Articles
Directional solidification of process of experimental intermetallic Ni3Al-based alloy of quaternary system Ni–7Al–13,5Ta–0,07С (wt. %) has been investigated. Phase composition of the alloy is γʹ+γ+MC. Directionally solidified as cylindrical bars of Ni3Al-based alloy were successfully grown with a Bridgman process by slow directional solidification (R=6 mm/h) with high thermal gradient (G=12°C/mm). Studied macrosegregation elements and influence macrosegregation on the physicochemical and structural parameters of directionally solidified intermetallic Ni3Al-based alloy (solidus temperature, liquidus temperature, γ- and γ′-lattice parameters and γ/γ′-lattice misfit).
2. Povarova K.B., Buntushkin V.P., Kazanskaya N.K., Drozdov A.A., Bazyleva O.A. Osobo legkie zharoprochnye nanostrukturirovannye splavy na osnove Ni3Al dlya aviacionnogo dvigatelestroeniya i energeticheskogo mashinostroeniya [Particularly light high-temperature nanostructured alloys based on Ni3Al for aircraft engines and power machinery] // Voprosy materialovedeniya. 2008. №2 (54). S. 85–93.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
4. Arginbaeva E.G., Bazyleva O.A., Kolodochkina V.G., Khvatskij K.K. Vliyanie kristallograficheskoj orientacii na strukturu i fiziko-mehanicheskie svojstva intermetallidnogo splava na osnove Ni3Al [The influence of crystallographic oriental on structure, physical and mechanical properties of intermetallic alloys based on Ni3Al] // Aviacionnye materialy i tehnologii. 2013. №2. S. 3–7.
5. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
6. Evgenov A.G., Lukina E.A., Korolev V.A. Osobennosti processa selektivnogo lazernogo sinteza primenitel'no k litejnym splavam na osnove nikelya i intermetallida Ni3Al [Features of process of the selection laser synthesis with reference to cast alloys on the basis of nickel and Ni3Al intermetallic compound] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №5 (23). St. 01. Available at: http://www.materialsnews.ru (accessed: Octoober 10, 2016)
7. Vigdorovich V.N., Volpyan A.E., Kurdyumov G.M. Napravlennaya kristallizaciya i fiziko-himicheskij analiz [The directed crystallization and the physical and chemical analysis]. M.: Himiya, 1976. 200 s.
8. Petrushin N.V., Bronfin M.B., Chabina E.B., D'yachkova L.A. Fazovye prevrashheniya i struktura napravlenno zakristallizovannyh intermetallidnyh splavov sistemy Ni–Al–Re [Phase transformations and structure directionally crystallized intermetallidny alloys of Ni–Al–Re system] // Metally. 1994. №3. S. 85–93.
9. Petrushin N.V., Monastyrskaya E.V. Primenenie napravlennoj kristallizacii k resheniyu problem razrabotki i optimizacii zharoprochnyh materialov [Application of the directed crystallization to the solution of problems of development and optimization of heat resisting materials] // Materialovedenie. 1998. №5. S. 2–10.
10. Kurc V., Zam P.R. Napravlennaya kristallizaciya evtekticheskih materialov / per. s nem. V.A. Polskogo; pod red. Yu.N. Tarana [The directed crystallization of eutectic materials / trans. from Ger. by V.A.Polish; ed. by Yu.N.Ram]. M.: Metallurgiya, 1980. 274 s.
11. Petrushin N.V., Chabina E.B., Nazarkin R.M. Konstruirovanie zharoprochnyh intermetallidnyh splavov na osnove γ'-fazy s vysokoj temperaturoj plavleniya. Chast 1 [Designing of heat resisting intermetallidny alloys on basis γ'-phases with high melting temperature. Part 1] // MiTOM. 2012. №2 (680). S. 32–38.
12. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tehnologii, pokrytiya. 2-e izd. / pod obshh. red. E.N. Kablova [Cast blades of gas turbine engines. Alloys, technologies, coverings. 2nd ed. / gen. ed. by E.N.Kablova]. M.: Nauka, 2006. 632 c.
13. Petrushin N.V., Elyutin E.S., Nazarkin R.M. i dr. Segregaciya legiruyushhih elementov v napravlenno zakristallizovannyh zharoprochnyh nikelevyh splavah, soderzhashhih renij i rutenij [Segregation of doping elements in directionally crystallized heat resisting nickel alloys, containing reniye and ruthenium] // Voprosy materialovedeniya. 2015. №1 (81). S. 27–37.
14. Petrushin N.V., Elyutin E.S., Nazarkin R.M. at al. Segregation of alloying elements in directionally solidified Re-Ru-containing Ni-base superalloys // Inorganic Materials: Applied Research. 2016. Vol. 7. P. 824–831.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Nash P., West D.R.F. Phase equilibria in the Ni–Ta–Al system // Metal Science. 1979. Vol. 13. Nо. 12. P. 670–676.
17. Kablov E.N., Gerasimov V.V., Visik E.M. Tehnologicheskie osobennosti polucheniya monokristallicheskih obrazcov i turbinnyh lopatok iz vysokorenievyh zharoprochnyh splavov na ustanovkah UVNK-9 i VIAM-1790 [Technological features of receiving single-crystal samples and turbine blades from high-rhenium hot strength alloys on the installations UVNK-9 and VIAM-1790] //Aviacionnye materialy i tehnologii. Vyp. Vysokorenievye zharoprochnye splavy, tehnologiya i oborudovanie dlya proizvodstva splavov i lit'ya monokristallicheskih turbinnyh lopatok GTD. M.: VIAM. 2004. S. 91−97.
18. Eliot R. Upravlenie evtekticheskim zatverdevaniem [Management of eutectic hardening]. M.: Metallurgiya, 1987. 352 s.
The efficiency of silicon, phosphorus and sulfur contain reducing in single-crystal rhenium-containing superalloys ZhS32-VI and VZhM5-VI by directed moving the crystallization front with rate 6 mm/h. The reducing of silicon phosphorus and sulfur in bottom and middle parts of the casting was founded. The displacing due to directed melt solidification of nonmetallic inclusions to top part of casting was shown. The results were obtain during performance the project of oriented fundamental research №13-0812055_ofi_m.
2. Min P.G., Sidorov V.V., Kablov D.E., Rigin V.E. Vliyanie primesej na strukturu i mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov i razrabotka effektivnyh sposobov ih rafinirovaniya [Influence of impurity on structure and mechanical properties of cast nickel hot strength alloys and development of effective ways of their refinement] // Sb. dokl. nauch.-tehn. konf. «Klimovskie chteniya–2015. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya». SPb.: Skifiya-print, 2015. S. 275–283.
3. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vliyaniya azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Research of influence of nitrogen on structure and properties of monocrystals from foundry ZhS30-VI hot strength alloy] // MiTOM. 2013. №8. S. 3–11.
4. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] // Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
5. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedeniya azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vliyanie na ekspluatacionnye svojstva [Patterns of behavior of nitrogen when receiving monocrystals of heat resisting ZhS30-VI nickel alloy and its influence on operational properties] // MiTOM. 2014. №1. S. 8–12.
6. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] //Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
7. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
8. Sidorov V.V., Rigin V.E., Filonova E.V., Timofeeva O.B. Strukturnye issledovaniya i svojstva monokristallov splavov VZhM4-VI i VZhM5-VI, soderzhashhih povyshennoe kolichestvo fosfora [The structure investigations and properties of VGM4-VI and VGM5-VI single crystal alloys with increased phosphorus quantity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 02. Available at: http://www.viam-works.ru (accessed: January 09, 2017). DOI: 10.18577/2307-6046-2014-0-3-2-2.
9. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
10. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatel'nogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // MiTOM. 2015. №6 (720). S. 55–59.
11. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: January 09, 2017).
12. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
13 Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
14. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh) zagotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Production of cast bar (blend) preparations from modern cast high-heat resisting nickel alloys] // Sb. tr. nauch.-tehnich. konf., posvyashhennoj 310-letiyu ural'skoj metallurgii i sozdaniyu tehniko-vnedrencheskogo centra metallurgii i tyazhelogo mashinostroeniya. Ekaterinburg: Nauka Servis, 2011. T. 1. S. 31–38.
15. Kablov E.N., Petrushin N.V., Svetlov I.L. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] // Tehnologiya legkih splavov. 2007. №2. S. 6–16.
16. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Kablov D.E. Osobennosti tehnologii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Features of smelting technology and razlivka of modern cast high-heat resisting nickel alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 68–78.
17. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
18. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
19. Min P.G., Sidorov V.V., Budinovskij S.A., Vadeev V.E. Vliyanie sery na zharostojkost monokristallov zharoprochnogo nikelevogo splava sistemy Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr [Influence of sulfur on the heat resistance of monocrystals of heat resisting nickel alloy of system of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr] // Materialovedenie. 2016. №7. S. 9–12
20. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru soderzhashhego splava s ispol'zovaniem nekondicionnyh othodov [Receiving Re–Ru of containing alloy with use of unconditioned waste] // Metallurgiya mashinostroeniya. 2012. №3. S.15–17.
21. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Opyt pererabotki v usloviyah FGUP «VIAM» litejnyh othodov zharoprochnyh splavov, obrazuyushhihsya na motorostroitelnyh i remontnyh zavodah [Experience of processing in the conditions of FSUE «VIAM» of foundry waste of the hot strength alloys which are forming at engine-building and repair plants] // Metallurg. №1. 2014. S. 86–90.
22. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov litejnyh zharoprochnyh splavov [Resource-saving refining technology of unconditioned waste of foundry hot strength alloys] // Metallurg. №5. 2014. S. 35–39.
23. Sidorov V.V., Rigin V.E., Gorjunov A.V., Min P.G. Innovatsionnaya tehnologiya proizvodstva zharoprochnogo splava ZhS32-VI s uchetom pererabotki vseh vidov othodov v usloviyah sertificirovannogo serijnogo proizvodstva FGUP «VIAM» [The innovation technology of high temperature GS32-VI alloy production considering the recycling of all scrap appearance a certificated quantity production of FGUP «VIAM»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 01. Available at: http://www.viam-works.ru (accessed: January 09, 2017). DOI: 10.18577/2307-6046-2014-0-6-1-1.
24. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushhie tehnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vseh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
25. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Komp'yuternoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum of complex-alloyed reniye of containing nickel alloys from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
26. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://viam-works.ru (accessed: January 09, 2017). DOI: 10.18577/2307-6046-2014-0-9-1-1.
27. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
28. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Issledovanie processov rafinirovaniya v vakuume slozhnolegirovannyh nikelevyh rasplavov ot primesi sery [Research of refining processes in vacuum of complex-alloyed nickel alloys from sulfur impurity] // Metally. 2015. №6. S. 37–43.
29. Min P.G., Vadeev V.E., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
30. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 1) [Refinement of complex-alloyed nickel alloy from sulfur impurity when melting in the vacuum induction furnace (part 1)] // Elektrometallurgiya. 2014. №3. S. 18–23.
31. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 2) [Refinement of complex-alloyed nickel alloy from sulfur impurity when melting in the vacuum induction furnace (part 2)] // Elektrometallurgiya. 2014. №5. S. 26–30.
32. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij fil'tr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel alloy via the foam ceramic filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
33. Kablov D.E., Sidorov V.V., Min P.G., Vadeev V.E. Vliyanie primesej i lantana na ekspluatacionnye svojstva splava ZhS36-VI [Influence of impurity and lanthanum on operational properties of alloy ZhS36-VI] // Metallurgiya mashinostroeniya. 2015. №6. S. 19–23.
34. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: January 09, 2017). DOI: 10.18577/2307-6046-2015-0-12-2-2.
35. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 12. Available at: http://viam-works.ru (accessed: January 09, 2017).
36. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: January 09, 2017).
Today's demands on the quality of metal products and constructions have caused a trend of increasing the share of steel c improved mechanical characteristics in the total volume of steel production, for this reason, in recent years greatly increased interest of High-low-alloy steel with improved strength characteristics. This low content of austenite forming alloying elements presents certain difficulty to introduce nitrogen into the melt. The article describes the main identified defects and suggest ways to prevent them. The work within the framework of an integrated research area 8.2. «High-strength and corrosion-resistant welded structural steel with high fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
3. Kablov E.N. Innovacionnoe razvitie – vazhnejshij prioritet gosudarstva [Innovative development – the most important priority of the state] // Metally Evrazii. 2010. №2. S. 6–11.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
5. Evgenov A.G., Krylov S.A., Makarov A.A. i dr. Poluchenie vysokoazotistyh stalej metodom elektroshlakovogo pereplava pod davleniem [Receiving high-nitrogen staly method electroslag pereplava under pressure] // Sb. tr. XIV Mezhdunar. kongressa staleplavil'shhikov. 2016. S. 369–376.
6. Blinov V.M., Andreev Ch., Kostina M.V., Blinov E.V. Struktura i fazovyj sostav lityh zhelezonikelevyh splavov so sverhravnovesnym soderzhaniem azota [Structure and phase composition of cast nickel iron alloys with the superequilibrium content of nitrogen] // Metally. 2009. №4. S. 57–62.
7. Rashev C.V. Vysokoazotistye stali. Metallurgiya pod davleniem [High-nitrogen became. Metallurgy under pressure]. Sofiya: Prof. Marin Drinov, 1995. 272 s.
8. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijaniya vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
9. Tonysheva O.A., Voznesenskaya I.M., Eliseev E.A., Shalkevich A.B. Novaya vysokoprochnaya ekonomnolegirovannaya azotsoderzhashchaya stal povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
10. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant became modern aircraft]. M.: MAI, 2006. S. 112–143.
11. Bartosinski М., Reitz J., Friedrich B. Modelling the Oxygen Content of titanium during deoxidation in the Pressure electroslag remelting (PESR) Process // Proceedings of EMC. 2013. P. 1–7.
12. Dub A.V., Dub V.S., Levkov L.Ya. i dr. Mnogocelevaya pech EShP dlya sovremennogo energeticheskogo i tyazhelogo mashinostroeniya [The multi-purpose ESF furnace for modern power and heavy mechanical engineering] // Elektrometallurgiya. 2011. №9. S. 2–8.
13. Pirowski Z., Olszyński J., Gwiżdż A. Ferrous alloys cast under high pressure gas atmosphere // Archives of Foundary Engineering. 2007. Vol. 7. Issue l. P. 107–112.
14. Tonysheva O.A., Voznesenskaya N.M. Perspektivnye vysokoprochnye korrozionnostojkie stali, legirovannye azotom (sravnitelnyj analiz) [Perspective high-strength corrosion-resistant steels alloyed with nitrogen (comparative analysis] // Aviacionnye materialy i tehnologii. 2014. №3. S. 27–32. DOI: 10.18577/2071-9140-2014-0-3-27-32.
15. Shved F.I. Slitok vakuumnogo dugovogo pereplava [Ingot vacuum arc pereplava]. Chelyabinsk: Izd-vo Tat'yany Lur'e, 2009. S. 289–295.
The method of atomistic computer modeling was developed consistent model of interatomic potentials, which allowed us to reproduce the crystal structures of three polymorphic modifications of niobium silicide (α-Nb5Si3, β-Nb5Si3, γ-Nb5Si3) with an error no more than 0,6%, as well as to calculate some physical properties. To assess the energy of the entering admixture of carbon atoms in the structure were further developed pair potentials interatomic Si–C, Nb–C and C–C. Two independent methods (Mott–Littleton and simulation in over the cell) first identified the energetically most favorable positions for the impurity atoms of carbon in the investigated structures.
2. Available at: http://www.ras.ru/news/shownews.aspx?id=824e2453-383e-4d9e-b78d-87c9f7bf16ee (accessed: 31.01.2017).
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb-Si-kompozity [High-temperature Nb-Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
5. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobija, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 60–64. DOI: 10.18577/2071-9140-2015-0-1-60-64.
6. Shchetanov B.V., Efimochkin I.Yu., Paegle S.V., Karachevtsev F.N. Issledovanie vysokotemperaturnoj prochnosti in-situ-kompozitov na osnove Nb, armirovannyh monokristallicheskimi voloknami α-Al2O3 [Study of high-temperature strength of Nb–Si–Ti in-situ-composites reinforced by single-crystal α-Al2O3] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 53–59. DOI: 10.18577/2071-9140-2016-0-3-53-59.
7. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
8. Kocherzhinskij Yu.A., Yupko L.M., Shishkin E.A. Diagramma sostoyaniya Nb–Si [Chart of condition of Nb–Si] // Izv. AN SSSR. Metally. 1980. №1. C. 206–211.
9. Aronsson B. The crystal structure of Mo5 Si3 and W5 Si3 // Acta Chemica Scandinavica. 1955. No. 9. P. 1107–1110.
10. Schachner H., Cerwenka E., Nowotny H.N. Neue Silizide vom M5Si3-Typ mit D 88-Struktur // Journal of the American Ceramic Society. 1982. Vol. 65. P. 260–265.
