for evaluating the frost resistance of sealants have been studied: the determination of the strength and elongation of the material at a negative temperature, the determination of the dynamic shear modulus G and the tangent of the mechanical loss angle tgδ in the negative temperature region. The article presents data on glass transition temperatures of sealing materials, as well as temperature dependences of the dynamic mechanical characteristics of sealants, depending on their polymer base. It is shown that the frost resistance of sealants is an ambiguous concept, since the operability of the material in a structure depends not only on its properties, but also on the characteristics of hermetic joints and the conditions of their operation.
2. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Himiya v aviacionnom materialovedenii Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
5. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
6. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
7. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
8. Zajceva E.I., Donskoj A.A. Germetiki na osnove polisul'fidnyh elastomerov [Hermetics on the basis of polysulphide elastomer] // Klei. Germetiki. Tehnologii. 2008. №6–7. S. 15–25.
9. Minkin V.S., Hakimullin Yu.N., Deberdeev T.R., Berlin Al. Al. Vliyanie ionov Fe (III) v sostave MnO2 na kinetiku vulkanizacii zhidkih tiokolov [Influence of ions of Fe (III) as a part of MnO2 on kinetics of curing of the liquid it is thiokol] // Klei. Germetiki. Tehnologii. 2009. №4. S. 28–30.
10. Mudrov O.A., Savchenko I.M., Shitov V.S. Spravochnik po elastomernym pokrytiyam i germetikam v sudostroenii [The directory on elastomeric coverings and hermetics in ship-building]. L.: Sudostroenie, 1982. S. 112.
11. Zajceva E.I., Donskoj A.A. Novye polisulfidnye germetiki dlya aviacionnoj promyshlennosti [New polysulphide hermetics for the aviation industry] // Klei. Germetiki. Tehnologii. 2009. №3. S. 18–23.
12. Zaitseva Е.I., Donskoi А.А. Sealants Based on Polysulfide Elastomers // Polymer Science. Ser. С. 2008. Vol. 1. P. 15–25.
13. Zajceva E.I., Chursova L.V. Issledovanie mikrobiologicheskoj stojkosti polisulfidnogo germetika s novymi antisepticheskimi dobavkami [Research of microbiological firmness of polysulphide hermetic with new antiseptic additives] // Klei. Germetiki. Tehnologii. 2012. №1. S. 16–20.
14. Eliseev O.A., Bryk Ya.A., Smirnov D.N. Modifikaciya polisulfidnyh germetikov ingibitorami korrozii [Polysulfide sealants modification by corrosion inhibitors] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 15–21. DOI: 10.18577/2071-9140-2016-0-S2-15-21.
15. Averenko-Antanovich L.A., Kirpichnikov P.A., Smyslova R.A. Polisulfidnye oligomery i germetiki na ih osnove [Polysulphide oligomers and hermetics on their basis]. L.: Himiya, 1983. 128 s.
16. Zajceva E.I., Chursova L.V., Smirnov D.N. Perspektivy snizheniya plotnosti polisulfidnyh germetikov [Perspectives of decrease in density of polysulphide hermetics] // Klei. Germetiki. Tehnologii. 2012. №5. S. 10–14.
17. Bryk Ya.A., Eliseev O.A., Smirnov D.N. Zashhita ot korrozii magnievyh splavov polisulfidnymi germetikami [Corrosion protection of magnesium alloys polysulphide sealants] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10. St. 10. Available at: http://www.viam-works.ru (accessed: Desember 08, 2017). DOI: 10.18577/2307-6046-2017-0-10-10-10.
18. Petrova A.P., Donskoj A.A. Kleyashhie materialy, germetiki: spravochnik [Gluing materials, hermetics: directory]. SPb.: Professional, 2008. S. 503–567.
19. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314
Various porous materials with sound-absorbing properties are considered. The classification of porous materials according to their structural features is given, their purposes are considered. The main attention is paid to porous-cellular materials (foams), among which polyurethane foams are widely used. The results of research work aimed at obtaining new foams and porous composite materials providing effective absorption of acoustic waves over a wide frequency range are presented. Depending on the component composition and concentration of the filler, samples of filled and unfilled polyurethane foams with different structural parameters and performance characteristics were obtained. The influence of the porosity of the foam on the acoustic properties of materials is revealed, the possibility of placing a porous fiber layer inside the foam volume is shown. Prospective foams were considered capable of maintaining performance at elevated tempe-ratures, and the effect of melamine and its
2. Terehov A.L. Povyshenie bezopasnosti pri ekspluatacii tehnologicheskogo oborudovaniya PAO «Gazprom» [Safety increase at operation of processing equipment of JCS «Gazprom»] // Bezopasnost truda v promyshlennosti. 2017. №6. S. 36–45.
