Articles
High-strength V-1963 alloy of Al–Zn–Mg–Cu system with small additions of zirconium, scandium and silver, developed by FSUE «VIAM», made for massive highly stressed parts (such as frames, fittings, beams, etc.) of primary structure of modern aviation engineering. Alloying with small additions of silver and scandium allowed to simultaneously increase the strength characteristics (by 10–20%), and fatigue resistance (1,8–2,3 times) in comparison with serial domestic and foreign alloys. Unlike the other high strength alloys of Al–Zn–Mg–Cu system, weldability characteristics of V-1963 were improved as compared to similar alloys without silver, and V-1963 also has an acceptable level of corrosion resistance characteristics. Within the terms of the federal target programs at FSUE «VIAM» and the implementation of an integrated scientific direction 8.1. «High-strength welded aluminum and aluminum-lithium alloys of low density with high fracture toughness» («Strategic directions of development
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Aviacionnye materialy: spravochnik v 13 t.; 7-e izd., pererab. i dop. /pod obshh. red. E.N. Kablova [Aviation materials: the directory in 13 vol.; 7th ed., corr. and add. / gen. ed. by E.N. Kablov]. M.: VIAM, 2008. T. 4, kn. 1. 263 s.
4. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
5. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys / gen. ed. by E.N. Kablov] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
6. Alyuminievye splavy v aviakosmicheskoj tehnike / pod obshh. red. E.N. Kablova [Aluminum alloys in aerospace equipment / gen ed. by E.N. Kablov]. M.: Nauka. 2001. 192 s.
7. Davydov V.G., Elagin V.I., Zaharov V.V., Rostova T.D. O legirovanii alyuminievyh splavov dobavkami skandiya i cirkoniya [About alloying of aluminum alloys scandium and zirconium additives] // MiTOM. 1996. №8. S. 25–30.
8. Tkachenko E.A., Fridlyander I.N., Matveyets E.N., Kaigorodova L.I. The effect of rare earth metal minor addition on structure and properties of Al–Zn–Mg–Cu alloy // Proceed. ICAA6. Toyohashi, Japan. 1998. Vol. 3. P. 2049–2054.
9. Kajgorodova L.I., Selnihina E.I., Tkachenko E.A., Senatorova O.G. Vliyanie malyh dobavok skandiya i cirkoniya na strukturu i mehanicheskie svojstva splava Al–Zn–Mg–Cu [Influence of small additives of scandium and zirconium on structure and mechanical properties of alloy of Al-Zn-Mg-Cu] // FMM. 1996. T. 81. Vyp. 5. S. 78–86.
10. Polmer I.J. Nucliation from Supersaturated Solid Solution // The Journal of the Australian Institute of Metals. 1966. Vol. 11. No. 14. P. 246.
11. Fridlyander I.N., Dobromyslov A.V., Tkachenko E.A., Senatorova O.G. Perspektivnye vysokoprochnye materialy na alyuminievoj osnove [Perspective high-strength materials on aluminum basis] // MiTOM. 2005. №7. S. 17–23.
12. Vysokoprochnyj splav na osnove alyuminiya i izdelie, vypolnennoe iz etogo splava: pat. 2233902 Ros. Federaciya [High-strength alloy on the basis of aluminum and the product executed from this alloy: pat. 2233902 Rus. Federation]; opubl. 10.08.04.
13. Vysokoprochnyj splav na osnove alyuminiya i sposob polucheniya izdeliya iz nego: pat. 2443793 Ros. Federaciya [High-strength alloy on the basis of aluminum and way of receiving product from it: pat. 2443793 Rus. Federation]; opubl. 08.10.10.
14. Ogura Т., Hirosawa S., Sato T. Quantitative Analysis of the Vicinity of Grain Boundaries with Precipitate Free Zones in Al–Zn–Mg(–Ag) Alloys // Proceed. ICAA9. Australia. 2004. P. 1061–1066.
15. Vakhromov R.O., Antipov V.V., Tkachenko E.A. Research and Development of High-strength of Al–Zn–Mg–Cu Alloys // Proc. of ICAA-13. Pittsburg. USA. 2012. P. 1515–1520.
16. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14.
17. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti i perspektivy svarki alyuminijlitievyh splavov [Features and perspectives of welding of alyuminiylitiyevy alloys] // Aviacionnye materialy i tehnologii. 2002. №4. S. 3–12.
18. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
The structural and phase characteristics of ZhS32-VI Nickel superalloy with rhenium are studied. The directional solidification, granular metallurgy, and selective laser melting were used to develop ZhS32-VI alloy. Work is executed within the implementation of the complex scientific direction 10.3. «Technologies of atomatization for production of fine-dispersed high-quality powders of alloys on different basis for the additive technologies and powders of solders for the soldering» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
3. Shestakova E.A., Shajhutdinova E.F., Yanbaev R.M., Yanbaev F.M. Tehnologii selektivnogo spekaniya dlya aviastroeniya [Technologies of the selection agglomeration for aircraft industry] // Polzunovskij almanah. 2014. №2. S. 21–24.
4. Shishkovskij I.V. Lazernyj sintez funkcionalnyh mezostruktur i obemnyh izdelij [Laser synthesis of functional mesostructures and volume products]. M.: Fizmatlit. 2009. 421 s.
5. Dalgarno K.W., Wright C.S. Approaches to processing metals and ceramics through the laser scanning of powder beds – a review // Powder Metallurgy Progress. 2001. Vol. 1. No. 1. P. 70–79.
6. Brodin H., Andersson O., Johansson S. Mechanical testing of a selective laser melted superalloy // 13th International conference on Fracture (June 16–21, 2013). China. Bejing. P. 11.
7. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. by E.N. Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
8. Kablov E.N., Gerasimov V.V., Visik E.M. Tehnologicheskie osobennosti polucheniya monokristallicheskih obrazcov i turbinnyh lopatok iz vysokorenievyh zharoprochnyh splavov na ustanovkah UVNK-9 i VIAM-1790 [Technological features of receiving single-crystal samples and turbine blades from high-rhenium hot strength alloys on the installations UVNK-9 and VIAM-1790] // Aviacionnye materialy i tehnologii. M.: VIAM, 2004. Vyp.: Vysokorenievye zharoprochnye splavy, tehnologiya i oborudovanie dlya proizvodstva splavov i lit'ya monokristallicheskih turbinnyh lopatok GTD. S. 91–97.
9. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: December 08, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
10. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: December 08, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
11. Orlov M.R. Strategicheskie napravleniya razvitiya Ispytatelnogo centra FGUP «VIAM» [Strategic directions of development of the Test center FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
12. Volosova M.A., Okunkova A.A. Puti optimizacii processa selektivnogo lazernogo plavleniya pri pomoshhi vybora strategii obrabotki lazernym luchom [Ways of optimization of process of the selection laser melting by means of choice of strategy of processing by laser beam] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2012. T. 14. №4 (2). S. 587–591.
13. Merkushev A., Ilinyh M., Fefelov A. Issledovanie obrazcov iz alyuminievogo splava, izgotovlennyh metodom selektivnogo lazernogo splavleniya [Research of samples from the aluminum alloy, made by method of the selection laser fusing] // Fotonika. 2014. №3. S. 46–49.
14. Sims Ch., Hagel V. Zharoprochnye splavy [Hot strength alloys]. M.: Metallurgiya, 1976. 568 s.
15. Gryaznov M.Yu., Shotin S.V., Chuvildeev V.N. Effekt mezostrukturnogo uprochneniya stali 316L pri poslojnom lazernom splavlenii [Effect of mesostructural hardening of steel 316L at level-by-level laser fusing] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. №5 (1). S. 43–50.
Influence of thermal processing on magnetic and mechanical properties of the amorphous fast-quenched soft magnetic alloy on the basis of cobalt is considered. In work experimental results of dependence of microhardness, specific electroresistance, initial magnetic conductivity, the maximum magnetic conductivity, magnetic induction of saturation and coercive force depending on temperature are shown. Results of research of influence of thermal processing on effective magnetic conductivity in alternating magnetic field are provided. On the basis of the carried-out researches the conclusion about optimum mode of thermal processing is made. The conducted researches will allow to establish scope of this material and to optimize magnetic properties. The received results are analyzed from positions of modern representations.
2. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie ceriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dy–Fe–Co–V [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd-Dy-Fe-Co-V] // MiTOM. 2005. №10. S. 25–29.
3. Davydova E.A., Chabina E.B., Moiseeva N.S. Vliyanie gadoliniya, a takzhe sposoba ego vvedeniya na strukturu i fazovyj sostav magnitotverdogo spechennogo materiala sistemy Pr–Dy–Fe–Co–B [An influence of gadolinium and the method of its introduction on the structure and phase composition of sintered hard magnetic materials of Pr–Dy–Fe–Co–B series] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 56–59. DOI: 10.18577/2071-9140-2015-0-1-56-59.
4. Kablov E.N., Piskorskij V.P., Valeev R.A., Ospennikova O.G., Rezchikova I.I. Rol bora v formirovanii magnitnyh svojstv spechennyh materialov Nd–Dy–Fe–Co–B s vysokim soderzhaniem kobalta [Boron role in forming of magnetic properties of the sintered materials Nd-Dy-Fe-Co-B with the high content of cobalt] // Metally. 2014. №2. S. 35–36.
5. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodymium na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence praseodium on magnetic properties and phase structure of material of Nd-Pr-Dy-Fe-Co-B system] // MiTOM. 2005. №6 (600). S. 12–16.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: November 08, 2016).
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
9. Kekalo I.B. Amorfnye magnitnye materialy [Amorphous magnetic materials]. M.: MISiS, 2002. 173 s.
10. Inoue A. Stabilization of metalliс supercooled liquid and bulk amorphousalloys // Acta materialia. 2000. Vol. 48. P. 279–306.
11. Lee M.C., Lin C.Y., Chin T.S. High permeability nano-crystalline FeSiBTaAg ribbons obtained by direct casting // Intermetallics. 2007. Vol. 15. No. 12. P. 1564–1567.
12. Shahri F. et al. Structural characterization and magnetoimpedance effect in amorphous and nanocrystalline AlGe-substituted FeSiBNbCu ribbons // Journal of magnetism and magnetic materials. 2007. Vol. 312. No. 1. P. 35–42.
13. Shalygina E.E., Abrosimova N.M., Komarova M.A., Molokanov V.V. Issledovanie magnitnyh svojstv i mikromagnitnoj struktury mnogokomponentnyh Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 amorfnyh lent [Research of magnetic properties and micromagnetic structure of multicomponent Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 of amorphous tapes] // Zhurnal tehnicheskoj fiziki. 2004. T. 74. №9. S. 127–130.
14. Zhang T., Inoue A. Bulk Glassy Alloys in (Fe, Co, Ni)–Si–B System // Materials Transactions (Japan). 2001. Vol. 42. No. 6. P. 1015–1018.
15. Gojhenberg Yu.N., Roshhin V.E., Ilin S.I. Struktura i magnitnye svojstva amorfnyh splavov v zavisimosti ot stepeni kristallizacii [Structure and magnetic properties of amorphous alloys depending on extent of crystallization] // Vestnik YuUrGU. 2011. №14. S. 24–28.
16. Johnson W.L. Bulk amorphous metal – An emerging engineering material // JOM. 2002. Vol. 54. Issue 3. Р. 40–43.
17. Vorkachev K.G., Chueva T.R., Mohirev I.I. i dr. Defekty amorfnyh metallicheskih provodov, poluchennyh razlichnymi metodami bystroj zakalki rasplava [Defects of the amorphous metal wires received by different methods of fast tempering melt] // Perspektivnye materialy. 2010. №4. S. 76–82.
18. Faxiang Qin, Hua-Xin Peng. Ferromagnetic microwires enabled multifunctional composite materials // Progress in Materials Science. 2013. Vol. 58. P. 183–259.
19. Mohirev I.I., Chueva T.R., Zabolotnyj V.T. i dr. Prochnostnye i plasticheskie svojstva protyazhennyh amorfnyh provodov iz So-splava, poluchennyh s ispolzovaniem razlichnyh metodov bystroj zakalki rasplava [Strength and plastic properties of extended amorphous wires from With - the alloy, the different methods of fast tempering received with use melt] // Deformaciya i razrushenie materialov. 2010. №7. S. 31–35.