11. Schachner H., Cerwenka E., Nowotny H. Neue Silizide vom M5Si3-Typ mit D 88-Struktur // Monatshefte fuer Chemie und verwandte Teile anderer Wissenschaften. 1954. Vol. 85. P. 245.
12. Kablov E.N., Kuzmina N.A., Eremin N.N., Svetlov I.L., Nejman A.V. Atomnye modeli struktury silicidov niobiya v in-situ kompozitah Nb–Si [Nuclear models of structure of silicides of niobium in in-situ Nb–Si composites] // Zhurnal strukturnoj himii. 2017. №3. T. 58. C. 564–570.
13. Kuzmina N.A., Eremin N.N., Marchenko E.I., Svetlov I.L. i dr. Puti diffuzii primesej vnedreniya v silicide niobiya Nb5Si3 razlichnyh polimorfnyh modifikacij [Ways of diffusion of impurity of implementation in silicide of Nb5Si3 niobium of different polymorphic updatings] // Kristallografiya. 2017. №4 (v pechati).
14. Muromcev N.A., Kuz'mina N.A., Marchenko E.I., Eremin N.N., Yakushev D.A. Teoreticheskij kristallohimicheskij analiz pustot v kristallicheskih strukturah polimorfnyh modifikacij Nb5Si3 [Theoretical crystal chemical analysis of emptiness in crystal structures of polymorphic updatings of Nb5Si3] // Mineraly: stroenie, svojstva, metody issledovaniya: sb. tez. dokl. VIII Vseros. molodezhnoj nauchnoj konferencii, Ekaterinburg. 2016. S. 100–101.
15. Gale G.D., Gale J.D. GULP: A computer program for the symmetry adapted simulation. Journal of the Chemical Society // Faraday Transactions. 1997. Vol. 93. P. 629–637. DOI: 10.1039/A606455H.
16. Mott N.F., Littleton M.J. Conduction in polar crystals. I. Electrolytic conduction in solid salts // Transactions of the Faraday Society. 1938. Vol. 34. P. 485–495.
17. Momma and Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // Journal of Applied Crystallography. 2011. Vol. 44. P. 1272–1276.
18. Khaenko B.V., Sivak O.P. Structure of the ordering of niobium monocarbide // Soviet Physics, Crystallography = Kristallografiya. 1990. Vol. 35. P. 653–655.
19. Merz K.M., Adamsky R.F. Synthesis of the wurtzite form of silicon carbide. Reference // Journal of the American Chemical Society. 1959. Vol. 81 (1). P. 250–251.
20. Li C.L., Kuo J.L., Wang B.A. et al. A new layer compound Nb4SiC3 predicted from first-principles theory // Journal of Physics D Applied Physics. 2009. Vol. 42. No. 7. P. 075404–075409.
Are considered foreign and domestic cleaning technology flow of the gas turbine compressor from pollution (carbon deposits) in the operation and repair of the factory. The advantages and disadvantages of existing clean technologies. It was found that most of the available publications hardly carry experimental data on effect of treatment technologies on the physico-chemical and mechanical properties of the parts to be cleaned. It is shown that further work should focus on applied research in technology to remove carbon deposits from a titanium alloy parts in the factory. Particular attention should be given to finding a resource-saving way to clean parts made of titanium alloys, providing fast and safe removal of carbon deposits without affecting the performance of the cleaned parts.
2. Hovland G.E., M. Antoine M. Scheduling of Gas Turbine Compressor Washing // Intelligent Automation & Soft Computing. 2006. Vol. 12. Issue 1. Р. 63–73.
3. Maiwada B., Muaz N.I., Ibrahim S., Musa S.M. Impacts of Compressor Fouling On the Performance of Gas Turbine // International Journal of Engineering Science and Computing. 2016. Vol. 6. Issue 3. P. 2118–2125.
4. Meher-Homji C.B., Bromley A.F. Gas Turbine Axial Compressor Fouling and Washing // Proceedings of the thirty-third turbomachinery symposium. USA, Texas, A&M University, 2004. P. 163–191.
5. Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation / ed. by P. Jansohn. Woodhead Publishing, 2013. 838 p.
6. Razak A.M.Y. Industrial Gas Turbines: Performance and Operability. CRC Press, 2007. 624 p.
7. Hovland G.E., M. Antoine M. Economic optimization of gas turbine compressor washing // Proceedings of the Australasian Universities Power Engineering Conference. Brisbane, 2004. P. 78–83.
8. Boyce M.P., Gonzalez F. A study of on-line and off-line turbine washing to optimize the study of a gas turbine // Journal of Engineering for Gas Turbines and Power. 2007. Vol. 129. No. 1. P. 114–122.
9. Enyia J.D., Li J., Thаnk-God I., Igbong D.I. Industrial Gas Turbine On-line Compressor Washing for Power Generation // Isaiah International Journal of Engineering Research and Technology. 2015. Vol. 4. Issue 08. P. 500–506.
10. Semenyuk A.V., Andreev A.K., Semenyuk L.A. Ekspluatacionnye zagryazneniya gazoturbonagnetatelej DVS i sposoby ih ochistki: metod. ukaz. [Operational pollution of turbo gas supercharger ICE and ways of their cleaning: methodical instructions]. Vladivostok: MGU im. adm. G.I. Nevel'skogo, 2008. 30 s.
11. Zysin L.V. Parogazovye i gazoturbinnye teplovye elektrostancii: ucheb. posobie [Steam-gas and gas-turbine thermal power stations: manual]. SPb.: Sankt-Peterburgskij gos. politeh. un-t, 2010. 368 s.
12. Sulejmanov A.M. Energosberezhenie v tehnologicheskih processah truboprovodnogo transporta gaza: avtoref. dis. … kand. tehn. nauk [Energy saving in technological processes of pipeline transport of gas: thesis of cand. tech. sci.]. Ufa, 2005. 22 s.
13. Stalder J.P. Gas Turbine Compressor Washing State of the Art: Field Experiences // Journal of Engineering for Gas Turbines and Power. 2001. Vol. 123. Р. 363–370.
14. Kitaev S.V. Povyshenie energeticheskoj effektivnosti raboty gazoperekachivayushhih agregatov: avtoref. dis. … kand. tehn. nauk. Ufa, 2003. 22 s.
15. Available at: http://www.pmz.ru/pr/other/ntex/ib15_3/ib15_20-21/ (accessed: April 11, 2016).
16. Rudachenko A.V., Chuhareva N.V. Gazoturbinnye ustanovki dlya transporta prirodnogo gaza: ucheb. posobie [Gas turbine units for transport of natural gas: manual]. Tomsk: Tomskij politeh. un-t, 2012. 213 s.
17. Аiad G. Cascade Testing and CFD Applied to Gas Turbine Performance Improvement with Compressor Cleaning: PhD Thesis. Great Britain, Сranfield University, 2010. 275 p.
18. Tehnicheskaya ekspluataciya sudovyh gazoturbinnyh ustanovok / pod red. G.Sh. Rozenberga [Technical operation of ship gas turbine units / ed. by G. Sh. Rosenberg]. M.: Transport, 1986. 222 s.
19. Ogbonnaya E.A. Gas Turbine Performance Optimization Using Compressor Online Water Washing Technique // Engineering. 2011. No. 3. Р. 500–507.
20. Slobodyanyuk L.I., Polyakov V.I. Sudovye parovye i gazovye turbiny i ih ekspluataciya: uchebnik [Marine steam and gas turbines and their operation: textbook]. L.: Sudostroenie, 1983. 360 s.
21. Sposob suhoj ochistki poverhnostej lopatok kompressora: pat. 2513525 Ros. Federaciya [Way of dry cleaning of surfaces of compressor blades: pat 2513525 Rus. Federation]; zayavl. 24.08.12; opubl. 20.04.14. Byul. №11. 9 s.
22. Available at: http://www.rochem.net/pdfs/Fyrewash/Rochem%20Fyrewash.pdf (accessed: February 02, 2016).
23. Trenin V.M. Sistema promyvki vysokogo davleniya dlya kompressora GTU [System of washing of high pressure for the GTU compressor] // Turbiny i dizeli. 2008. №1. S. 22–25.