3. Trunova N.A., Kasimov R.G. Vybor optimalnogo varianta zvukoizolyacii v krupnopanelnom zdanii [Choice of optimum option of sound insulation in the large-panel building] // Rol tehnicheskih nauk v razvitii obshhestva: sb. materialov II Mezhdunar. nauch.-praktich. konf. Kemerovo, 2017. S. 178–183.
4. Romanenko A.E., Russkih G.S., Sokolovskij Z.N. Issledovanie vliyaniya konstruktivnyh parametrov gibkoj zvukoizoliruyushhej paneli na ee zvukoizolyacionnuyu harakteristiku [Research of influence of design data of the flexible soundproofing panel on its sound-proof characteristic] // Rossiya molodaya: peredovye tehnologii – v promyshlennost. 2017. №1. S. 347–352.
5. Shashkeev K.A., Shuldeshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Poristye zvukopogloshhayushhie materialy (obzor) [Porous sound-absorbing materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 06. Available at: http://www.viam-works.ru (accessed: November 12, 2017). DOI: 10.18577/2307-6046-2016-0-6-6-6.
6. Radouckij V.Yu., Shulzhenko V.N., Stepanova M.N. Sovremennye zvukopogloshhayushhie materialy i konstrukcii [Modern sound-proof materials and designs] // Vestnik BGTU im. V.G. Shuhova. 2016. №6. S. 76–79.
7. Radouckij V.Yu., Shulzhenko V.N. Harakteristika zvukoizolyacionnyh stroitelnyh materialov [Characteristic of sound-proof construction materials] // Vestnik BGTU im. V.G. Shuhova. 2016. №5. S. 64–66.
8. Rumyancev B.M., Zhukov A.D., Barybin A.A., Bondar D.D. Osnovy sozdaniya zvukopogloshhayushhih materialov [Bases of creation of sound-proof materials] // Nauchnoe obozrenie. 2017. №7. S. 32–35.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Vajsera S.S., Puchka O.V., Lesovik V.S. i dr. Vliyanie vlagosoderzhaniya, vozduhopronicaemosti i plotnosti materiala na ego zvukopogloshhayushhie harakteristiki [Influence of moisture content, air permeability and material density on its sound-proof characteristics] // Stroitelnye materialy. 2017. №6. S. 24–27.
11. Farafonov D.P., Migunov V.P., Degovec M.L., Aleshina R.Sh. Poristovoloknistyj metallicheskij material dlya zvukopogloshhayushhih konstrukcij aviacionnyh GTD [Porous-fibrous metallic material for sound-absorbing structures of aircraft GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4 (40). St. 01. Available at: http://www.viam-works.ru (accessed: November 12, 2017). DOI: 10.18577/2307-6046-2016-0-4-1-1.
12. Tulejko A.S., Buharov S.N. Razrabotka novyh ekologicheski bezopasnyh zvukopogloshhayushhih materialov dlya intererov transportnyh sredstv [Development of new ecologically safe sound-proof materials for interiors of vehicles] // Tez. dokl. IV Resp. nauch.-tehnich. konf. molodyh uchenyh «Novye funkcionalnye materialy, sovremennye tehnologii i metody issledovaniya». Gomel, 2016. S. 47–48.
13. Bashkov A.P., Bashkova G.V., Evdokimov A.V. Analiz akusticheskih svojstv innovacionnyh tekstilnyh materialov [Analysis of acoustic properties of innovative textile materials] // XIX Mezhdunar. nauch.-praktich. forum «Fizika voloknistyh materialov: struktura, svojstva, naukoemkie tehnologii i materialy». Ivanovo, 2016. Ch. 1. S. 202–206.
14. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
15. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
16. Polimernyj zvukopogloshhayushhij material i sposob izgotovleniya: pat. 2612674 Ros. Federaciya [Polymeric sound-proof material and way of manufacturing: pat. 2612674 Rus. Federation]; opubl. 13.03.17.
17. Grechishnikov V.A., Gumerov I.F., Gumerov M.I. i dr. Razrabotka kompozicionnyh materialov s povyshennymi vibro-zvukopogloshhayushhimi svojstvami [Development of new ecologically safe sound-proof materials for interiors of vehicles] // Stin. 2017. №5. S. 28–34.
18. Shaparev A.V., Savina A.I., Dzenik A.D. Poliuretanovye kompozicionnye materialy s vysokimi zvukopogloshhayushhimi svojstvami [Polyurethane composite materials with high sound-proof properties] // Sb. nauch. statej Mezhdunar. nauch.-tehnich. konf. «Avtomatizaciya tehnologicheskih processov mehanicheskoj obrabotki, uprochneniya i sborki v mashinostroenii». g. Naberezhnye Chelny, 2016. S. 322–326.