The possibility to use ion implantation in assistiveware deposition of ion-plasma damping coatings in one technological cycle is shown. The influence of ion implantation of argon on the damping ability of the composition of titanium alloy VT6 with damping coating and without it to reduce the oscillation amplitude of the free end of the samples during vibrodynmic bench tests on the first flexural mode is analyzed. The surface roughness of the samples of titanium alloy VT6 before and after applying the damping covering are studied. Metallographic researches of titanium alloy VT6 with a damping coating before and after tests on damping ability are carried out. This work was performed within the framework of strategic directions 17. «Comprehensive anticorrosion protection, hardening, wear-resistant protective and heat-resistant coatings», сomplex problem 17.3. «Multilayer heat-resistant and heat-resistant coatings, nanostructural hardening erosion and corrosion-resistant, wear-resistan
2. Hirvonen Dzh.K. Ionnaya implantaciya [Ion implantation]. M.: Metallurgiya, 1985. 19 s.
3. Shorr B.F., Serebryakov N.N. Raschetno-eksperimentalnyj analiz amplitudno-zavisimyh harakteristik dempfirovaniya v detalyah i materialah [The rated and experimental analysis of amplitude and dependent characteristics of damping in details and materials] // Problemy mashinostroeniya i nadezhnosti mashin. №3. 2011. S. 91–99.
4. Muravchenko F.M., Sheremetev A.V. Aktualnye problemy dinamiki, prochnosti i nadezhnosti sovremennyh aviadvigatelej [Actual problems of dynamics, durability and reliability of modern aircraft engines] // Vibracii v tehnike i tehnologiyah. 2001. №4 (20). S. 2–5.
5. Ustinov A.I., Movchan B.A., Skorodzievskij V.S. Issledovanie dempfiruyushhej sposobnosti ploskih obrazcov iz titanovogo splava Ti–6%Al–4%V s pokrytiyami iz olova i ittriya [Research of damping capacity of flat samples from Ti-6%Al-4%V titanium alloy with coverings from tin and yttrium] // Problemy prochnosti. 2001. №4. S. 55–61.
6. Muboyadzhyan S.A., Pomelov Ya.A. Zashhitnye pokrytiya dlya lopatok kompressora GTD [Protecting covers for GTE compressor blades] // Aviacionnye materialy i tehnologii. M.: VIAM, 2003. Vyp.: Vysokozharoprochnye materialy dlya sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva. S. 116–131.
7. Sposob polucheniya litogo trubnogo katoda iz splavov na osnove alyuminiya dlya ionno-plazmennogo naneseniya pokrytij: pat. 2340426 Ros. Federaciya [Way of receiving the cast pipe cathode from alloys on the basis of aluminum for ion-plasma drawing coverings: pat. 2340426 Rus. Federation]; opubl. 16.04.07.
8. Sposob polucheniya lityh trubnyh izdelij iz splavov na osnove nikelya i/ili kobalta: pat. 2344019 Ros. Federaciya [Way of receiving cast tubular goods from alloys on the basis of nickel and/or cobalt: pat. 2344019 Rus. Federation]; opubl. 16.04.07.
9. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
10. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
11. Ustanovka dlya naneseniya zashhitnyh pokrytij: pat. 2318078 Ros. Federaciya [Installation for drawing protecting covers: pat. 2318078 Rus. Federation]; opubl. 26.06.06.
12. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
13. Sibileva S.V., Karimova S.A. Obrabotka poverhnosti titanovyh splavov s celyu obespecheniya adgezionnyh svojstv [Surface treatment of titanium alloys to provide adhesion properties] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 25–35.
14. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
15. Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlya lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] // Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
16. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 149–163.
17. Ustinov A.I. Dissipativnye svojstva nanostrukturirovannyh materialov [Dissipative properties of the nanostructured materials] // Problemy prochnosti. 2008. №5. S. 96–104.
Polymeric composite materials (PCM) are gaining more and more confidently their place among structural materials in aircraft industry. PCM can no doubt be attributed to the most promising products of both modern and future industrial production. Various technologies require the development of new materials for autoclave, pressing, vacuum molding methods. Currently in Russia and abroad research are carried out aiming at the development of materials and technologies to reduce costs and labour intensity of the manufacture of PCM products. The resistance of PCM to climatic influence plays an important part in their development that allows their use in different climatic zones. One of the materials reducing labour intensity of the preparation process of PCM parts for painting and providing a stable surface protection of structures are surface films. While basic necessary properties of structural adhesives are tensile and shear strength, for surface films such properties as fluidity, drapabi
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt & Tekhnologii. 2016. №14. S. 41–46.
5. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviatsionnye dvigateli: inform. byull. 2014. №31. S. 43–47.
6. Kablov E.N. O nastoyashchem i budushchem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossiyskaya akademiya nauk. 2015. 19 yanvarya.
7. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
8. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
9. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
10. Chursova L.V., Dushin M.I., Khrulkov A.V., Mukhametov R.R. Osobennosti tekhnologii izgotovleniya detaley iz kompozitsionnykh materialov metodom propitki pod davleniem [Features of manufacturing techniques of details from composite materials impregnation method under pressure] // Kompozitsionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. mezhotraslevoy nauch.-tekhnich. konf. M.: VIAM, 2009. St. 17.
11. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
12. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
13. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: September 13, 2016).
14. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: September 13, 2016).
15. Daggett S. Newer surfacing films reduce surface on demolded composite parts // High-performance composites. 2004. No. 13. Р. 1–3.
16. Daggett S. Newer surfacing films reduce surface on demolded composite parts // High-performance composites. 2004. No. 15. Р. 1–5.
17. Daggett S. Newer surfacing films reduce surface on demolded composite parts // High-performance composites. 2004. No. 16. Р. 1–5.
The main types of heat-resisting rubbers and fields of their application are described. Features of selection of elastomers for high-temperature sealants are shown. Thermal stability characteristics of rubbers of different types are given. Comparative characteristics of domestic heat-resistant rubbers of mass application are given. Information on the modern trends and developments in the field of creation of heat-resistant materials is provided.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Fedyukin D.P., Makhles F.A. Tekhnicheskie i tekhnologicheskie svoystva rezin [Engineering and technological properties of rubbers]. M.: Khimiya, 1985. 240 s.
7. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
8. Nudelman Z.N. Ftorkauchuki: osnovy, pererabotka, primenenie [Fluoroelastomers: bases, processing, application]. M.: RIAS, 2007. 383 s.
9. Koshelev F.F., Kornev A.E., Bukanov A.M. Obshchaya tekhnologiya reziny [General technology of rubber]. M.: Khimiya, 1978. 527 s.
10. Bolshoy spravochnik rezinshchika v 2 ch [The big reference book for specialist in rubbers in 2 p.]. M.: Tekhinform, 2012. 1385 s.
11. Chernyavskiy G.G., Emelyanov G.A., Purtseladze V.I., Ugolkov V.L. Ftorpolimernye zashchitnye dezaktiviruemye pokrytiya na osnove nizkomolekulyarnykh funktsional'nykh sopolimerov vinilidenftorida [Ftorpolimernye protective deactivated coverings on the basis of low-molecular functional copolymers of vinylidene fluoride] // Kauchuk i rezina. 2015. №5. S.12–14.
12. Chapurkin V.V., Medvedev V.P., Chapurkin S.V. Osobennosti strukturirovaniya ftorelastomerov ftorperoksidami [Features of structuring fluoroelastomers ftorperoksidami] // Kauchuk i rezina. 2015. №4. S. 36–37.
13. Chaykun A.M., Naumov I.S., Eliseev O.A. Ftorsiloksanovye reziny: nekotorye aspekty primeneniya [Ftorsiloksanovye of rubber: some aspects of application] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 35–36.
14. Sinteticheskiy kauchuk [Synthetic rubber] / pod red. I.V. Garmonova. L.: Khimiya, 1976. 752 s.
15. Shveytser F.A. Korroziya plastmass i rezin [Corrosion of plastic and rubbers]. SPb.: Nauchnye osnovy i tekhnologii, 2010. 640 s.
16. Chaykun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroeniya receptur dlya morozostojkih rezin [Compounding principles in the field of frost resistant rubbers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
17. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
18. Andrianov K.A., Grudinov I.T., Khananashvili L.M. Destruktsiya siloksanovykh elastomerov [Destruktsiya of siloxane elastomer] // Kauchuk i rezina. 1968. №11. S. 19.
19. Kopylov V.M., Kovyazin V.A., Kostyleva E.I., Fedorov A.Yu., Kovyazin A.V. Termostabilizatsiya i keramoobrazovanie silikonovykh rezin [Thermostabilization and keramoobrazovaniye of silicone rubbers] // Kauchuk i rezina. 2015. №5. S. 52–57.
20. Khoroshavina Yu.V., Frantsuzova Yu.V., Nikolaev G.A. Svoystva vulkanizatov na osnove polifenilsilseskvioksanpolidimetilsiloksanovogo blok-sopolimera [Properties of cured stocks on basis polyphenylsilsesquioxanepolydimethylsiloxane block copolymer ] // Kauchuk i rezina. 2015. №1. S. 10–11.
21. Sposob polucheniya polifenilsilseskvioksanpolidiargonilsiloksanovykh blok-sopolimerov [Way of receiving polyphenylsilseskvioxanpolidiargonilsiloxane block copolymer]: pat. RU 2135529 C1; opubl. 23.08.98.
22. Naumov I.S., Petrova A.P., Barbotko S.L., Eliseev O.A. Reziny s ponizhennoy goryuchestyu [Rubbers with the lowered combustibility] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №4. S. 27–33.
In article the overview of structures and compositions of membrane fabrics for manufacturing of polymeric composite materials by method of vacuum infusion is provided. Production methods and materials for manufacturing membrane fabrics are considered. The main firms–manufacturers of membrane fabrics for vacuum infusion and properties of membrane fabrics produced by them are also presented. The membrane fabric applied in the course of vacuum infusion is permeable to gases but not permeable for binding, therefore decontamination of package of filler occurs during all process of infusion, porosity thus decreases to 0,2% and the volume content of fiber increases to 65% that allows applying vacuum infusion with the use of semi-permeable membrane for production of elements of airframe structure. In accordance with this technology production of full composite products or so-called «black wings» of MS-21 airplane is planned.
2. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Nesterova T.A., Barbotko S.L., Nikolaeva M.F., Gerter Yu.A. Mnogoslojnyj zashhitno-dekorativnyj material dlya dekorirovaniya detalej v salonah samoletov i vertoletov [Multi-layer protective and decorative material for decorating details in the cabin of aircraft and helicopters] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2013. №8. St. 04. Available at: http://www.viam-works.ru (accessed: October 21, 2016).
5. Platonov M.M., Nesterova T.A., Nazarov I.A., Bejder E.Ya. Pozharobezopasnyj material na tekstilnoj osnove s poliuretanovym pokrytiem dlya naduvnoj obolochki spasatelnogo trapa [Fabric-based fireproof material with polyurethane coating for inflatable shell of rescue ladder] // Aviacionnye materialy i tehnologii. 2013. №2. S. 50–54.
6. Nesterova T.A., Platonov M.M., Nazarov I.A., Gerter Yu.A. Pozharobezopasnyy tkaneplenochnyy material dlya dorozhki skolzheniya spasatelnogo trapa [Fireproof fabrics film material for path of sliding of rescue ladder] // Trudy VIAM: elektron. nauch.-tekhnich. zhurnal. 2014. №6. St. 11. Available at: http://www.viam-works.ru (accessed: October 21, 2016). DOI: 10.18577/2307-6046-2014-0-6-11-11.
7. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich Ya.M., Platonov A.A. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LΙV. №1. C. 63–66.
8. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
9. Grigorev M.M., Hrulkov A.V., Gurevich Ya.M., Panina N.N. Izgotovlenie stekloplastikovyh obshivok metodom vakuumnoj infuzii s ispolzovaniem epoksiangidridnogo svyazuyushhego i polupronicaemoj membrany [Manufacture of fiberglass skins using vacuum infusion using epoksiangidrid resin and a semipermeable membrane] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 04. Available at: http://viam-works.ru (accessed: October 21, 2016). DOI: 10.18577/2307-6046-2014-0-2-4-4.
10. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
11. Khrulkov A.V., Grigorev M.M., Yazvenko L.N. Perspektivy vnedreniya bezavtoklavnykh tekhnologiy dlya izgotovleniya konstruktsionnykh materialov (obzor) [Implementation perspec-tives without autoclave technologies for manufacturing of constructional materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 06. Available at: http://www.viam-works.ru (accessed: October 21, 2016). DOI: 10.18577/2307-6046-2016-0-2-6-6.
12. Vacuum injection process for manufacturing fiber reinforced сcomposite products involves evacuating second chamber causing resin to flow into preform in adjacent evacuated first chamber: pat. 10013409 DE; appl. 17.03.00; publ. 23.11.00.
13. Dzhogan O.M., Kostenko O.P. Prakticheskaya klassifikatsiya metodov izgotovleniya detaley iz polimernykh kompozitsionnykh materialov propitkoy v osnastke [Practical classification of methods of manufacturing of details from polymeric composite materials impregnation in equipment] // Voprosy proektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov. Kharkov: KhAI, 2013. Vyp. 1 (73). S. 21–32.
14. Li W., Krehl J., Gillespie J.W., Heider D. Process and Performance Evaluation of the Vacuum-Assisted Process // Journal of Composite Materials. 2004. Vol. 38. No. 20. P. 1803.
15. Raskutin A.E., Goncharov V.A. Kompyuternoe modelirovanie tekhnologicheskogo protsessa izgotovleniya PKM metodom vakuumnoy infuzii [Computer modeling of technological process of manufacturing of PСM by method of vacuum infusion] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 286–291.
16. Amouroux S.C., Heider D., Gillespie Jr. J.W. Membrane-based VARTM: membrane and resin interactions // JEC Magazine. 2006. No. 24. URL: http://www. jeccompo-sites.com/knowledge/international-composites-news/membrane-based-vartm-membrane-and-resin-interactions (accessed: October 21, 2016).
17. Sposob izgotovleniya izdeliy iz voloknistogo polimernogo kompozitsionnogo materiala poverkhnostnym infuzionnym protsessom i ustroystvo dlya osushchestvleniya sposoba [Way of manufacturing of products from fibrous polymeric composite material surface infusional process and the device for implementation of way]: pat. 2480334 Ros. Federatsiya; zayavl. 07.02.12; opubl. 27.04.13.
18. Sposob izgotovleniya voloknistykh kompozitov vakuumnoy infuziey i ustroystvo dlya osushchestvleniya sposoba [Way of manufacturing of fibrous composites vacuum infusion and the device for implementation of way]: pat. 2480335 Ros. Federatsiya; zayavl. 07.02.12; opubl. 27.04. 13.
19. Gardiner G. Semipermeables: Next trend in infusion? // Composites technology. 2014. URL: http://www.compositesworld.com/articles/semipermeables-next-trend-in-infusion (accessed: October 21, 2016).
20. Amouroux S.C., Heider D., Gillespie Jr.J.W. Characterization of membranes used in pressure driven composite processing // Composites: Part A. 2010. Vol. 41. P. 207–214.
21. Porous products and process therefor: pat. 4187390 US; appl. 21.07.77, publ. 5.02.80.
22. Sposob polucheniya poristoy membrany i sloistyy material na ee osnove [Way of receiving porous membrane and layered material on its basis]: pat. 2167702 Ros. Federatsiya; zayavl. 20.08.00; opubl. 27.05.01.
23. Company W.L. Gore & Associates: ofits. sayt. Available at: http://www.gore-tex.ru/ru-ru/tekhnologii/membrana-gore-tex (accessed: October 21, 2016).
24. Laminated articles having discontinuous bonded regions: pat. WO 2014/151223; appl.13.03.14, publ. 25.09.14.
25. Gibkiy listovoy material dlya ogranicheniya prostranstva podachi matrichnogo materiala i sposob ego polucheniya [Flexible sheet material for restriction of space of giving of matrix material and way of its receiving]: pat. 2532573 Ros. Federatsiya; zayavl. 09.03.11, opubl. 20.04.14.
26. VAP-tekhnologiya [Elektronnyy resurs]. Available at: www.vap-info.com (accessed: October 21, 2016).
27. Company Composyst GMBH: ofits. sayt. Available at: www.composyst.com/download-en/ (accessed: October 21, 2016).
28. George A. Optimization of Resin Infusion Processing for Composite Materials: Simulation and Characterization Strategies. Institute of Aircraft Design, University of Stuttgart, 2011. 243 p.
29. Zhang J., Li J., Han Y. Superhydrophobic PTFE surfaces by extension // Macromol. Rapid Commun. 2004. Vol. 25. P. 1105–1108.
Features of molding of products from polymeric composite materials by methods of impregnation of dry reinforcement by liquid resin under vacuum pressure are considered. Values of capillary pressure and form factor on the device while studying permeability are experimentally determined. Influence of resin feed rate and capillary pressure on formation of porosity in plastic is investigated. Recommendations about resin feed rate to obtain the minimum porosity in plastic are given.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation carbon plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
4. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
5. Tavares S.S., Michaud V., Manson J.A.E. Assessment of semi-impregnated fabrics in honeycomb sandwich structures // Composites. A. 2010. Vol. 41. P. 8–15.
6. Dushin M. I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovleniya izdelij iz PKM metodom propitki pod davleniem [Features of manufacturing of products from PCM impregnation method under pressure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
7. Repecka L., Boyd J. Vacuum-bag-only-curable prepregs that produce void-free parts // 47-th International SAMPLE Symposium. 2002. P. 1862–1875.
8. Plastic transfer molding techniques for the production of fiber reinforced plastic structures: pat. 4902215 US; publ. 20.02.90.
9. Loos A.C. Low-cost fabrication of advanced polymeric composites by resin infusion processes. Adv. Composite Mater. 2001. Vol. 10. No. 2–3. P. 99–106.
