Articles
An important prerequisite for high-performance stainless steel VNS-65 (18Cr13Ni4Co4Si2NMo3) is a high purity non-metallic inclusions – oxides and sulfides, no more than 1 point in accordance with GOST 1778–70. The existing steel smelting technology VNS-65 outdoor furnace followed by electroslag remelting is not always provides the desired purity of the metal, resulting in a high-level properties of instability. To reduce the amount of nonmetallic inclusions is necessary to reduce to 2–3 times the oxygen content (less than 0,01%) and sulfur (less than 0,005%). The aim of the study is to develop a technology of steel smelting VNS-65, providing the reduction of non-metallic inclusions, improved stability properties through the use of new refining slag mixtures and technology microalloying rare earth metals, administered through the slag. The work within the framework of an integrated research area 8.2. «High-strength and corrosion-resistant welded structural steel with high fracture toug
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Tonysheva O.A., Voznesenskaya I.M., Eliseev E.A., Shalkevich A.B. Novaya vysokoprochnaya ekonomnolegirovannaya azotsoderzhashchaya stal povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] // Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
4. Tonysheva O.A., Voznesenskaya N.M. Perspektivnye vysokoprochnye korrozionnostojkie stali, legirovannye azotom (sravnitelnyj analiz) [Perspective high-strength corrosion-resistant steels alloyed with nitrogen (comparative analysis] // Aviacionnye materialy i tehnologii. 2014. №3. S. 27–32. DOI: 10.18577/2071-9140-2014-0-3-27-32.
5. Voznesenskaya N.M., Kablov E.N., Petrakov A.F., Shalkevich A.B. Vysokoprochnye korrozionnostojkie stali austenitno-martensitnogo klassa [High-strength corrosion-resistant steel of the austenit-martensitic class] // Metallovedenie i termicheskaya obrabotka metallov. №7. 2002. S. 34–37.
6. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
7. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant became modern aircraft]. M.: MAI, 2006. S. 112–143.
8. Krivonogov G.S., Kablov E.N. Granicy zeren i ih rol v ohrupchivanii vysokoprochnyh korrozionnostojkih stalej [Borders of grains and their role in fragility high-strength corrosion-resistant the steels] // Metally. 2002. №1. S. 35–45.
9. Waudby P.E. Intern. // HetalsRev. Z3. 1976. No. 2. P. 74–98.
10. Klyuev M.M., Kablukovskij A.F. Metallurgiya elektroshlakovogo pereplava [Metallurgy electroslag melting]. M.: Metallurgiya, 1969. 256 s.
11. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tehnologiya, pokrytiya / pod obshh. red. E.N. Kablova [Cast blades of gas turbine engines. Alloys, technology, coverings / gen. ed. by E.N. Kablov]. M.: Nauka, 2006. S. 119–135.
12. Kulikov I.S. Raskislenie metallov [Deoxidation of metals]. M.: Metallurgiya, 1975. 504 s.
13. Snitko Yu.P., Surovoj Yu.N., Lyakishev N.P. Osobennosti raskisleniya stali [Features of steel deoxidation] // Doklady AN SSSR. 1983. T. 268. №5. S. 115–117.
14. Dub V.S., Levkov L.Ya., Shurygin D.A. i dr. Opyt proizvodstva polyh trubnyh zagotovok metodom elektroshlakovoj vyplavki [Experience of production of hollow pipe preparations by method of electroslag smelting] // Elektrometallurgiya. 2015. №1. S. 10–19.
15. Levkov L.Ya. Povyshenie effektivnosti rafinirovaniya stali shlakom na osnove kontrolya ego okislennosti: dis. … kand. tehn. nauk [Increase of efficiency of refinement became slag on the basis of control its oxide: thesis, Cand. Sc. (Tech.)]. M, 1987. 159 s.
16. Available at: http://www.steelcast.ru/rare_earth_elements_steel_deoxidation (accessed: April 25, 2015).
17. Shurygin D.A., Levkov L.Ya., Dub V.S. i dr. Razrabotka sposobov kontrolya i upravlenie okislitelno-vosstanovitelnymi processami i kristallizaciej slitkov EShP [Development of ways of control and management of oxidation-reduction processes and crystallization of ingots of EShP] // Sovremennye problemy elektrometallurgii stali: mater. XV Mezhdunar. nauch. konf. Chelyabinsk, 2013. Ch. 2. S. 91–96.
18. Averin V.V. Rastvorimost kisloroda, azota i aktivnost'elementov-raskislitelej v rasplavah na osnove zheleza, kobalta, nikelya i hroma: avtoref. diss. … dokt. tehn. nauk [Solubility of oxygen, nitrogen and activity of elements deoxidants in rasplavakh on the basis of iron, cobalt, nickel and chrome: thesis, Dr. Sc. (Tech.)]. M.: Imet AN SSSR, 1968. 32 s.
The foundry characteristics of the VTI-4 intermetallic alloy have been determined for a vacuum arc furnace with a centrifugal casting of the melt into ceramic or metallic forms. It has been found that the VTI-4 intermetallic alloy has low casting characteristics in comparison with the VT5L alloy and Ti–16Al intermetallic alloy (mass. %): 40% more shrinkage, 44% less fluidity and 26–28% less fillability of the mold. The obtained casting characteristics of VTI-4 alloy can be used to develop an experimental foundry technology for the production of parts from it. The obtained casting characteristics of VTI-4 alloy can be used to develop an experimental foundry technology for the production of parts from it сomplex direction 7.1. «Intermetallic titanium alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1]. The main trends and prospects in the field of development of new ortho alloys and technologies for their pr
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd prod., rev. and add.]. M.: VIAM, 2015. 720 s.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 02, 2017).
5. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
6. Horev A.I., Nochovny N.A., Yakovlev A.L. Mikrolegirovanie redkozemelnymi metallami titanovykh splavov [Microalloying rare earth metals of titanium alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 206–212.
7. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Ekonomnolegirovannye titanovye splavy dlya sloistyh metallopolimernyh kompozicionnyh materialov [Low-cost alloyed titanium alloys for metal-polymer laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. Available at: http://www.viam-works.ru (accessed: March 02, 2017). DOI: 10.18577/2307-6046-2014-0-11-2-2.
8. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2 (31). S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
9. Skvorcova S.V., Filatov A.A., Dzunovich D.A., Panin P.V. Vliyanie soderzhaniya alyuminiya na deformiruemost' titanovyh splavov pri normalnoj temperature [Influence of the content of aluminum on deformability of titanium alloys at normal temperature] // Tehnologiya legkih splavov. 2008. №3. S. 40–45.
10. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Sovremennye ekonomnolegirovannye titanovye splavy: primenenie i perspektivy razvitiya [Modern low-cost alloyed titanium alloys: application and development perspectives] // Metallovedenie i termicheskaya obrabotka metallov. 2016. №9 (735). S. 8–15.
11. Nochovnaya N.A., Alekseev E.B., Yasinskij K.K., Kochetkov A.S. Specifika plavki i sposoby polucheniya slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobiya [Specifics of melting and ways of receiving ingots of intermetallidny titanium alloys with the raised content of niobium] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 53–59.
12. Nochovnaya N.A., Skvorcova S.V., Anishhuk D.S., Alekseev E.B., Panin P.V., Umarova O.Z. Otrabotka tehnologii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Working off of technology of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] // Titan. 2013. №4 (42). S. 33–38.
13. Alekseev E.B., Nochovnaya N.A., Skvorcova S.V., Panin P.V., Umarova O.Z. Opredelenie tehnologicheskih parametrov deformacii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Determination of technological parameters of deformation of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] // Titan. 2014. №2 (44). S. 36–41.
14. Alekseev E.B., Nochovnaya N.A., Panin P.V. Issledovanie struktury i fazovogo sostava opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb v deformirovannom sostoyanii [Research of structure and phase composition of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound in the deformed condition] // Titan. 2014. №4 (46). S. 12–17.
15. Alekseev E.B., Nochovnaya N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vliyaniya alyuminiya na fazovyj sostav i termomehanicheskij rezhim izotermicheskoj shtampovki intermetallidnogo splava VTI-4 [Research of influence of aluminum on phase structure and thermomechanical mode of isothermal punching of intermetallic alloy VTI-4] // Tehnologiya legkih splavov. 2015. №1. S. 57–61.
16. Alekseev E.B., Nochovnaya N.A., Panin P.V., Novak A.V. Tehnologicheskaya plastichnost, struktura i fazovyj sostav opytnogo titanovogo orto-splava, soderzhashhego 13% (po masse) alyuminiya [Technological plasticity, structure and phase composition of a pilot titanium ortho alloy with 13 wt. рct. aluminum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 08. Available at: http://www.viam-works.ru (accessed: March 02, 2017). DOI: 10.18577/2307-6046-2015-0-12-8-8.
17. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Issledovanie zakonomernostej formirovaniya strukturno-fazovogo sostoyaniya splavov na osnove orto- i gamma-alyuminidov titana v processe termomehanicheskoj obrabotki [Research of patterns of forming of structural and phase condition of alloys on basis ortho-and titanium gamma aluminides in the course of thermomechanical processing] // Vestnik RFFI. 2015. №1 (85). S. 18–26.
We studied the temperature field and stress determine the chemical composition, structure and mechanical properties of welded joints of heat-resistant nickel-based alloys after electron beam welding. The work is executed within the frames of the complex scientific direction 10.8. «Fusion welding technologies of new structural materials» («The strategic direction of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Svarka i bezopasnost': mater. Vseros. nauch.-praktich. konf., 11–12 okt. 2012 g. Yakutsk, 2012. T. 1. S. 21–30.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2013. 543 s.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 31, 2016).
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
8. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
9. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
10. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
11. Shalkevich A.B., Voznesenskaya N.M., Pokrovskaya N.G., Markova E.S. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali dlya samoletov novogo pokoleniya [High-strength constructional and corrosion-resistant became for airplanes of new generation] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 142–150.
12. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleev M.D. Svarka alyuminievyh splavov v aviakosmicheskoj promyshlennosti [Welding of aluminum alloys in the aerospace industry] // Svarka i diagnostika. 2013. №2. S. 47–52.
13. Sorokin L.I., Lukin V.I., Bagdasarov Yu.S. Optimizaciya svarochnoj remontnoj tehnologii detalej gazoturbinnyh dvigatelej (GTD) iz zharoprochnyh splavov [Optimization of welding repair technology of details of gas turbine engines (GTD) from hot strength alloys] // Svarochnoe proizvodstvo. 1997. S. 19–23.
14. Lukin V.I., Sorokin L.I., Bagdasarov Yu.S. Svarivaemost litejnyh zharoprochnyh nikelevyh splavov tipa ZhS6 [Bondability of cast heat resisting nickel alloys of the ZhS6 type] // Svarochnoe proizvodstvo. 1997. №6. S. 12–17.
15. Lukin V.I., Semenov V.N., Starova L.L. i dr. Obrazovanie goryachih treshhin pri svarke zharoprochnyh splavov [Formation of hot cracks when welding hot strength alloys] // MiTOM. 2007. №12. S. 7–14.
16. Lihachev V.A., Malinin V.G. Strukturno-analiticheskaya teoriya prochnosti [Structural and analytical failure theory]. L.: Nauka, 1992. 400 s.
Creation of high-temperature high-porous ceramic materials is one of actual problems now. The oxide porous ceramics has low heat conductivity, high resistance to oxidation and satisfactory durability therefore it is especially demanded in the metallurgical foundry fields of the industry as foam ceramic filters. The results of researches of sintering mullite porous ceramics with use of discrete mullite fibers are presented in this article. It is shown that the optimum range of temperatures of calcining for producing materials with open cellular porous structure is 1300–1350°C. It is determined that the essential role on mechanical characteristics of materials is rendered by the mode of preliminary heat treatment of fibers, and also composition of the sintering aid. Materials with the reported porosity to 85% and durability are produced at compression to 0,7 MPa.
2. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Shliker dlya izgotovleniya penokeramicheskih filtrov: pat. 2084428 Ros. Federaciya. №93008852/03 [Slip for manufacturing of foam ceramic filters: pat. 2084428 Rus. Federation. №93008852/03]; zayavl. 18.02.93; opubl.20.07.97.
5. Usovershenstvovannyj penokeramicheskij filtr dlya uluchsheniya filtrovaniya rasplavlennogo chuguna: pat. 2380138 Ros. Federaciya. №2008108220/15 [The advanced foam ceramic filter for improvement of filtering of molten iron: pat. 2380138 Rus. Federation. №2008108220/15]; zayavl. 04.08.06; opubl.27.01.10.
6. High strength SiC filter and method for the manufacture thereof: pat. 6663776 USA. No. 10/256844; field 27.09.02; publ. 16.12.03.
7. Keramicheskij filtr, soderzhashhij uglerodnoe pokrytie, i sposob ego izgotovleniya: pat. 2456056 Ros. Federaciya. №2010118514/03 [The ceramic filter containing carbon covering, and way of its manufacturing: pat. 2456056 Rus. Federation. №2010118514/03]; zayavl. 28.01.08; opubl. 20.07.12.
8. Anciferov V.N. Problemy poroshkovogo materialovedeniya. Chast II [Problems of powder materials science. Part II]. Ekaterinburg: UrO RAN, 2002. 263 s.
9. Sandoval M.L., Camerucci M.A. Foaming performance of aqueous albumin and mullite-albumin systems used in cellular ceramic processing // Ceramics International. 2014. Vol. 40. P. 1675–1686.
10. Magnani G., Brentari A., Burresi E., Raiteri G. Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method // Ibid. P. 1759–1763.
11. Yang W., Jiang B., Wang A., Shi H. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy // Journal of Material Science and Technology. 2012. Vol. 28 (8). P. 707–712.
12. Aminzare M., Mazaheri M., Golestanifard F. et al. Sintering behavior of nano alumina powder shaped by pressure filtration // Ceramics International. 2011. Vol. 37. P. 9–14.
13. Himicheskaya tehnologiya keramiki: uch. posobie dlya vuzov / pod red. I.Ya. Guzmana [Chemical technology of ceramics: the manual for higher education institutions ]. M.: Strojmaterialy, 2003. 496 s.
14. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: April 07, 2017).
15. Shchetanov B.V., Balinova Yu.A., Lyulyukina G.Yu., Soloveva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] // Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
16. Uvarova N.E., Grashhenkov D.V., Isaeva N.V., Orlova L.A., Sarkisov P.D. Vysokotemperaturnye radioprozrachnye materialy: segodnya i zavtra [High-temperature radio transparent materials: today and tomorrow] // Aviacionnye materialy i tehnologii. 2010. №1. S. 16–21.
17. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
18. Nikitina V.J., Kolyshev S.G., Kuptsov R.S. Sposoby opredeleniya ploshhadi secheniya monokristallicheskih volokon Al2O3 dlya rascheta prochnosti pri rastyazhenii [The methods of determination of Al2O3 single-crystal fibers cross-section area for tensile strength calculation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.viam-works.ru (accessed: April 07, 2017). DOI: 10.18577/2307-6046-2014-0-2-3-3.
19. Balinova Yu.A., Shheglova T.M., Lyulyukina G.Yu., Timoshin A.S. Osobennosti formirovaniya α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida alyuminiya 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of formation α-Al2O3 in polycrystalline fibers containing 99% alumina doped with Fe2O3, MgO, SiO2] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 03. Available at: http://www.viam-works.ru (accessed: April 07, 2017). DOI: 10.18577/2307-6046-2014-0-3-3-3.
20. Evteev A.A., Makarov N.A., Lemeshev D.O., Zhitnyuk S.V. Keramika v sisteme ZrO2–Al2O3 s dobavkami evtekticheskih sostavov [Ceramics in ZrO2-Al2O3 system with additives of eutectic structures] // Steklo i keramika. 2011. №8. S. 23–27.
21. Tehnologiya stekla / pod red. I.I. Kitajgorodskogo. 3-e izd. [The technology has flown down / ed. by I.I. Kitajgorodskiy. 3rd ed.]. M.: Gos. izd-vo lit. po str-vu, arhit. i stroit. materialam 1961. 517 s.
22. Buchilin N.V., Prager E.P. Reologicheskie harakteristiki shlikernyh suspenzij na osnove oksida alyuminiya [Rheology of alumina-based slurry suspensions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 06. Available at: http://www.viam-works.ru (accessed: April 07, 2017). DOI: 10.18577/2307-6046-2015-0-5-6-6.
23. Vogt U.F., Gorbar M. et al. Improving the properties of ceramic foams by a vacuum infiltration process // Journal of the European Ceramic Society. 2010. Vol. 30. P. 3005–3011.
24. Evteev A.A., Lemeshev D.O., Zhitnyuk S.V., Makarov N.A. Raschet optimalnyh rezhimov obzhiga keramiki na osnove oksidov cirkoniya i alyuminiya [Calculation of optimum modes of roasting of ceramics on the basis of zirconium oxides and aluminum] // Steklo i keramika. 2014. №8. S. 15–21.
25. Bakunov V.S., Lukin E.S. Osobennosti spekaniya oksidnoj keramiki [Features of agglomeration of the oxidized ceramics] // Steklo i keramika. 2011. №7. S. 9–13.
Titan and titanium alloys are very attractive materials for perspective fields of application due to their properties: low density, high mechanical properties, corrosion resistance. Further improvement is necessary to increase their competitiveness compared to high-strength steels or Ni-alloys. One of the ways to enhance titanium alloys is to use them as a matrix in fiber-reinforced composites. Fiber- reinforced titanium matrix composites have very good mechanical properties, but costs of their production are often higher, than production of standart materials. However usege of these materials in aircraft manufacturing (jet engines and fuselage) and automotive industry is growing rapidly.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 21, 2017).
6. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM is 80: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
7. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
8. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
9. Doroshenko N.I., Chursova L.V. Evolyuciya materialov dlya lopastej vertoletov [Evolution of materials for blades of helicopters] // Aviacionnye materialy i tehnologii. 2012. №2. S. 16–18.
10. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 27, 2017).
11. Antashev V.G., Nochovnaya N.A., Shiryaev A.A., Izotova A.Yu. Perspektivy razrabotki novyh titanovyh splavov [Perspectives of development of new titanium alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 60–67.
12. Kerber M.L. Kompozicionnye materialy [Composite materials] // Corosovskij obrazovatel'nyj zhurnal. 1999. №5. S. 33–41.
13. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. № 1. S. 36–39.
14. Novye materialy / pod red. Yu.S. Karabasova [New materials / ed. by Yu.S. Karabasov]. M.: MISIS, 2002. S. 194–226.
15. Grishina O.I., Kochetov V.N., Shavnev A.A., Serpova V.M. Aspecty primeneniya vysokoprochnyh i vysokomodulnyh voloknistyh metallicheskih kompozitsionnyh materialov aviatsionnogo naznacheniya (obzor) [Aspects of application of high-strength and high-modulus fiber metal composite materials for aeronautical purpose (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 05. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
16. Nochovnaya N., Izotova A., Alexeev E., Ivanov V. Opportunities of increase of mechanical properties of the deformed semifinished products from Ti-Al-Nb system alloys // Ti 2011 – Proceeding of the 12th World Conference on Titanium. 2012. P. 1383–1386.
17. National Research Council Advanced Fibers for High-Temperature Ceramic Composites: Advanced Materials for the Twenty-First Century. Washington D.C.: Nat. Academy Press, 1998. P. 37–38.
18. Vienna University of Technology, Institute of Materials Science and Technology. Available at: http://www.mmc-assess.tuwien.ac.at (accessed: March 27, 2017).
19. Shalin R.E., Ilchenko V.M. Titanovye splavy v aviacionnom priborostroenii [Titanium alloys in aviation instrument making] // Informacionnyj portal www.titanmet.ru [Elektronnyj resurs]. Available at: http://www.titanmet.ru/literatura/1995-1-2-7.html (accessed: March 27, 2017).
20. Nochovnaya N.A., Alekseev E.B., Izotova A.Yu., Novak A.V. Pozharobezopasnye titanovye splavy i osobennosti ih primeneniya [Fireproof titanium alloys and features of their application] // Titan. 2012. №4 (38). S. 42–46.
Methods of spectral analysis are widely used on the production of aluminum alloys to determine the chemical composition of the melted material. For calibration of spectrometres are used certified reference materials (CRMs) of alloy composition. Uncertainty of certified values of CRM significantly affect on the accuracy of quantitative analysis. The uncertainty of the inhomogeneity of CRM is one of the total uncertainty of CRM certified value is. FSUE «VIAM» develops and produces certified reference materials. In this work we present the results of a study of the material composition of the alloy blanks CRM D16 melted on two different technologies. According to the research selected the technology that provides the best performance of the material CRM. Carry out the chemical analysis of CRM
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnye alyuminievye splavy i tehnologii ih soedineniya dlya izdelij aviakosmicheskoj tehniki [Perspective aluminum alloys and technologies of their connection for products of aerospace equipment] // Tez. dokl. 2-j Mezhdunar. konf. i vyst. «Alyuminij-21. Svarka i pajka». 2012. S. 8.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM. 2002. S. 23–47.
6. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM is 80: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
7. Put dlinoyu v 70 let – ot drevesiny do supermaterialov / pod obshh. red. E.N. Kablova [Way of 70 years – from wood to supermaterials / gen. ed. by E.N. Kablov]. M.: MISIS–VIAM. 2002. 488 s.
8. Kvasov F.I., Fridlyander I.N. Alyuminievye splavy tipa duralyumin [Aluminum alloys of type duralyumin]. M.: Metallurgiya, 1984. 240 s.
9. Eroshkin S.G., Orlov G.V. Research of material inhomogeneity of reference samples made of wrought Ni-based superalloy VZH175-ID // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 11. Available at: http://viam-works.ru (accessed: November 28, 2016). DOI: 10.18577/2307-6046-2015-0-8-11-11.
10. Erhardt H. Rentgenofluorescentnyj analiz. Primenenie v zavodskih laboratoriyah [X-ray fluorescent analysis. Application in factory laboratories]. M.: Metallurgiya, 1985. 256 s.
11. Yuing G.V. Instrumentalnye metody himicheskogo analiza [Tool methods of chemical analysis]. M.: Mir, 1989. 608 s.
12. Oreshnikova E.G. Spektralnyj analiz [Spectrum analysis]. M.: Vysshaya shkola, 1982. 375 s.
13. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
14. Letov A.F., Karachevtsev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya [Development of standard samples of structure of alloys of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
15. Kablov E.N., Grushko O.E., Grinevich A.V. «Letayushhij metall» v avtomobilestroenii [«Flying metal» in automotive industry] // Gruzovik. 2005. №10. S. 16–24
16. Afonin V.P., Komyak N.I., Nikolaev V.I., Plotnikov R.I. Rentgenofluorescentnyj analiz [X-ray fluorescent analysis]. Novosibirsk: Nauka, 1991. 173 s.
Article is devoted to questions of decrease in negative noise impact on the person on urban area and industrial rooms. For the solution of the described problem the composition decorative sound absorbing panel, for application as a part of transport shumozashchitny screens and in industrial rooms is offered. The structure of the panel representing layer of fibrous material, located in layer of cellular structure that allows to combine the high acoustic characteristics inherent to fibrous materials, at considerable improvement of rather fibrous materials of utilization properties is described.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3 Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
6. Shuldeshov E.M., Lepeshkin V.V., Romanov A.M. Metod ocenki koefficienta otrazheniya radiopogloshhayushhih polimernyh kompozicionnyh materialov [Method of assessment of reflection coefficient of radio absorbing polymeric composite materials] // Kontrol. Diagnostika. 2015. №6. S. 44–48.