24. Ustanovka dlya promyvki i emulsirovaniya vozdushno-gazovogo trakta gazoturbinnogo dvigatelya: pat. 2323051 Ros. Federaciya [Installation for washing and emulsirovaniye of air-gas path of the gas turbine engine: pat. 2323051 Rus. Federation]; zayavl. 04.08.06; opubl. 27.04.08. Byul. №12. 20 s.
25. Available at: http://turbotect.ru/systems/index.html (accessed: April 15, 2016).
26. Stepankov I.A. Kompleksnoe reshenie dlya ochistki kompressorov GTU: ochistitel Turbo-K i antifriz AF10 [The complex decision for cleaning of GTU compressors: cleaner of Turbo-K and AF10 antifreeze] // Turbiny i dizeli. 2015. №1. S. 54–55.
27. Available at: http://site.ge-energy.com/businesses/ge_oilandgas/en/literature/en/downloads/onoffline_washing.pdf (accessed: April 12, 2015).
28. Abass K.O. Techno-economic analysis of gas turbine compressor washing to combat fouling: MS. Great Britain, Сranfield University, 2015. 131 p.
29. Syverud E. Axial Compressor Performance Deterioration and Recovery through Online Washing: PhD Thesis. Norway, Norwegian University of Science and Technology, 2007. 143 p.
30. Syverud E., Brekke O., Bakken L. Axial compressor deterioration caused by saltwater ingestion // J. of Turbomachinery. 2007. Vol. 129. No. 1. Р. 119–126.
31. Syverud E., Bakken L.E. Online water wash test of GE J85-13 // J. of Turbomachinery. 2007. Vol. 129. No. 1. Р. 136–142.
32. Kurz R., Brun K., Mokhatab S. Gas turbine compressor blade fouling mechanisms // Pipeline & Gas Journal. 2011.Vol. 238. No. 9. P. 18–21.
33. Brun K., Kurz R., Folles W. Experimental evaluation of the effectiveness of online water washing in gas turbine compressors // ASME/IGTI: Proceedings of the forty-second surbomachinery symposium. USA, Houston, 2013. 18 p.
34. Igie U., Pilidis P., Foufilas D. at al. Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing // Journal of turbomachinery. 2014. Vol. 136. Issue 10. 13 p.
35. Wilkinson P., Shark L. Automatic monitoring of gas turbine air intakes using colour imaging techniques, Insight: Non-Destructive Testing and Condition Monitoring // Insigh – Non-Destructive Testing and Condition Monitoring. 2004. Vol. 46. No. 2. P. 94–97.
36. Docenko G.N. Razrabotka principov ochistki detalej aviacionnoj tehniki ot nagaropodobnyh zagryaznenij biotehnologicheskim metodom: avtoref. dis. … kand. tehn. nauk [Development of principles of cleaning of details of aviation engineering from nagaropodobny pollution by biotechnological method: thesis of cand. tech. sci.]. M., 2000. 37 s.
37. Mihajlov D.A., Nedashkovskij A.P., Ivchenko T.G. Tehnologicheskie osobennosti vosstanovleniya lopatok kompressora GTD s primeneniem funkcionalno-orientirovannyh pokrytij [Technological features of recovery of compressor blades of GTD using function-oriented coverings] // Progressivnye tehnologii i sistemy mashinostroeniya. 2014. №1 (47). S. 213–224.
38. Volkov D.I., Tolkachev A.V. Snyatie nagara s napravlyayushhih apparatov gazoturbinnogo dvigatelya s ispolzovaniem vibroabrazivnoj obrabotki [Removal of deposit from directing devices of the gas turbine engine with use vibro abrasive machining] // Sborka v mashinostroenii, priborostroenii. 2015. №1 (174). S. 32–35.
39. Makeev R.I., Tolkachev A.V. Vibropolirovalnaya obrabotka v sovremennom tehnologicheskom processe [Vibropolirovalny processing in modern technological process] // Uprochnyayushhie tehnologii i pokrytiya. 2006. №4 (16). S. 49–50.
40. Leontev V.A., Zimchihis S.D., Kondratyuk E.V., Zamkovoj V.E. Vosstanovlenie rabotosposobnosti GTD s primeneniem novyh tehnologij i materialov [Recovery of operability of GTD using new technologies and materials] // Vestnik dvigatelestroeniya. 2006. №4. S. 99–103.
41. Available at: http://www.agd-russia.ru (accessed: April 15, 2016).
42. Plankovskij S.I., Golovin I.I., Sirenko F.F. Analiz sushhestvuyushhih metodov ochistki poverhnosti lopatok turbin v gazoturbinnyh dvigatelyah [The analysis of existing methods of surface cleaning of blades of turbines in gas turbine engines] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2013. №6 (103). S. 8–14.
43 Available at: https://www.karcher.ru/ru/professional/ochistka-sukhim-ldom.html (accessed: March 17, 2016).
44. 43 Available at: http://www.elmemesser.ru/ru_RU/use-cases/industry/dry-ice (accessed: March 22, 2016).
45. Vejko V.P., Kishalov A.A., Mutin T.Yu. i dr. Perspektivy industrialnyh primenenij lazernoj ochistki materialov [Perspectives of industrial applications of laser cleaning of materials] // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2012. №3 (79). S. 50–54.
46. Shulov V.A., Engelko V.I., Gromov A.N. i dr. Primenenie silnotochnyh impulsnyh elektronnyh puchkov dlya vosstanovleniya ekspluatacionnyh svoistv lopatok gazoturbinnyh dvigatelei [Application of high-current pulse electronic bunches for recovery of operational properties of blades of gas-turbine engines] // Izvestiya vuzov. Poroshkovaya metallurgiya i funkcionalnye pokrytiya. 2014. №1. S. 43–49.
47. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
48. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] // Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
49. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Povyshenie prochnostnyh harakteristik zharoprochnyh psevdo-α-titanovyh splavov [Strengthening of high-temperature near-α-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №S5. C. 73–80. DOI: 10.18577/2071-9140-2014-0-S5-73-80.
50. Horev A.I., Nochovny N.A., Yakovlev A.L. Mikrolegirovanie redkozemelnymi metallami titanovykh splavov [Microalloying rare earth metals of titanium alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 206–212.
51. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
52. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
53. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
54. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
In this work standards (GOST 25.602, state standard specification 4651 ISO 604, ASTM D 6641 – GOST R 56812) for carrying out mechanical tests of GRP on compression are considered. For determination of reliability of the received values on considered standards three types of samples have been made of GRP on the basis of different glass fillers (durable fiber glass fabric and cord fiber glass fabrics and glass roving). These samples have been tested according to standards for testing. Results of the carried-out tests have shown that received values of durability at compression differ depending on standard and then high strength and rigidity of material, subjects disperse values more. It has been established that compression tests of GRP by cord glass fabrics and unidirectional roving to GOST 4651 leads to receiving the underestimated results and high variability of data. The most optimum domestic standard for testing of layered GRP is GOST P 56812. He allows receiving reliable values of durability with the smallest factor of variation.
Work is executed within implementation of the complex scientific direction 13.2. «Constructional PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova yukonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
5. Kurnosov A.O., Melnikov D.A. Harakteristiki stekloplastikov na osnove vysokodeformativnyh rasplavnyh svyazuyushhih v usloviyah vozdejstviya ekspluatacionnyh faktorov // Vse materialy. Enciklopedicheskij spravochnik. 2015. №11. S. 14–17.
6. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Structural glass-reinforced plastics purposed for aviation industry // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 08. Available at: http://viam-works.ru (accessed: December 1, 2016). DOI: 10.18577/2307-6046-2015-0-8-8-8.
7. Shah V. Spravochnoe rukovodstvo po ispytaniyam plastmass i analizu prichin ih razrusheniya [Reference guide on tests of plastic and the analysis of the reasons of their destruction]. SPb.: Nauchnye osnovy i tehnologii, 2009. 732 s.
8. Adamov A.A., Laptev M.Yu., Gorshkova E.G. Analiz otechestvennoj i zarubezhnoj normativnoj bazy po mehanicheskim ispytaniyam polimernyh kompozicionnyh materialov [The analysis of domestic and foreign regulatory base on mechanical tests of polymeric composite materials] // Konstrukcii iz kompozicionnyh materialov. 2012. №3. S. 72.
9. Ilichev A.V. Sravnenie standartov GOST i ASTM dlya provedeniya mehanicheskih ispytanij PKM na rastyazhenie [Comparison of state standard specifications and ASTM standards for carrying out mechanical tests of PCM on stretching] // Vse materialy. Yunciklopedicheskij spravochnik. 2015. №8. S. 2–9.