19. Obrazcova E.P., Kraev I.D., Shuldeshov E.M., Yurkov G.Yu. Gibridnye funkcionalnye materialy, sochetayushhie v sebe zvukopogloshhayushhie i radiopogloshhayushhie svojstva [The hybrid functional materials combining sound-proof and radio absorbing properties] // Materialovedenie. 2016. №12. S. 19–24.
20. Shuldeshov E.M., Kraev I.D., Platonov M.M. Polimernaya kompozicionnaya zvukopogloshhayushhaya panel [Polymeric composition sound absorbing panel] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5 (53). St. 07. Available at: http://www.viam-works.ru (accessed: November 12, 2017). DOI: 10.18577/2307-6046-2017-0-5-7-7.
21. Głowacz-Czerwonka D. The Polyurethane Foams Based on Melamine-formaldehydecyclohexanone Resins // Cellular Polymers. 2017. Vol. 36. No. 1. P. 35–49.
22. Cleaning implement based on melamine formaldehyde foam comprising abrasive particles:
pat. US 9023905 B2; publ. 05.05.15.
The results of heat-resisant coatings containing the additives of refractory glasses in BaO–Al2O3–SiO2 system are explained. The optimal technological parameters of refractory glasses are estimated, and that was found that the additive of 25% BaO–25% Al2O3–50% SiO2 provides the increase of heat resistance and thermal stability. The compositions of reaction cured coatings provide solid gas-proof non-defective coatings designed to heat-resistant nickel alloys protection at temperatures up to 1250°C.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Solncev S.S., Denisova V.S., Rozenenkova V.A. Zharostojkie emali dlya zashhity nikelevyh splavov i stalej [Heat resisting enamels for protection of nickel alloys and steels] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №1. S. 22–28.
4. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
5. Ovsepyan S.V., Lukina E.A., Filonova E.V., Mazalov I.S. Formirovanie uprochnyayushhej fazy v processe vysokotemperaturnogo azotirovaniya svarivaemogo zharoprochnogo deformiruemogo splava na osnove sistemy Ni–Co–Cr [Formation of the Strengthening Phase during the High-Temperature Nitriding of Ni–Co–Cr Weldable Wrought Superalloy] // Aviacionnye materialy i tehnologii. 2013. №1. S. 3–8.
6. Grashhenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
7. Goldstein Н.В. еt аl. Reaction cured borosilicate glass coating for low-density fibrous insulation // Borate glasses. Structure, properties, application: plenum press. New York, 1978. P. 623–634.
8. Garofalini S.H., Banas R., Creedon J. Development of high viscosity coatings for advances Space Shuttle application // 11th National SAMPE technical conference. Boston, 1979. P. 114–124.
9. Petcold A., Peshman G. Emal i emalirovanie. Per. s nem. [Enamel and covering enamels. Trans. from Germ.]. M.: Metallurgiya, 1990. 576 s.
10. Shelbi Dzh. Struktura, svojstva i tehnologiya stekla. Per. s angl. [The structure, properties and technology of glass]. M.: Mir, 2006. 288 s.
11. Dembovskij S.A., Chechetkina E.A. Stekloobrazovanie [Glass formation]. M.: Nauka, 1990. 276 s.
12. Toropov N.A., Barakovskij V.K., Lapini V.V. i dr. Diagrammy sostoyaniya silikatnyh sistem: spravochnik [Charts of condition of silicate systems: directory]. L.: Nauka, 1972. Vyp. 3: Trojnye silikatnye sistemy. 448 s.
13. Karimbaev T.D., Mezencev M.A., Ezhov A.Yu. Razrabotka i eksperimentalnye issledovaniya nemetallicheskih detalej i uzlov goryachej chasti perspektivnogo gazoturbinnogo dvigatelya [Development and pilot studies of nonmetallic details and nodes of hot part of the perspective gas turbine engine] // Vestnik Samarskogo universiteta. Aerokosmicheskaya tehnika, tehnologii i mashinostroenie. 2015. T. 14. №3–1. S. 128–138.
14. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
15. Bankovskaya I.B., Kolovertnov D.V. Razvitie rabot po sozdaniyu pokrytij dlya zashhity uglerodnyh materialov pri vysokih temperaturah [Development of works on creation of coverings for protection of carbon materials at high temperatures] // Fizika i himiya stekla. 2017. T. 43. №2. S. 156–171.
The first-principle methods were used, the phonon spectrum and the density of the phonon states of B2 RuAl are studied. We used the phonon spectrum of RuAl for calculation: the Grüneisen constant, the volume coefficient of thermal expansion, the Debye temperature, the temperature dependence of the heat capacity, the melting temperature is estimated for RuAl. The bulk modulus of elasticity, the equilibrium values of lattice parameters for RuAl are calculated. It is shown that the calculated data agree well with the experimental data. The calculated parameters are compared with those for the NiAl superalloy.