10. Dexter H.B. Development of Textile Reinforced Composites for Aircraft Structures // 4th Internat. Symp. For Textile Composites. Kyoto, Japan, Kyoto Institute of Technology, 1998. P. 36–45.
11. Metod Marko [Marko's method]: pat. 2495640 SShA; opubl. 12.09.50.
12. Beckwith S.W., Hyland C.R. Resin Transfer Molding: A Decade of Technology Advances // SAMPLE J. 1998. Vol. 34 (6). P. 7–19.
13. Composite materials handbook. Ford Belvour, 2002. Vol. 3–5: Polimer matrix composites materials usage, design, and analysis. P. 693.
14. Resin film infusion process and apparatus: pat. 4622091 US; publ. 03.11.86.
15. Donetskij K.I., Hrulkov A.V., Kogan D.I., Belinis P.G., Lukyanenko Yu.V. Primenenie obemno-armiruyushhih preform pri izgotovlenii izdelij iz PKM [Use of three-dimensional reinforcing preforms during the production of polymer composite products] // Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
16. Dushin M.I., Chursova L.V., Khrulkov A.V., Kogan D.I. Osobennosti izgotovleniya polimernykh kompozitsionnykh materialov metodom vakuumnoy infuzii [Features of manufacturing of polymeric composite materials method of vacuum infusion] // Voprosy materialovedeniya. 2013. №3. S. 33–40.
17. Ouahbi T., Saouab А., Breard J., Ouagne P., Chaten S. Modeling of hydro-mechanical coupling in infusion process // Composites: part A. 2007. Vol. 38. P. 1646–1654.
18. Kablov E.N., Startsev O.V., Deev I.S., Nikishin E.F. Svoystva polimernykh kompo-zitsionnykh materialov posle vozdeystviya otkrytogo kosmosa na okolozemnykh orbitakh [Properties of polymeric composite materials after influence of outer space on earth orbits] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №11. S. 2–16.
19. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modifitsirovanie konstruktsionnykh ugleplastikov uglerodnymi nanochastitsami [Modifying constructional ugleplastikov carbon nanoparticles] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 5–11.
20. Donetskiy K.I., Raskutin A.E., Khilov P.A. i dr. Obemnye tekstilnye prefor-my, ispol'zuemye pri izgotovlenii polimernykh kompozitsionnykh materialov (obzor) [Volume textile preformy, used when manufacturing polymeric composite materials (review)] // Bezavtoklavnye tekhnologii pererabotki polimernykh kompozitsionnykh materialov novogo pokoleniya: sb. dokl. konf. M.: VIAM, 2015. S. 13.
21. Dushin M.I., Khrulkov A.V., Gusev Yu.A., Karavaev R.Yu. Rol kapillyarnogo chisla v protsessakh propitki preform zhidkimi svyazuyushchimi [Role of capillary number in impregnation processes preform the liquid binding] // Voprosy materialovedeniya. 2013. №4. S. 86–91.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
23. Wood J.R., Bader M.G. Void control for polymer-matrix composites (1) theoretical and experimental evaluation of a diffusion model for the growth and collapse of gas bubbles // Compos. Manuf. 1994. №5 (3). P. 149–158.
24. Visconti I.C., Langella A., Durante M. The influence of injection pressure on the permeability of unidirectional fibre preforms in RTM // 8th European Conference on Composite Materials (ECCM-8). Naples, Italy. June 3–6, 1998. P. 737–43.
25. Gauvin R., Trochu F., Lemenn Y., Diallo L. Permeability measurement and flow simulation through fiber reinforcement // Polymer Composites. 1996. Vol. 17 (1). P. 34–42.
26. Griffin P.R., Grove S.M., Russell P., Short D., Summerscales J., Guild F.J., Taylor E. The effect of reinforcement architecture on the long-range flow in fibrous reinforcement // Composites Manufacturing. 1995. Vol. 6 (3–4). P. 221–235.
27. Steenkamer D.A., Wilkins D.J., Karbhari V.M. Influence of test fluid on fabric permeability measurements and implications for processing of liguid moulded composites // Journal of Materials Science Letters. 1993. Vol. 12 (13). P. 971–973.
28. Chan A.W., Larive D.E., Morgan R.J. Anisotropic permeability of fiber preforms: constant flow rate measurement // Journal of Composite Materials. 1993. Vol. 27 (10). P. 996–1008.
29. Lykov A.V. Teoriya sushki [Drying theory]. M.: Energiya, 1968. 123 s.
30. Ahn K.J., Seferis J.C., Berg J.C. Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements // Polymer Composites. 1991. Vol. 12 (3). P. 146–52.
31. Amico S., Lekakou C. An experimental study the permeability and capillary pressure in resin-transfer moulding // Composites Sceince and Technology. 2001. Vol. 61. P. 1945–1959.
32. Rudobashta S.P. Massoperenos v sisteme s tverdoy fazoy [Weighttransfer in system with solid phase]. M.: Khimiya, 1980. S. 18.
33. Mikhaylin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tekhnologi, 2008. 822 s.
34. Brautman L. Razrushenie i ustalost [Destruction and fatigue]. M.: Mir, 1978. 153 s.
35. Vacuum resin impregnation process: pat. 4942013 US; publ. 17.07.90.
36. Double bag vacuum in fusion process: pat. 7413694 US; publ. 07.12.00.
37. Method and device for producing fiber – reinforced components am injection method: pat. 68353 WO; publ. 20.09.01.
38. Process and Performance Evaluation of the Vacuum-Assisted Process: pat.1181149 EUR; publ. 01.10.03.
39. Sposob izgotovleniya voloknistykh kompozitov vakuumnoy infuziey i ustroystvo dlya osushchestvleniya sposoba [Way of manufacturing of fibrous composites vacuum infusion and the device for implementation of way]: pat. 2480335 Ros. Federatsiya; opubl. 20.10.06.
40. Patel N., Rohatgi V., Lee L.J. Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat // Polym. Eng. Sci. 1995. Vol. 35 (10). P. 837–851.
41. Rohatgi V., Patel N., Lee L.J. Experimental investigation of flow induced microvoids during impregnation of unidirectional stitched fiberglass mat // Polym. Compos. 1996. Vol. 17 (2). P. 161–170.