10. Ilichev A.V., Raskutin A.E., Gulyaev I.N. Sravnenie geometricheskih razmerov obrazcov PKM, ispolzuemyh v mezhdunarodnyh standartah ASTM i otechestvennyh GOST [Comparison of the geometrical sizes polymer matrix composite materials samples which are using international ASTM standards and domestic GOST] // Novosti materialovedeniya. Nauka i tehnika: yulektron. nauch.-tehnich. zhurn. 2015. №4 (16). St. 05. Available at: http://www.materialsnews.ru (accessed: December 15, 2016).
11. Kalgin A.V., Kudrin A.M., Solopchenko A.V., Yablokova M.Yu. Opredelenie predela prochnosti na rastyazhenie novyh otverzhdennyh bezrastvornyh svyazuyushhih na yupoksidnoj osnove v sootvetstvii so standartom ASTM D 638 [Determination of strength on stretching new hardened without solution binding on epoxy basis according to the ASTM D standard 638] // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2011. T. 7. №11.1. S. 47–49.
12. Kulakova E.V., Voskobojnik M.Yu., Kudrin A.M. Opredelenie prochnostnyh harakteristik polimernyh kompozicionnyh materialov na osnove prepregov marok KMKU i LU/P v shirokom intervale temperatur v sootvetstvii so standartom ASTM D6641 [Definition of strength characteristics of polymeric composite materials on the basis of prepregs of KMKU and LU/P brands in wide interval of temperatures according to the ASTM D6641 standard] // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2014. T. 10. №4. S. 66–68.
13. Tarnopolskij Yu.M., Kincis T.Ya. Metody staticheskih ispytanij armirovannyh plastikov. 2-e izd., pererab. [Methods of static tests of the reinforced plastics. 2nd ed., porc.]. M.: Himiya, 1975. 264 s.
14. GOST 4651–2014. Plastmassy. Metod ispytaniya na szhatie [Plastic. Test method on compression]. M., 1982. 16 s.
15. Sytyj Yu.V., Sagomonova V.A., Yurkov G.Yu., Celikin V.V. Novye konstrukcionnye i funkcionalnye PKM na osnove termoplastov i tehnologii ih formovaniya [New constructional and functional PCM on the basis of thermoplastics and technology of their formation] // Aviacionnaya promyshlennost. 2013. №2. S. 12.
16. ASTM D6641-14. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
17. GOST R 56812–2015. Kompozity polimernye. Metod opredeleniya mehanicheskih harakteristik pri kombinirovannoj szhimayushhej nagruzke [Composites polymeric. Method of definition of mechanical characteristics at the combined compression load]. M., 2015. 16 s.
18. GOST 25.602–80. Raschety i ispytaniya na prochnost. Metody mehanicheskih ispytanij kompozicionnyh materialov s polimernoj matricej (kompozitov). Metod ispytaniya na szhatie pri normalnoj, povyshennoj i ponizhennoj temperaturah [Calculations and strength tests. Methods of mechanical tests of composite materials with polymeric matrix (composites). Test method on compression at normal, increased and lowered temperatures]. M., 1980. 18 s.
19. Vavilova M.I., Kavun N.S. Stekloplastiki na osnove cianefirnyh svyazuyushhih [Glassfibers on the base of cyan-ester resins] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 19–23. DOI: 10.18577/2071-9140-2014-0-s2-19-23.
20. Melehina M.I., Kavun N.S., Rakitina V.P. Stekloplastiki na osnove novyh tipov termoreaktivnyh svyazuyushhih dlya perspektivnyh izdelij aviacionnoj tehniki [Fibreglasses on the basis of new types thermosetting binding for perspective products of aviation engineering] // Kompozitnyj mir. 2013. №4. S. 20–23.
This article provides test data on fretting-wear antifretting coatings developed at VIAM for the last time. Experienced hard lubricant coating VFP-5, slip VPMSA and microcline coating system Ti–TiN, obtained by ion-plasma technology. For the research of the tribological properties was chosen as the method of «finger-plate». According to test results was estimated wear curves, graphs of the coefficient of friction and resistance, the appearance of spots of wear. This work was performed within the framework of strategic directions 17. «Comprehensive anticorrosion protection, hardening, wear-resistant protective and heat-resistant coating», сomplex problem 17.3. «Multilayer heat-resistant and heat-resistant coating, nanostructural hardening of erosion and corrosion-resistant, wear-resistant, antifatigue coating to protect parts hot gas path and compressor of GTE and GTU» («The strategic directions of development of materials and technologies of their processing for the period till 2030»
2. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
3. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashhity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
4. Kablov E.N. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tehnologii, pokrytiya. 2-e izd. [Cast blades of gas turbine engines. Alloys, technologies, coverings. 2nd ed.]. M.: Nauka, 2006. S. 531–534.
5. Vinogradov S.S., Terkulova Yu.A., Kurdyukova E.A., Nikiforov A.A. Iznosostojkoe, antifrikcionnoe i frettingostojkoe pokrytie na osnove Ni–B [Wear-proof, antifriction and fretting-resistant coating based on Ni–B] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 02. Available at: http://www.viam-works.ru (accessed: December 01, 2016). DOI: 10.18577/2307-6046-2015-0-1-2-2.
6. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
7. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S. 42–47.
8. Fouvry S., Duo P., Perrucchaut Ph. A quantitative approach of Ti–6Al–4V fretting damage: friction, wear and crack nucleation // Wear. 2004. Vol. 257. No. 9–10. P. 916–929.
9. ASTM Standard G133-05. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. 2010.
10. Markova E.S., Yakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostareyushhej stali VKS-180 [Technological features of the production of maraging steel VKS-180] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 01. Available at: http://www.viam-works.ru (accessed: December 01, 2016).
11. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2013. №1. St. 02. Available at: http://viam-works.ru (accessed: December 01, 2016)
12. Galoyan A.G., Muboyadzhyan S.A., Egorova L.P., Bulavinceva E.E. Korrozionnostojkoe pokrytie dlya zashhity detalej GTD iz vysokoprochnyh konstrukcionnyh martensitostareyushhih stalej na rabochie temperatury do 450°C [Corrosion-resistant coating for protection of GTE details made of high-strength maraging constructional steel with operating temperature up to 450°C] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 03. Available at: http://www.viam-works.ru (accessed: December 01, 2016). DOI: 10.18577/2307-6046-2014-0-6-3-3.
13. Umanskij A.P., Pugachevskaya E.P., Himko A.N. Razrabotka tehnologii naneseniya novyh iznosostojkih kompozicionnyh pokrytij dlya uprochneniya detalej aviacionnyh dvigatelej [Development of technology of drawing new anti wear composition coatings for hardening of details of aircraft engines] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2009. №9. S. 38–44.
14. Muboyadzhyan S.A., Gorlov D.S., Shhepilov A.A., Konnova V.I. Issledovanie dempfiruyushhej sposobnosti ionno-plazmennyh pokrytij [Study of damping capacity of ion-plasma coatings] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 67–72. DOI: 10.18577/2071-9140-2014-0-s5-67-72.
15. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. Issledovanie erozionnoj stojkosti i teplostojkosti ionno-plazmennyh dempfiruyushhih pokrytij [The research of erosion resistance and heat resistance of the ion-plasma damping coatings] // Aviacionnye materialy i tehnologii. 2016. №2. S. 11–17. DOI: 10.18577/2071-9140-2016-0-2-11-17.
The paper is considersed the process of modifying the surface of the ion samples of steel EP866 compressor and EI961 in titanium plasma vacuum arc discharge (VAD) for the values of bias voltages of 150; 300 and 400 and a current of 300A arc. Shows the dependence of the sample weight change on the parameters of the process and shows the change of the process temperature by the processing time at bias voltages 150; 300 and 400 and a constant value so that a vacuum arc. It was shown during the surface modification process, for given values of the arc current and the bias voltages of the process temperature does not exceed the temperature of tempering compressor steel EP866 and EI961.
Metallographic examinations were carried out and the treated samples are given their microstructure. We studied the elemental composition of samples processed at a current of 300 A and VAD bias voltages of 150; 300 and 400, and the main phase of the surface layer of the treated samples.
Tests of samples modified for resistance to salt corrosion VIAM procedure at a temperature of 600°C and obtained results of visual and gravimetric control. This work was performed as part of the strategic direction 17. «Comprehensive anti-corrosion protection, reinforcing, wear-resistant protective coating». Complex problem 17.3. «Multi-layer heat-resistant and heat-resistant coatings, nanostructured reinforcement erosion and corrosion-resistant, wear-resistant, antifretting coating to protect the hot section components and compressor gas turbine engines and gas turbines» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in the thermally stable nickel alloys for single‐crystal blades of gas‐turbine engines // 7th international symposium on technetium and rhenium science and utilization. 2011.
4. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings production of complex alloys // Metal Science and Heat Treatment. 1995. №2. С. 15–18.
7. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S. 42–47.
8. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
9. Muboyadzhyan S.A. Perspektivnye pokrytiya dlya detalej aviadvigatelej [Perspective coverings for details of aircraft engines] // Voennyj parad. 2009. №1 (91). S. 33–34.
10. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
11. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
12. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES // Russian metallurgy (Metally). 2012. No. 1. P. 1–7.
13. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie, 2011. №SP2. S. 149–163.
14. Muboyadzhyan S.A., Kablov E.N., Budinovsky S.A., Pomelov Ya.A. Equipment, technology and protective coatings produced by ion bombardment deposition // Surface and Coating Technology 91. 1997. Р. 13–19.
15. Pomelov Ya.A., Muboyadzhyan S.A. Modificirovanie poverhnosti konstrukcionnyh materialov metodom ionnoj obrabotki v plazme vakuumnogo dugovogo razryada [Modifying of surface of constructional materials by method of ionic processing in plasma of the vacuum arc discharge] // Aviacionnye materialy i tehnologii. 2003. №3. S. 85–94.
16. Muboyadzhyan S.A. Sovremennye vakuumnye processy ionnoj obrabotki poverhnosti [Modern vacuum processes of ionic surface treatment] // Konversiya v mashinostroenii. 2004. №4. S. 69–77.
17. Muboyadzhyan S.A. Osobennosti osazhdeniya iz dvuhfaznogo potoka mnogokomponentnoj plazmy vakuumno-dugovogo razryada, soderzhashhego mikrokapli isparyaemogo materiala [Features of sedimentation from diphasic flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] // Metally. 2008. №2. S. 20–34.
18. Muboyadzhyan S.A. Modificirovanie metallicheskoj poverhnosti v plazme vakuumno-dugovogo razryada metodom termostimulirovannoj ionnoj diffuzii [Modifying of metallic surface in vacuum arc discharge plasma method of thermo stimulate ionic diffusion] // Metally. 2008. №6. S. 1–13.
19. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Ch. I. [Modifying of surface of details from constructional staly in vacuum and arc plasma of titanium. P. I] // Aviacionnye materialy i tehnologii. 2013. №3. S. 20–25.
20. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Ch. II. [Modifying of surface of details from constructional staly in vacuum and arc plasma of titanium. P. II] // Aviacionnye materialy i tehnologii. 2014. №1. S. 3–11. DOI: 10.18577/2071-9140-2014-0-1-3-11.
21. Azarovskij E.N., Muboyadzhyan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Ch. III [Surface modification of parts from structural steel in vacuum-arc titanium plasma. P. III] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 29–37. DOI: 10.18577/2071-9140-2015-0-4-29-37.
22. Muboyadzhyan S.A., Azarovskij E.N. Issledovanie novogo processa ionnogo modificirovaniya poverhnosti obrazcov kompressornyh stalej v vakuumno-dugovoj plazme titana [Research of new process of ionic modifying of surface of samples compressor steel in vacuum and arc plasma of titanium] // Metally. 2013. №6. S. 63–73.
23. Muboyadzhyan S.A., Azarovskij E.N. Modificirovanie poverhnosti obrazcov iz kompressornyh stalej metodom termostimulirovannoj ionnoj diffuzii v titanovoj plazme vakuumno-dugovogo razryada [Modifying of surface of samples from compressor steels method of thermo stimulate ionic diffusion in titanic plasma of the vacuum arc discharge] // Metally. 2015. №6. S. 11–19.
24. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 02. Available at: http://www.viam-works.ru (accessed: November 11, 2016).
In addition to the general of requirements for polymeric composite materials such as tensile, compression, flexural modulus of elasticity and so on. There are further defined construction assignment. Known that for bearing structures materials these characteristics are strength and cyclic alternating load and specific mechanical properties, the materials in the interior given special attention fire properties for details entering into direct contact with the aggressive or the environment - chemical resistance, etc. As the design of new materials and in adaptation to already existing material projected new constructs, as well as modifications in material through the various additives require comprehensive analysis of the actual properties.
The application of thermokinetic analysis for prediction solidification mode and fiberglass prepreg based on phenol-formaldehyde binder ВСФ-16М. Revealed three step polymerization reaction of a phenol-formaldehyde binder ВСФ-16М. Based on the analysis of physical and chemical properties of the chosen mode is the optimal curing it at a temperature of 140±5°C. Comparisons are carried with experimental design parameters.
The work in the implementation comprehensive scientific direction 17.2. «The development on the basis of fiberglass fabric with low surface density and fast hardening combustible binder WSF-16M» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detalej iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. №4 (3). S. 834–839.
3. Veshkin E.A., Abramov P.A., Postnov V.P., Strelnikov S.V. Vliyanie tehnologii podgotovki preprega na svojstva PKM [Influence of technology of preparation of prepreg on PCM properties] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №9. S. 8–14.
4. Postnov V.P., Veshkin E.A., Abramov P.A. Osobennosti podgotovki polimernogo svyazuyushhego dlya snizheniya poristosti stekloplastikov, poluchaemyh metodom vakuumnogo formovaniya [Features of preparation polymeric binding for decrease in porosity of the fibreglasses received by method of vacuum formation] // Izvestiya Samarskogo nauchnogo centra RAN. 2011. T. 13. №4 (2). S. 462–468.
5. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
6. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. №1. S. 3–8.
7. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Carbon plastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: July 12, 2016).
8. Kogan D.I., Dushin M.I., Borshhev A.N., Veshkin E.A., Abramov P.A., Makrushin K.V. Svojstva konstrukcionnyh ugleplastikov, izgotovlennyh propitkoj pod vakuumom [Properties constructional carbon plastics made by impregnation under vacuum] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. T. 14. №4 (2). S. 762–766.
9. Panina N.N., Kim M.A., Gurevich Ya.M. i dr. Svyazuyushhie dlya formovaniya izdelij iz polimernyh kompozicionnyh materialov [Binding for formation of products from polymeric composite materials] // Klei. Germetiki. Tehnologii. 2013. №10. S. 27–35.
10. Pavlovskij K.A., Yamshhikova G.A., Gunyaeva A.G., Ulkin M.Yu. Razrabotka svyazuyushhego, ne podderzhivayushhego gorenie ugleplastika, dlya izgotovleniya tolstostennyh izdelij iz PKM metodom pressovogo formovaniya [Development of binding, not sustaining combustion of CFRP, for manufacturing of thick-walled products from polymeric composite materials by method of press formation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 08. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2016-0-4-8-8.
11. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Antyufeeva N.V., Komarova O.A., Pavlovskij K.A., Aleksashin V.M. Opyt primeneniya kalorimetricheskogo kontrolya reakcionnoj sposobnosti preprega KMU-11tr [Practice of the calorimetric control reactionary ability prepreg KMU-11tr] //Trudy VIAM. 2014. №2. St. 06. Available at: http://viam-works.ru (accessed: July, 24 2016). DOI: 10.18577/2307-6046-2014-0-2-6-6.
13. Antyufeeva N.V., Aleksashin V.M., Zhelezina G.F., Stolyankov Yu.V. Metodicheskie podhody termoanaliticheskih issledovanij dlya ocenki svojstv prepregov i ugleplastikov [Methodical approaches of thermoanalytical researches for assessment of properties of prepregs and carbon plastics] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №4. S. 18–27.
14. Malysheva G.V., Ahmetova E.Sh., Shimina Yu.Yu. Ocenka temperatur fazovyh perehodov polimernyh svyazuyushhih metodom differencial'no-skaniruyushhej kalorimetrii [Assessment of temperatures of phase transitions polymeric binding method differential scanning calorimetry] // Klei. Germetiki. Tehnologii. 2014. №6. S. 29–33.
15. Dushin M.I., Kogan D.I., Hrulkov A.V., Gusev Yu.A. Prichiny obrazovaniya poristosti v izdeliyah iz polimernyh kompozicionnyh materialov (obzor) [The reasons of formation of porosity in products from polymeric composite materials (review)] // Kompozity i nanostruktury. 2013. №3. S. 60–68.