7. Shuldeshov E.M., Lepeshkin V.V., Platonov M.M., Romanov A.M. Metod opredeleniya akusticheskih harakteristik zvukopogloshhayushhih materialov v rasshirennom do 15 kGc diapazone chastot [Method of definition of acoustic characteristics of sound-proof materials in the range of frequencies expanded to 15 kHz] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 45–49. DOI: 10.18577/2071-9140-2016-0-2-45-49.
8. Shuldeshova P.M., Deev I.S., Zhelezina G.F. Osobennosti razrusheniya aramidnyh volokon SVM i konstrukcionnyh organoplastikov na ih osnove [Features of destruction of SVM aramide fibers and structural organoplastics on their basis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 11. Available at: http://www.viam-works.ru (accessed: June 20, 2016). DOI: 10.18577/2307-6046-2016-0-2-11-11.
9. Shuldeshova P.M., Zhelezina G.F. Vliyanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [An influence of atmospheric condition and dust loading on properties of structural organic plastics] // Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68. DOI: 10.18577/2071-9140-2014-0-1-64-68.
10. Platonov M.M., Shuldeshov E.M., Nesterova T.A., Sagomonova V.A. Akusticheskie polimernye materialy novogo pokoleniya (obzor) [Acoustic polymeric materials of new generation (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 09. Available at: http://viam-works.ru (accessed: June 20, 2016). DOI: 10.18577/2307-6046-2016-0-4-9-9.
11. Shashkeev K.A., Shul'deshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Poristye zvukopogloshhayushhie materialy (obzor) [Porous sound-absorbing materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 06. Available at: http://www.viam-works.ru (accessed: June 20, 2016). DOI: 10.18577/2307-6046-2016-0-6-6-6.
12. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. Vibropogloshhayushhie materialy na osnove termojelastoplastov [Vibro absorbing materials on the basis of thermoelastoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 06. Available at: http://viam-works.ru (accessed: March 01, 2017).
13. SP 23-104–2004. Ocenka shuma pri proektirovanii, stroitel'stve i ekspluatacii obektov metropolitena [SP 23-104–2004. Noise assessment at design, construction and operation of objects of the underground]. M., 2004. 7 s.
14. GOST 33329–2015. Ekrany akusticheskie dlya zheleznodorozhnogo transporta. Tehnicheskie trebovaniya [Sate Standart 33329-2015. Acoustic screens for railway transport. Technical requirements]. M., 2015. 10 s.
15. GOST 32957–2014. Dorogi avtomobilnye obshhego polzovaniya. Ekrany akusticheskie. Tehnicheskie trebovaniya [GOST 32957-2014. Public auto roads. Acoustic screens. Technical requirements]. 11 s.
Bismaleimide binder was developed with high resistance to water. Using a part of the binder allyl and propenyl hardener yielded net structurally elasticized co-polyimide. The choice of a ratio of components, the use of active diluents, the variation in time of synthesis allowed to obtain without solvent of bismaleimide binder composition for the manufacture of composite materials with operating temperature up to 200°C in a humid environment.
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossiiskii khimicheskii zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuiushchih dlya polimernyh kompozitsionnyh materialov [Development of FSUE «VIAM» in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
4. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: September 05, 2016). DOI: 10.18577/2307-6046-2014-0-7-6-6.
5. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
6. Beider E.Ya., Petrova G.N., Dykun M.I. Appretirovanie uglerodnyh volokon-napolnitelej termoplastichnyh karboplastikov [Dressing of carbon fibers – fillers of thermoplastic carbon reinforced plastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 03. Available at: http://www.viam-works.ru (accessed: March 06, 2017). DOI: 10.18577/2307-6046-2014-0-10-3-3.
7. Tyumeneva T.Yu., Kogtyonkov A.S., Lukina N.F., Chursova L.V. Vliyanie napolnitelej na svojstva kleev rezinotekhnicheskogo naznacheniya [Influence of fillers on properties of adhesives of industrial rubber assignment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 05. Available at: http://www.viam-works.ru (accessed: February 09, 2016). DOI: 10.18577/2307-6046-2014-0-4-5-5.
8. Gulyaev I.N., Gunyaev G.M., Raskutin A.E. Polimernye kompozitsionnye materialy s funktsiyami adaptacii i diagnostiki sostoianiya [Polymeric composite materials with functions of adaptation and condition diagnostics] // Aviacionnye materialy i tehnologii. 2012. №S. S. 242–253.
9. Muhametov R.R., Dolgova E.V., Merkulova Yu.I., Dushin M.I. Razrabotka bismaleimidnogo termostoikogo svyazuiushchego dlya kompozitsionnyh materialov aviacionnogo naznacheniya [Development of heat-resistant bismaleimide binder for composites for aeronautical application] // Aviacionnye materialy i tehnologii. 2014. №4 (33). S. 53–57. DOI: 10.18577/2071-9140-2014-0-4-53-57.
10. Stenzenberger H.D. Recent advances in thermosetting polyimides // British Polymer Journal. 1988. Vol. 20. No. 5. P. 383–396.
11. McConnell V.P. Resins for the hot zone. Part II: BMIs, CEs, benzoxazines and phthalonitriles // High Performance Composites. 2009. Vol. 17. Issue 5. P. 43. Available at: http://www.compositesworld.com (accessed: April 12, 2017).
12. Mangalgiri P.D. Polymer-matrix composites for high-temperature applications // Def. Sci. J. 2005. Vol. 55. No. 2. P. 175–193.
13. Black S. Are high-temp thermosets ready to go commercial? // High-Perform Composites. Available at: http://www.compositesworld.com/articles/are-high-temp-thermosets-ready-to-go-commercial (accessed: April 12, 2017).
14. Iijima T. The Polymeric Materials Encyclopedia, Boca Raton: CRC, 1996. Vol. 1. P. 683–687.
15. Mikhailin Yu.A. Termoustoichivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professiia, 2006. S. 528–623.
16. Mikhailin Yu.A., Miichenko I.P. Maleinimidnye sviazuiushchie (obzor) [Maleinimide binding (overview)] // Plasticheskie massy. 1992. №5. S. 56–59.