2. Povarova K.B., Padalko A.G., Drozdov A.A. et al. Differential barothermal analysis in the course of reactive powder barothermal processing of RuAl alloys // Journal of Thermal Analysis and Calorimetry. 2005. Vol. 80. Issue. 3. P. 607–612. DOI: 10.1007/s10973-005-0701-y.
3. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov. M.R. Izmeneniya mikrostruktury monokristallov zharoprochnyh nikelevyh splavov v processe dlitelnoj ekspluatacii turbinnyh lopatok [The microstructure modifications of single crystals of Ni-based superalloys in time-tested turbine blades] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 9–17. DOI: 10.18577/2071-9140-2016-0-4-9-17.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
6. Ospennikova O.G. Tendencii sozdaniya zharoprochnyh nikelevyh splavov nizkoj plotnosti s polikristallicheskoj i monokristallicheskoj strukturoj (obzor) [Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19. 7. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
8. Kablov E.N., Ospennikova O.G., Svetlov I.L. Vysokoeffektivnoe ohlazhdenie lopatok goryachego trakta GTD [Highly efficient cooling of GTE hot section blades] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
9. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnyh lopatok perspektivnyh GTD [Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
10. Guitar M.A., Mücklich F. Isothermal Oxidation Behaviour of Nanocrystalline RuAl Intermetallic Thin Films // Oxidation of Metals. 2013. Vol. 80. I. 3–4. P. 423–436. DOI: 10.1007/s11085-013-9409-8.
11. Borah A., Robi P.S., Srinivasan A. Synthesis of nano-crystalline RuAl by mechanical alloying // Metals and Materials International. 2007. Vol. 13. I. 4. P. 293–302. DOI: 10.1007/BF03027885.
12. Povarova K.B., Morozov A.E., Skachkov O.A. et al. Effect of mechanical activation on the characteristics of ruthenium and aluminum powder mixtures // Russian Metallurgy (Metally). 2008. No. 3. P. 60–67. DOI: 10.1134/S0036029508030099.
13. Tryon B., Cao F., Murphy K.S., Levi C.G., Pollock T.M. Ruthenium-containing bond coats for thermal barrier coating systems // The Journal of The Minerals, Metals & Materials Society. 2006. Vol. 58. I. 1. Р. 53–59. DOI: 10.1007/s11837-006-0069-x.
14. Bleskov I.D., Isaev E.I., Vekilov Yu.Kh. Electronic structure and ground parameters of Ru1-xMexAl refractory alloys // Physics of the Solid State. 2010. Vol. 52. No. 9. P. 1803–1809. DOI: 10.1134/S1063783410090039.
15. Borah A., Robi P.S., Mujumdar A.L. et al. Microstructural evolution and hardening behaviour of cast and heat-treated Ru–Al and Ru–Al–Ni alloys // Metals and Materials International. 2008. Vol. 14. Issue 1. P. 123–132. DOI: 10.3365/met.mat.2008.02.123.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Mehl M.J., Klein B.M., Papaconstantopoulos D.A. Intermetallic Compounds: Principles and Practice. London: Wiley, 1995. Vol. 1: Principles. P. 195–210.
18. Duane C.W. A Review of the Stratified Charge Engine Concept // Physical Review. 1965. Vol. 37. No. 3A. P. 37–43.
19. Chesnokov D.V., Antipov V.V., Kulyushina N.V. Metod uskorennyh laboratornyh ispytanij alyuminievyh splavov s celyu prognozirovaniya ih korrozionnoj stojkosti v usloviyah morskoj atmosfery [The method of accelerated laboratory tests of aluminum alloys for determination of their corrosion resistance in conditions of the sea atmosphere] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 (41). St. 10. Available at: http://www.viam-works.ru (accessed: November 27, 2017). DOI: 10.18577/2307-6046-2016-0-5-10-10.
20. Pavlovskaya T.G., Deshevaya E.A., Zajtsev S.N., Kozlov I.A., Volkov I.A., Zaharov K.E. Korrozionnaya stojkost alyuminievyh splavov v usloviyah, imitiruyushhih faktory kosmicheskogo poleta [Corrosion resistance of aluminum alloys in conditions simulating space flight] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 11. Available at: http://www.viam-works.ru (accessed: November 27, 2017). DOI: 10.18577/2307-6046-2016-0-3-11-11.
21. Morozova G.I. Znachenie metoda fiziko-himicheskogo fazovogo analiza v razvitii aviacionnogo metallovedeniya i sozdanii zharoprochnyh nikelevyh splavov [The importance of physicochemical phase analysis technique in the development of aviation metallic material science and creation of Ni-based superalloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1 (37). St. 07. Available at: http://www.viam-works.ru (accessed: November 27, 2017). DOI: 10.18577/2307-6046-2016-0-1-50-55.