The strain and stress evolution characteristics of the organic glass with linear (SO-120, Tg=120°C) and copolymer rarely cross-linked structures (VОS-2, Tg=148°C) and oriented versions thereof – АО-120 (orientation degree 60 and 79%) and VОS-2АО (orientation degree 50%), accordingly, at a non-uniform heating across the thickness, were investigated. It was shown that the rubber-like elastic strain by heating, thermoelastic and residual temperature stress in organic glazing in a large extent depend on the modulus of elasticity and coefficient of linear expansion of the glass. The oriented glass tightness similar to the tightness of the elementary layers of glazing at non-uniform heating has a significant impact on the development of shrinkage strain in the layers. These deformations cause an increase in tensile stresses during cooling and residual temperature stress.
This work was performed as part of the comprehensive scientific areas 2.2. «Qualification and materials research» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-s4-50-54.
3. Yakovlev N.O. Ocenka granic oblasti relaksacionnogo povedeniya organicheskogo stekla na osnove polimetilmetakrilata [Assessment of borders of area of relaxation behavior of organic glass on basis polymethylmetacrylate] // Plasticheskie massy. 2015. №1–2. S. 36–39.
4. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Haritonov G.M. Relaksaciya ostatochnyh napryazhenij v aviacionnyh organicheskih steklah pri poslepoletnoj stoyanke samoleta [Relaxation of residual stresses in aviation organic glasses at postflight parking of airplane] // Aviacionnye materialy i tehnologii. 2012. №2. S. 66–69.
5. Yakovlev N.O., Sentyurin E.G., Kharitonov G.M. [Features of rubber-like elastic strain in organic glasses during their unloading at temperatures near to the softening temperature] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 12. Available at: http://www.viam-works.ru (accessed: March 28, 2016). DOI: 10.18577/2307-6046-2015-0-9-12-12
6. Kharitonov G.M., Yakovlev N.O., Mekalina I.V. Vliyanie fiziko-mekhanicheskikh kharakteristik orgstekol na napryazheniya v samoletnom osteklenii pri aerodinamicheskom nagreve [Influence of physicomechanical characteristics of organic glasses on tension in aircraft glazing at aerodynamic heating] // Aviatsionnye materialy i tekhnologii. 2015. №S1. S. 56–60. DOI: 10.18577/2071-9140-2015-0-S1-56-60.
7. Kablov E.N. Himiya v aviacionnom materialovedenii [Materials and chemical technologies for aviation engineering] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
8. Mekalina I.V., Bogatov V.A., Trigub T.S., Sentyurin E.G. Aviacionnye organicheskie stekla [Aviation organic glasses] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 04. Available at: http://www.viam-works.ru (accessed: March 28, 2016).
9. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
10. Bogatov V.A., Trigub T.S., Mekalina I.V., Ayzatulina M.K. Otsenka ekspluatatsionnykh kharakteristik novykh teplostoykikh organicheskikh stekol VOS-1 i VOS-2 [Assessment of utilization properties of new heatresistant organic glasses VOS-1 and VOS-2] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 21–26.
11. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
12. Yakovlev N.O. Opisanie deformacionnyh krivyh polimernyh stekol [Description of deformation curve polymeric glasses] // Vysokomolekulyarnye soedineniya. Ser. A. 2017. T. 59. №3. S. 1–6.
13. Haritonov G.M., Hitrova O.I., Yakovlev N.O., Erasov V.S. Zakonomernosti povedeniya VE deformacij v aviacionnyh steklah iz linejnyh i poperechnosshityh polimerov pri znakoperemennyh nagruzheniyah [Patterns of behavior of VE of deformations in aviation glasses from the linear and cross sewed polymers at sign-variable loadings] // Aviacionnaya promyshlennost. 2011. №3. S. 7.
14. Yakovlev N.O., Mekalina I.V., Sentyurin E.G. Peculiarities of resilient highly elastic deformation of organic glasses with linear and rarely cross-linked structure // Inorganic Materials: Applied Research. 2015. Vol. 6. No. 4. P. 336–342. DOI: 10.1134/S2075113315040267.
15. Kablov E.N., Yakovlev N.O., Haritonov G.M., Mekalina I.V. Osobennosti relaksacionnogo povedeniya polimernyh stekol na osnove polimetilmetakrilata i ih uchet pri prochnostnom raschete aviacionnogo ostekleniya [Features of relaxation behavior of polymeric glasses on basis polymethylmetacrylate and their accounting at strength calculation of aviation glazing] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №9. S. 2–9.
Тhe article describes the various methods of quantitative analysis of microscopic structures using a laser scanning microscope. A method for estimating the relative size of the foam cells, consisting of two phases - the base polymer and the void filled with a gaseous substance, by inscribing circle profile in cellular surface structure with elementary structural element in the form of a three-dimensional polyhedron, is offered. The problems of assessment structures with developed relief, as two-dimensional images from an optical microscope, are shown. Work is executed as part of the comprehensive scientific direction 2. «Fundatally-oriented research, qualification of materials, non-destructive testing» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
3 Kablov E.N., Bejder E.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Penopoliimidy [Foamed polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 09. Available at: http://viam-works.ru (accessed: November 23, 2016). DOI: 10.18577/2307-6046-2015-0-4-9-9.
4. Doroshenko N.I., Chursova L.V. Evolyuciya materialov dlya lopastej vertoletov [Evolution of materials for blades of helicopters] // Aviacionnye materialy i tehnologii. 2012. №2. S. 16–18.
5. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
6. Stolyankov Yu.V., Bejder E.Ya., Platonov M.M., Petrova G.N. Ustrojstvo dlya mehanicheskoj obrabotki vspenennyh polimernyh materialov [A device for machining of foamed polymer materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 08. Available at: http://www.viam-works.ru (accessed: November 23, 2016). DOI: 10.18577/2307-6046-2015-0-5-8-8.
7. Dementev A.G. Struktura i svojstva gazonapolnennyh polimerov: avtoref. dis. na soisk. uchenoj stepeni d-ra tehn. nauk [Structure and properties of gas-filled polymers: thesis of doct. tech. sci.]. M., 1997. 42 s.
8. Chernous D.A., Shilko S.V. Issledovanie uprugoj anizotropii otkrytoporistyh materialov [Research of elastic anisotropy open porous materials] // Fizicheskaya mezomehanika. 2006. T. 9. №2. S. 79–84.
9. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-s4-50-54.
10. GOST 22023–76. Materialy stroitelnye. Metod mikroskopicheskogo kolichestvennogo analiza struktury. M., 1976 (ne dejstvuet, otmenen v RF) [GOST 22023–76. Materials construction. Method of the microscopic quantitative analysis of structure. M., 1976 (does not operate, it is cancelled in the Russian Federation)].
11. Rush K.С. Load-compression behavior of flexible foams // J. Appl. Pol. Sci., 1969. Vol. 13. No 11. P. 2297–2311.
12. Rush K.С. Load-compression behavior of brittle foams // J. Appl. Pol. Sci., 1970. Vol. 14. No 5. P. 1263–1276.
13. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: November 23, 2016). DOI: 10.18577/2307-6046-2014-0-7-6-6.
14. Lavrov A.V., Erasov V.S., Nochovnaya N.A., Kotova E.A. Issledovanie ansamblya vtorichnyh treshhin vblizi ustalostnogo izloma v obrazce iz titanovogo splava VT23M [Research of ensemble of secondary cracks near fatigue fracture in sample from BT23M titanium alloy] // Deformaciya i razrushenie materialov. 2016. №6. S. 42–45.
15. GOST 5639–82. Stali i splavy. Metody vyyavleniya i opredeleniya velichiny zerna [GOST 5639-82. There were also alloys. Methods of identification and determination of size of grain]. M.: Izdatelstvo standartov, 2003. 21 s.
The scope, ways of implementation of acoustic free vibration method, areas of its application and feature of control multilayer glued structures with honeycomb core are covered. Possibility of definition of amount of water in honeycomb structures is shown.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Petrova A.P., Lukina N.F. Klei dlya mnogorazovoj kosmicheskoj sistemy [Glues for reusable space system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 04. Available at: http://www.viam-works.ru (accessed: November 22, 2016).
4. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. Vyp.: Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov. S. 3–8.
5. Murashov V.V. Kontrol i diagnostika mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov akusticheskimi metodami [Control and diagnostics of multi-layer designs from polymeric composite materials acoustic methods]. M.: Spektr, 2016. 244 s.