Complex research of the reasons of operational destruction of boards of generators from AL9 and VAL8 aluminum alloys is conducted. Methods of optical and electron microscopy, x-ray microanalysis and chemical analysis is evaluated microstructure, chemical composition and nature of destruction of details is studied. It is established that destruction of details has occurred at action of single static load (hydraulic shock). Destruction was promoted by lack of radius of transition in place of change of thickness and the raised level of porosity in generator board from AL9 alloy.
2. Promyshlennye aliuminievye splavy / po red. S.G. Alieva, M.B. Altmana, S.M. Ambartsumyana i dr. 2-e izd., pererab. i dop. [Industrial aluminum alloys / ed. by S.G. Aliev, M.B. Altman, S.M. Ambartsumyan etc. 2nd ed., rev. and add.]. M.: Metallurgiya, 1984. 528 s.
3. Beletskii V.M., Krivov G.A. Aliuminievye splavy. Sostav, svoistva, tehnologiya, primenenie: spravochnik [Aluminum alloys. Structure, properties, technology, application: directory]. Kiev: Kominteh, 2005. 365 s.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Kablov E.N. Materialy dlya aviakosmicheskoi tehniki [Materials for aerospace equipment] // Vse materialy. Entsiklopedicheskii spravochnik. 2007. №5. S. 7–27.
6. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Vse materialy. Entsiklopedicheskii spravochnik. 2007. №1. S. 2–10.
7. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskii spravochnik. 2008. №3. S. 2–14.
8. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
9. Zolotorevskii V.S., Belov N.A. Metallovedenie liteinyh aliuminievyh splavov [Metallurgical science of cast aluminum alloys]. M.: MISiS, 2005. 376 s.
10. Mondolfo L.F. Struktura i svoistva aliuminievykh splavov. Per. s angl. [Structure and properties of aluminum alloys. Trans. from Engl.]. M.: Metallurgiya, 1979. 640 s.
11. Aliuminievye splavy. Metallovedenie aliuminiya i ego splavov: spravochnoe rukovodstvo [Aluminum alloys. Metallurgical science of aluminum and its alloys: reference guide]. M.: Metallurgiya, 1971. 352 s.
12. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: June 30, 2016).
13. Bronfin M.B., Alekseev A.A., Chabina E.B. Metallofizicheskie issledovaniia. Vozmozhnosti i perspektivy [Metalphysical researches. Opportunities and perspectives] // 75 let. Aviacionnye materialy. Izbrannye trudy VIAM 1932–2007. M.: VIAM, 2007. S. 353–365.
14. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju ekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The research of Ni–Al alloy and Co–Cr–Al–Ni–Y alloy are provided. Those alloys has tendency to the cold brittleness at the room temperature. The alloy of Ni–Al system and alloy of Co–Cr–Al–Ni–Y system were produced by the technique of electro-magnetic field treatment during equiaxal solidification. It is shown that Ni–Al alloy and Co–Cr–Al–Ni–Y alloy after the electro-magnetic field treatment of liquid metal during crystallization process the size of constituents are decreasing. In addition, the formation of crystallographic texture for researched alloys is detected. For Ni–Al alloy the linear dependence of impact hardness growth on increase of electro-magnetic field induction is identified. It is shown that using of the electro-magnetic field treatment at the crystallization process lead to significantly reduction of the weight loss after heat resistance testing for Ni–Al alloy samples. In addition, the change of phase structure of Ni–Al alloy which produced by electro-magnetic field
2. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: February 21, 2017).
3. Drane Zh.M. Uspehi v razvitii napravlenno zakristallizovannykh i evtekticheskih zharoprochnyh splavov [Successes in development directionally zakristallizovanny and evtektichesky hot strength alloys] // Zharoprochnye splavy dlya gazovykh turbin. M.: Metallurgiya, 1981. S. 365–387.
4. Proizvodstvo vysokotemperaturnyh litykh lopatok aviacionnyh GTD / pod red. S.I. Iatsika [Production of high-temperature cast blades of aviation GTD / ed. by S.I. Yatsik]. M.: Mashinostroenie, 1995. 33 s.
5. Kablov E.N., Petrushin N.V., Eliutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelei [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
6. Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i TiAl: mikrostruktura, deformatsionnoe povedenie [Ni3Al and TiAl intermetallic compound: microstructure, deformation behavior]. Ekaterinburg: Izd-vo UrO RAN, 2002. 360 s.
7. Li X., Wang J., Zhang J., Han Y., Li. X. Directional Solidification Microstructure of a Ni-Based Superalloy: Influence of a Weak Transverse Magnetic Field // Materials. 2015. Vol. 8. P. 3428–3441.
8. Nikrityuk P.A., Eckert K., Grundmann R. Electromagnetically Forced Swirling Flow During Solidification of a Binary Metal alloy // Journal of Computational and Applied Mechanics. 2004. Vol. 5. No. 2. P. 337–352.
9. Verte L.A. MGD-tehnologiya v proizvodstve chernyh metallov [MGD technology in production of ferrous metals]. M.: Metallurgiya, 1990. 119 s.
10. Verte L.A. Elektromagnitnaya razlivka i obrabotka zhidkogo metalla [Electromagnetic pouring and processing of liquid metal]. M.: Metallurgiya, 1967. 208 s.
11. Verte L.A. Magnitnay gidrodinamika v metallurgii [Magnetic hydrodynamics in metallurgy]. M.: Metallurgiya, 1975. 287 s.
12. Sposob polucheniya otlivok: a. s. 1367286 SSSR [Way of receiving molding: copyright certificate 1367286 USSR]; zaiavl. 25.02.85; opubl. 15.07.94.
13. Nazarkin R.M., Konokotin S.P., Moiseeva N.S., Azarovskii E.N. Issledovanie Cr-splava, kristallizovannogo v elektromagnitnom pole [Research of Cr-alloy, crystallized in electromagnetic field] // Liteinoe proizvodstvo. 2014. №12. S. 23–27.