6. Murashov V.V. Ocenka stepeni nakopleniya mikropovrezhdenij struktury PKM v detalyah i konstrukciyah nerazrushayushhimi metodami [Assessment of accumulation degree of microdamages of PCM structure in structures determined by nondestructive methods] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 73–81. DOI: 10.18577/2071-9140-2016-0-3-73-81.
7. Murashov V.V., Rumyancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detalyah i konstrukciyah [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. №8. S. 13–17.
8. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultragarsas. Kaunas: Tecnologija. 2006. No. 2. Р. 7–10.
9. Karabutov A.A., Murashov V.V., Podymova N.B., Oraevsky A.A. Nondestructive Characterisation of Layered Composite Materials with a Laser Optoacoustic Sensor // Nondestructive Evaluation of Materials and Composites II (San Antonio, Texas, march–april 1998). San Antonio: Published by SPIE – The International Society for Optical Engineering. 1998. Vol. 3396. P. 103–111.
10. Sposob opredeleniya fiziko-mehanicheskih harakteristik polimernyh kompozicionnyh materialov i ustrojstvo dlya ego osushhestvleniya: pat. 2214590 Ros. Federaciya. №2001135020/28 [Way of definition of physicomechanical characteristics of polymeric composite materials and the device for its implementation: pat. 2214590 Rus. Federation. №2001135020/28]; zayavl. 26.12.01; opubl. 20.10.03, Byul. №29.
11. Sposob opredeleniya fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov v konstrukciyah ultrazvukovym metodom: pat. 2196982 Ros. Federaciya. №2001100302/28 [Way of definition of physicomechanical characteristics and composition of polymeric composite materials in designs ultrasonic method: pat. 2196982 Rus. Federation. №2001100302/28]; zayavl. 09.01.01; opubl. 20.01.03, Byul. №2.
12. Murashov V.V. Kontrol kleenyh konstrukcij [Control of glued designs] // Klei. Germetiki. Tehnologii. 2005. №1. S. 21–27.
13. Murashov V.V., Generalov A.S. Kontrol mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multilayer adhesive structures operating in severe climatic condition] // Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67. DOI: 10.18577/2071-9140-2014-0-2-59-67.
14. Murashov V.V., Aleksashin V.M. Kontrol prochnosti zony soedineniya elementov integralnyh konstrukcij iz polimernyh kompozitov ultrazvukovym metodom [Control of durability of zone of connection of elements of integral designs from polymeric composites ultrasonic method] // Klei. Germetiki. Tehnologii. 2014. №7. S. 15–19.
15. Murashov V.V. Opredelenie prochnostnyh harakteristik ugleplastikov v monolitnyh i integralnyh konstrukciyah lazerno-akusticheskim sposobom ultrazvukovogo kontrolya [Definition of strength characteristics carbon plastics in monolithic and integral designs in the laser and acoustic way of ultrasonic control] // Materialovedenie. 2016. №11. S. 9–16.
16. Murashov V.V. Kontrol kachestva izdelij iz polimernyh kompozicionnyh materialov akusticheskimi metodami [Quality control of products from polymeric composite materials acoustic methods] // Kontrol. Diagnostika. 2016. №12. S. 16–29.
17. Murashov V.V., Trifonova S.I. Kontrol kleevyh soedinenij v konstrukciyah i izdeliyah iz PKM ultrazvukovym tenevym metodom [Control of glued joints in designs and products from PKM ultrasonic shadow method] // Klei. Germetiki. Tehnologii. 2015. №5. S. 15–23.
18. Murashov V.V. Control of Glued Structures Made of Dissimilar Materials by Ultrasound Reverberation // Polymer Science. Series D. 2016. Vol. 9. No. 3. P. 303–306.
19. Murashov V.V. Kontrol mnogoslojnyh kleenyh konstrukcij akustiko-teplovym metodom [Control of multi-layer glued designs by acoustic-thermal method] // Klei. Germetiki. Tehnologii. 2014. №9. S. 36–40.
20. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method // Polymer Science. Series D: Glues and Sealing Materials. 2010. Vol. 3. No. 4. Р. 267–273.
21. Murashov V.V. Vyyavlenie zon otsutstviya adgezionnogo soedineniya sloev v mnogoslojnyh konstrukciyah [Identification of zones of lack of adhesive connection of layers in multi-layer designs] // Klei. Germetiki. Tehnologii. 2013. №3. S. 29–31.
22. Murashov V.V. Identification of Areas of Absence of Adhesive Bonding between Layers in Multilayer Structures // Polymer Science. Series D: Glues and Sealing Materials. 2014. Vol. 7. No. 1. Р. 46–48.
23. Murashov V.V. Control of Multilayer Constructions by Spectral Acoustic-Impedance Defectoscopy // Polymer Science. Series D: Glues and Sealing Materials. 2014. Vol. 7. No. 2. Р. 133–135.
24. Murashov V.V. Control of Glued Structures by the Electromagnetic Acoustic Variant of the Impedance Method // Ibid. Р. 136–139.
25. Murashov V.V., Slyusarev M.V., Evdokimov A.A. Kontrol' kachestva obolochek arochnyh elementov nadzemnyh chastej opor bystrovozvodimyh mostovyh sooruzhenij iz PKM [Quality control of covers of arch elements of elevated parts of support of fast-erected bridge constructions from PСM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 10. Available at: http://www.viam-works.ru (accessed: November 22. 2016). DOI: 10.18577/2307-6046-2016-0-7-10-10.
26. Murashov V.V., Slyusarev M.V. Vyyavlenie zon ponizhennoj prochnosti soedineniya obshivki s sotovym zapolnitelem v kleenyh sotovyh agregatah [Identification of zones of the lowered durability of connection of covering with cellular filler in glued cellular units] // Klei. Germetiki. Tehnologii. 2016. №12. S. 27–32.
27. Murashov V.V. Control of Multilayer Glued Constructions of Polymeric Composite Materials // Polymer Science. Series D: Glues and Sealing Materials. 2012. Vol. 5. No. 2. Р. 109–115.
28. Murashov V.V. Kontrol kleenyh konstrukcij akustiko-topograficheskim metodom [Control of kleeny designs acoustics topographical method] // Klei. Germetiki. Tehnologii. 2016. №3. S. 21–27.
29. Murashov V.V. Control of Laminated Structures by the Acoustic Free Vibration Method // Polymer Science. Series D: Glues and Sealing Materials. 2012. Vol. 5. No. 4. Р. 341–345.
30. Bakunov A.S., Murashov V.V., Sysoev A.M. Kontrol lopastej vozdushnogo vinta sredstvami nizkochastotnoj akustiki [Control of blades of air screw by means of low-frequency acoustics] // Kontrol. Diagnostika. 2012. №6. S. 72–74.
31. Lange Yu.V. Akusticheskij spektralnyj metod nerazrushayushhego kontrolya [Acoustic spectral method of non-destructive testing] // Defektoskopiya. 1978. №3. S. 7–14.
32. Murashov V.V., Toktueva V.N. Spektralnyj sostav impulsov udarnogo vozbuzhdeniya [Spectral content of impulses of shock excitation] // Aviacionnye materialy. M.: VIAM, 1979. Vyp. 6. S. 21–26.
33. Nerazrushayushhij kontrol: spravochnik / pod obshh. red. V.V. Klyueva [Non-destructive testing: directory / gen. ed. by E.N. Kablov]. M.: Mashinostroenie, 2006. T. 3: Ultrazvukovoj kontrol / pod red. I.N. Ermolova, Yu.V. Lange. 864 s.
34. Kosarina E.I., Stepanov A.V. Radiograficheskij kontrol sotovyh konstrukcij s celyu obnaruzheniya tehnologicheskih i ekspluatacionnyh defektov [Radiographic control of cellular designs for the purpose of detection of technological and operational defects] // V mire nerazrushayushhego kontrolya. 2003. №3. S. 2–5.
35. Stepanov A.V. Metody kontrolya sotovyh konstrukcij aviacionnoj tehniki v usloviyah ekspluatacii [Control methods of cellular designs of aviation engineering under operating conditions] // Aviacionnye materialy i tehnologii. 2004. M.: VIAM. S. 81–86.
36. Skuchik E. Prostye i slozhnye kolebatelnye sistemy [Simple and complex vibrating systems]. M.: Mir, 1971. 557 s.
37. Lange Yu.V. Akusticheskie nizkochastotnye metody i sredstva nerazrushayushhego kontrolya mnogoslojnyh konstrukcij [Acoustic low-frequency methods and means of non-destructive testing of multi-layer designs]. M.: Mashinostroenie, 1991. 272 s.