14. Sposob polucheniya otlivok: pat. 2368457 Ros. Federaciya [Way of receiving molding: pat. 2368457 Rus. Federation]; zaiavl. 24.01.08; opubl. 27.09.09.
15. Mneian M.G. Novye professii magnita [New professions of magnet]. M.: Prosveshchenie, 1985. S. 28–35.
16. Samoilov A.I., Konokotin S.P., Roshchina I.N. i dr. Povyshenie plastichnosti materialov kristallizatsiei v elektromagnitnom pole [Increase of plasticity of materials by crystallization in electromagnetic field] // Aviacionnye materialy i tehnologii. 2008. Vyp. 1. S. 32–37.
17. Konokotin S.P., Moiseeva N.S. Vliyanie elektromagnitnogo polya na svoistva intermetallidnogo Ni–Al splava [Influence of electromagnetic field on properties of intermetallic Ni–Al of alloy] // Liteinoe proizvodstvo. 2011. №10. S. 17–19.
18. Moiseeva N.S., Konokotin S.P. Effektivnost vliyaniya elektromagnitnoi obrabotki na strukturu i svoistva litogo splava sistemy Ni–Al [Efficiency of influence of electromagnetic processing on structure and properties of cast alloy of Ni-Al system] // Metallurgiya mashinostroeniya. 2013. №3. S. 27–31.
19. Konokotin S.P., Moiseeva N.S. Vliyanie metoda kristallizatsii na strukturu splava sistemy Ni–Al posle vysokotemperaturnogo nagreva [Influence of method of crystallization on Ni-Al system alloy structure after high-temperature heating] // Metallurgiia mashinostroeniia. 2013. №4. S. 27–31.
20. Konokotin S.P., Moiseeva N.S. Povyshenie fiziko-mehanicheskih svojstv splavov na osnove hroma i sistemy Ni–Al, sklonnyh k hladnolomkosti, metodom ravnoosnoj kristallizacii v elektromagnitnom pole [An increase of physical and mechanical properties of Cr-based and Ni–Al alloys by using the equiaxed crystallization in electromagnetic field] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 15–26. DOI: 10.18577/2071-9140-2015-0-3-15-26.
21. Yu J., Du D., Ren Z., et al. Influence of an Axial Magnetic Field on Microstructures and Aligment in Directioally Solidified Ni-based Superalloy // ISIJ (Iron and Steel Institute of Japan) International. 2016. Article ID: ISIJINT-2016-352. P. 6.
22. Nochovnaia N.A., Sivakov D.V. Issledovanie vzaimodeistviya poverkhnostnykh sloev titanovykh splavov razlichnogo fazovogo sostava s elektromagnitnym polem [Research of interaction of surface layers of titanium alloys of different phase structure with electromagnetic field] // Aviacionnye materialy i tehnologii. 2010. №2. S. 14–22.
23. Ospennikova O.G., Podieiachev V.N., Stoliankov Iu.V. Tugoplavkie splavy dlia novoi tekhniki [Refractory alloys for innovative equipment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 05. Available at: http://www.viam-works.ru (accessed: February 21, 2017). DOI:10.18577/2307-6046-2016-0-10-5-5.
The dependence of the damping ability of the thickness of new developed coatings system Al–Ni–Y during the vibration in the first bending form the resonance with the same amplitude of the exciting force corresponding to a stress of 70 MPa in the threat section. We investigated the surface roughness of titanium alloy VT6 after application of the damping coating. Investigated the erosion resistance of the new developed coatings system Al–Ni–Y, and the damping ability after exposure to the abrasive stream. Work was performed within the framework of strategic directions 17. «Comprehensive anticorrosion protection, hardening, wear-resistant protective and heat-resistant coating», сomplex problem 17.3. «Multilayer heat-resistant and heat-resistant coating, nanostructural hardening of erosion and corrosion-resistant, wear-resistant, antifatigue coating to protect parts hot gas path and compressor of GTE and GTU» («The strategic directions of development of materials and technologies of th
2. Shorr B.F., Serebryakov N.N. Raschetno-eksperimentalnyj analiz amplitudno-zavisimyh harakteristik dempfirovaniya v detalyah i materialah [The rated and experimental analysis of amplitude and dependent characteristics of damping in details and materials] // Problemy mashinostroeniya i nadezhnosti mashin. 2011. №3. S. 91–99.
3. Ustinov A.I., Movchan B.A., Skorodzievskij V.S. Issledovanie dempfiruyushhej sposobnosti ploskih obrazcov iz titanovogo splava Ti–6%Al–4%V s pokrytiyami iz olova i ittriya [Research of damping capacity of flat samples from Ti-6%Al-4%V titanium alloy with coverings from tin and yttrium] // Problemy prochnosti. 2001. №4. S. 55–61.
4. Muboyadzhyan S.A., Pomelov Ya.A. Zashhitnye pokrytiya dlya lopatok kompressora GTD [Protecting covers for GTD compressor blades] // Aviacionnye materialy i tehnologii. M.: VIAM, 2003. Vyp.: Vysokozharoprochnye materialy dlya sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva. S.116–131.
5. Shorr B.F., Melnikova G.V., Serebryakov N.N. Raschetno-eksperimentalnoe issledovanie effektivnosti dempfiruyushhih pokrytij dlya rabochih lopatok turbomashin [Rated pilot study of efficiency of damping coatings for working blades of turbomachines] // Prochnost materialov i elementov konstrukcij: tr. Mezhdunar. nauch.-tehn. konferencii. Kiev: In-t problem prochnosti im. G.S. Pisarenko NAN Ukrainy, 2011. S. 133–141.
6. Muboyadzhyan S.A., Gorlov D.S., Shhepilov A.A., Konnova V.I. Issledovanie dempfiruyushhej sposobnosti ionno-plazmennyh pokrytij [Study of damping capacity of ion-plasma coatings] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 67–72. DOI: 10.18577/2071-9140-2014-0-s5-67-72.
7. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. Vliyanie ionnoj implantacii na dempfiruyushhuyu sposobnost kompozicii «splav–ionno-plazmennoe pokrytie» [The influence of ion implantation on the damping ability of the composition «аlloy–ion-plasma coating»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 04. Available at: http://www.viam-works.ru (accessed: March 03, 2017). DOI: 10.18577/2307-6046-2017-0-2-4-4.
8. Panin P.V., Dzunovich D.A., Shiryaev A.A. Issledovanie termicheskoj stabilnosti struktury titanovogo splava VT6 posle termovodorodnoj obrabotki [Research on thermal stability of VT6 titanium alloy structure after thermohydrogen treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 06. Available at: http://www.viam-works.ru (accessed: March 03, 2017). DOI: 10.18577/2307-6046-2016-0-3-6-6.
9. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
12. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 149–163.
13. Artemenko N.I., Muboyadzhyan S.A. Inzhenernaya metodika ocenki velichiny i haraktera vnutrennih napryazhenij v odnoslojnyh uprochnyayushhih kondensirovannyh pokrytiyah [Engineering method of estimating the magnitude and nature of the internal stresses in the condensed monolayer reinforcing coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 04. Available at: http://www.viam-works.ru (accessed: March 03, 2017). DOI: 10.18577/2307-6046-2016-0-1-25-35.
14. Lapteva M.A., Belova N.A., Raevskih A.N., Filonova E.V. Issledovanie zavisimosti sherohovatosti, morfologii poverhnosti i kolichestva defektov struktury ot moshhnosti lazera, skorosti skanirovaniya i tipa shtrihovki v zharoprochnom splave, sintezirovannom metodom SLS [Dependence of roughness, surface morphology structure and number of defects on the power of the laser, scanning speed and the type of hatching in the high-temperature alloys synthesized by SLS] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 09. Available at: http://www.viam-works.ru (accessed: March 03, 2017). DOI: 10.18577/2307-6046-2016-0-9-9-9.
15. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. Issledovanie erozionnoj stojkosti i teplostojkosti ionno-plazmennyh dempfiruyushhih pokrytij [The research of erosion resistance and heat resistance of the ion-plasma damping coatings] // Aviacionnye materialy i tehnologii. 2016. №2. S. 11–17. DOI: 10.18577/2071-9140-2016-0-2-11-17.
Currently nickel alloys are widely used in modern aviation industry and engine building. They are made of critical parts with thermal and power load. An important task is to control the chemical composition of nickel alloys, especially the content of trace. In this work determination of B, Si, P, Mn, Fe, Cu, As, Se, Sn, Sb, Pb and Bi in the certified standard samples of nickel alloys by a mass spectrometry method with inductively coupled plasma and laser ablation (ICP-MS-LA). The technique of preparation of test for the analysis is given. The results are compared with the results of the analysis of the classical method of ICP-MS. The detection limits are as follows: the range of detectable concentrations 0,00002–2,2% (by weight), relative standard deviation is less than 0,07.
2. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
3. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoj i monokristallicheskoj strukturoj (Chast II) [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure (Part II)] // Materialovedenie. 1997. №5. S. 14–16.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTD] // Tehnologiya legkih splavov. 2007. №2. S. 6–16.
5. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
7. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
8. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
9. Pupyshev A.A., Surikov V.T. Mass-spektrometriya s induktivno svyazannoj plazmoj. Obrazovanie ionov [Mass-spectrometry with inductively connected plasma. Formation of ions]. Ekaterinburg: UrO RAN, 2006. 276 s.
10. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS // Mikrochim. Acta. 2001. Vol. 137. P. 149–155.
11. Pupyshev A.A., Epova E.N. Spektralnye pomehi poliatomnyh ionov v metode mass-spektrometrii s induktivno svyazannoj plazmoj [Spectral hindrances of polynuclear ions in mass-spectrometry method with inductively connected plasma] // Analitika i kontrol. 2001. T. 5. №4. S. 335–369.
12. Lejkin A.Yu., Yakimovich P.V. Sistemy podavleniya spektralnyh interferencij v mass-spektrometrii s induktivno svyazannoj plazmoj [Systems of suppression of spectral interferences in mass-spectrometry with inductively connected plasma] // Zhurnal analiticheskoj himii. 2012. T. 67. №8. S. 752–762.
13. Nie X., Liang Y. Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry // J. Cent. South Univ. 2012. Vol. 19. P. 2416−2420.
14. MI 1.2.052–2013. Metodika izmerenij massovoj doli primesej R, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi v nikelevyh splavah metodom mass-spektrometrii s induktivno svyazannoj plazmoj [Measurement technique of mass fraction of impurity P, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, CDs, Sn, Sb, Te, Tl, Pb, Bi in nickel alloys mass-spectrometry method with inductively connected plasma]. M.: VIAM, 2013.
15. Chernonozhkin S.M., Saprykin A.I. Osobennosti lazernoj ablyacii stekla i stali i ih vliyanie na rezultaty LA-ISP-MS analiza [Features of laser ablation of glass and steel and their influence on results of LA-ISP-MS of the analysis] // Analitika i kontrol. 2011. T. 15. №4. S. 413–420
16. Mochizuki T., Shimamura T., Sakashita A., Iwata H., Blair P. Laser ablation for direct elemental analysis of solid samples by inductively coupled plasma mass spectrometry // Analytical Sciences. 1998. Vol. 4. P. 403–409.
17. Karasev A.V., Inoue R., Suito H. Quantitative analysis of total and insoluble elements and inclusion composition in metal by laser ablation ICP-MS method // ISIJ International. 2001. Vol. 41. P. 757–765.
18. Latkoczy C., Muller Y., Schmutz P., Gunther D. Quantitative element mapping of Mg alloys by laser ablation ICP-MS and EPMA // Applied Surface Science. 2005. Vol. 252. P. 127–132.
19. Izmer A.V., Zoriy M.V., Pickhardt C. et al. LA-ICP-MS studies of cross section of NiCrAlY-based coatings on high-temperature alloys // JAAS. 2005. Vol. 20. P. 918–923.