42. Ruiz E., Achim V., Bread J., Chatel S., Trouchu F. A fast numerical approach to reduce voud formation in liquid composite molding // The 8-th International Conference on Flow Processes in Composite Materials (FPCM-8). Douai, 2006. P. 251–260.
43. Bread J., Henzel Y., Trouch F., Gauvin R. Analysis of dynamic flow through porous media. Part I: Comparison between saturated and unsaturated flows in fibrous reinforcements // Polym. Compos. 2003. Vol. 24. No. 3. P. 409–421.
44. Lee G.W., Lee K.J. Mechanism of void formation in composite processing with woven fabrics // Polymer and Polymer Composites. 2003. Vol. 11. No. 7. P. 563–570.
45. Patel N., Lee L.J. Effect of fiber mat architecture on void formation and removal in liquid composite molding // Polym. Compos. 1995. Vol. 16 (5). P. 386–399.
46. Patel N., Rohatgi V., Lee L.J. Modeling of void formation and removal in liquid composite molding. Part II. Model development // Polym. Compos. 1996. Vol. 17 (1). P. 104–114.
47. Dushin M.I., Donetskiy K.I., Karavaev R.Yu. Ustanovlenie prichin obrazovaniya po-ristosti pri izgotovlenii PKM [Establishment of the reasons of formation of porosity when manufacturing PСM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 08. Available at: http://www.viam-works.ru (accessed: September 26, 2016). DOI: 10.18577/2307-6046-2016-0-6-8-8.
48. Kavkazov Yu.L. Vzaimodeystvie kozhi s vlagoy [Skin interaction with moisture]. M.: Gilegprom, 1952. 258 s.
Microalloying influence by lanthanoids (La, Pr, Nd, Gd, Dy, Ho, Lu) on condition of grain boundaries and interphase boundaries of γ/γ' heat resisting deformable alloy of the VZh175 type is researched. It is shown that in all studied compositions in cast condition an additional phase – intermetallic compound on the basis of nickel and REE is present. Phases the structure of which include microdoping elements, remain in the thermoprocessed material, both primary, and secondary, located on grain boundaries and interphase boundaries. It is established by TEM method that nanodimensional intermetallic phases decorate boundaries of large primary γ/γ' -phases, making additional contribution to material hardening. Influence of temperature and tension on condition of grain boundaries and interphase boundaries of alloy of the VZh175 type, including the structures containing different lanthanoids is investigated. After tests at temperatures of 650 and 750°С on the basis of over 1000 hours on gra
2. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej no-vogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
4. Bokshteyn S.Z., Kishkin S.T., Shalin R.E. Strukturnaya stabilnost konstruktsionnykh materialov [Structural stability of constructional materials] // Aviatsionnye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 547–553.
5. Supersplavy [Superalloys] / pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Khagelya. M.: Metallurgiya, 1995. T. II, kn. 1. 384 s.
6. Kablov E.N., Bronfin M.B. Effekt S.T. Kishkina, ili pochemu struktura zharoprochnykh nikelevykh splavov dolzhna byt geterofaznoy [Kishkin's effect or why the structure of heat resisting nickel alloys has to be heterophase] // Liteynye zharoprochnye splavy. Effekt S.T. Kishkina: nauchno-tekhn. sb. M.: Nauka, 2006. S. 7–14.
7. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennykh deformiruemykh nikelevykh splavov [Structure of modern deformable nickel alloys] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №6. S. 22–27.
8. Fizicheskoe metallovedenie [Physical metallurgical science] / Pod red. R.U. Kana, P. Khaazena. M.: Metallurgiya, 1987. T. 1. Atomnoe stroenie metallov i splavov. 639 s.
9. McLean M., Strang A. Effects of trace elements on mechanical properties of superalloys // Metals Technology. 1984. Vol. 11. No. 10. P. 454–465.
10. Meetham G. W. Trace elements in superalloys – overview // Metals technology. 1984. Vol. 11. No. 10. P. 414–418.
11. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tekhnologiya povysheniya svoystv liteynykh zharoprochnykh nikelevykh splavov [RЕМ microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
12. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
14. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
15. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
16. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
17. Artyushov V.N., Kudrin A.A., Kirpichnikov M.S., Ponomareva L.L. Vliyanie mikrolegirovaniya na tekhnologicheskuyu plastichnost zharoprochnogo splava KhN62MBKTYu (EP-742) [Influence of microalloying on technological plasticity of HN62MBKTYu hot strength alloy (EP-742)] // Metallurg. 2011. №8. S. 69–72.
18. Kozlov E.V., Nikonenko E.L., Popova N.A., Koneva N.A. Vliyanie legirovaniya lantanom na fazovyy sostav supersplava na osnove Ni–Al–Cr [Alloying influence by lanthanum on phase structure of superalloy on the basis of Ni–Al–Cr] // Vestnik TGU. 2013. T. 18. №4. S. 1527–1528.
19. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vliyanie mikrolegiruyushchikh elementov na strukturno-fazovuyu stabilost i svoystva zharoprochnogo deformiruemogo splava (pri dlitelnykh narabotkakh) [Influence of microdoping elements on structural and phase stability and property of heat resisting deformable alloy (at long practices)] // Metallurg. 2013. №9. S. 93–97.
20. Chabina E.B., Filonova E.V., Lomberg B.S., Zaytsev D.V. Osobennosti formirovaniya struktury vysokozharoprochnogo nikelevogo splava pri kompleksnom mikrolegirovanii lantanoidami [Features of forming of structure of high-heat resisting nickel alloy at complex microalloying lanthanoids] // Metally. 2014. №6. S. 62–69.
21. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. La, Pr, Nd microalloying influence on deformable heat resisting nickel alloy of the VZh175 type structure forming. // Letters of materials. 2015. Vol. 5 (4). P. 380–384.
22. Savitskiy E.M., Terekhova V.F., Burov I.V., Markova I.A., Naumkin O.P. Splavy redkozemelnykh metallov [Alloys of rare earth metals] // M.: Izd-vo AN SSSR, 1962. 267 s.
23. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoy mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] // Sb. dokl. Vseros. konf. po ispytaniyam i issledovaniyam svoystv materialov «TestMat–2013». 2013. S. 32–37.
24. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Vliyanie lantanoidov na strukturu zharoprochnykh nikelevykh splavov [Influence of lanthanoids on structure of heat resisting nickel alloys] // Vestnik RFFI. 2015. №1 (85). S. 38–44.
The FRP porosity reduces structural strength, as known. At present FSUE «VIAM» specialists develop the automated ultrasonic testing method of aircraft wing porosity. Main ways of FRP volume porosity definition with use of ultrasonic non-destructive technique are observed in this paper. They are based on using ultrasonic waves attenuation coefficient, longitudinal ultrasonic wave velocity, backscattering noise energy, back-wall echo monitoring. Ultrasound scattering mechanism in FRP is described. Empiric curves for attenuation coefficient, ultrasonic wave velocity, backscattering noise energy vs pore quantity obtained by different authors are shown.
2. Savin S.P. Primenenie sovremennykh polimernykh kompozitsionnykh materialov v konstruktsii planera samoletov semeystva MS-21 [Application of modern polymeric composite materials in design of glider of airplanes of MS-21 family] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (2). S. 686–693.
3. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: VIAM, 2002. S. 23–47.
4. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
5. Dushin M.I., Khrulkov A.V., Karavaev R.Yu. Parametry, vliyayushchie na obrazovanie poristosti v izdeliyakh iz polimernykh kompozitsionnykh materi-alov, izgotavlivaemykh bezavtoklavnymi metodami (obzor) [The parameters influencing formation of porosity in products from polymeric composite materials, made by bezavtoklavny methods (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №2. St. 11. Available at: http://www.viam-works.ru (accessed: August 01, 2016). DOI: 10.18577/2307-6046-2015-0-2-10-10.
6. Void Content of Reinforce Plastic: ASTM D 2734-09. Standard by ASTM International. 2009. 3 p.
7. Ulf Schnars, Rudolf Henrich. Applications of NDT Methods on Composite Structures in Aerospace Industry // Airbus Operations GmbH. Bremen. Available at: http://www.ndt.net/article/cdcm2006/papers/ schnars.pdf (accessed: August 01, 2016).
8. Dushin M.I., Donetskiy K.I., Karavaev R.Yu. Ustanovlenie prichin obrazovaniya po-ristosti pri izgotovlenii PKM [Establishment of the reasons of formation of porosity when manufacturing PСM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 08. Available at: http://www.viam-works.ru (accessed: August 01, 2016). DOI: 10.18577/2307-6046-2016-0-6-8-8.
9. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
10. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
11. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation carbon plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
12. GOST R 56682–2015. Kompozity polimernye i metallicheskie. Metod opredeleniya obema matritsy, armiruyushchego napolnitelya i pustot [GOST P 56682-2015. Composites polymeric and metal. Method of scoping of the matrix, reinforcing filler and emptiness]. M.: Standartinform, 2016. 24 s.
13. Shanshan Ding, Shijie Jin, Zhongbing Luo, Huan Liu, Jun Chen, Li Lin. Investigations on rela-tionship between porosity and ultrasonic attenuation coefficient in CFRP laminates based on RMVM // 7th International Symposium on NDT in Aerospace. Mo.5.A.1. Available at: https://www.ndt-aerospace.com/Portals/aerospace2015/BB/mo5a1.pdf (accessed: August 01, 2016).
14. Lin L., Luo M., Tian H.T., Li X.M., Guo G.P. Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient // 17th World Conference on Nondestructive Testing, October 25–28, 2008. China, Shanghai. Available at: http://www.ndt.net/
article/wcndt2008/papers/222.pdf (accessed: August 01, 2016).
15. Methods and apparatus for porosity measurement: United States Patent US 7,389,693 B2; Appl. No.: 11/355,217; US 2007/0186655 A1; publ. 16.08.07.
16. Francis A. Reed, Thomas J. Batzinger, Robert W. Reed and Staffan Jonsson. Porosity Measure-ment in Composites Using Ultrasonic Attenuation Methods // Review of Progress in Quantitative Nondestructive Evaluation. 1993. Vol. 12. P. 1265–1272.
17. Jeong H., Hsu D.K. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites // Ultrasonics. 1995. Vol. 33. No. 3. P. 195–203.
18. Daniel I.M., Wooh S.C. and Komsky I. Quantitative Porosity Characterization of Composite Materials by Means of Ultrasonic Attenuation Measurements // Journal of Nondestructive Evaluation. 1992. Vol. 11. No. 1. P. 1–8.
19. Nerazrushayushchiy control [Non-destructive testing: the directory in the 7th vol.]: spravochnik v 7 t. / pod obshch. red. V.V. Klyueva. M.: Mashinostroenie, 2004. T. 3: Ultrazvukovoy kontrol / I.N. Er-molov, Yu.V. Lange. 864 s.
20. Hughes M.S., Handley S.M., Miller J.G. and Madaras E.I. A Relationship between frequency dependent ultrasonic attenuation and porosity in composite laminates // Review in Progress in Quantitative Nondestructive Evaluation. 1987. P. 1037–1044.
21. Karabutov A.A., Podymova N.B., Belyaev I.O. Issledovanie vliyaniya poristosti na zatukhanie ultrazvuka v ugleplastikovykh kompozitakh metodom lazerno-ultrazvukovoy spektroskopii [Research of influence of porosity on ultrasound attenuation in ugleplastikovy composites method of laser and ultrasonic spectroscopy] // Akusticheskiy zhurnal. 2013. T. 59. №6. C. 714–721.
22. Murashov V.V. Opredelenie poristosti ugleplastikov v avia-kostruktsiyakh lazerno-akusticheskim sposobom ultrazvukovogo kontrolya [Determination of porosity ugleplastikov in aviadesigns in the laser and acoustic way of ultrasonic control] // Aviatsionnaya promyshlennost. 2011. №3. C. 33–37.
23. Murashov V.V., Rumyantsev A.F. Diagnostika sostava i svoystv polimernykh kompozitov v detalyakh i konstruktsiyakh [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. №8. S. 13–17.
24. Dominguez N., Mascaro B. Ultrasonic Non-Destructive Inspection of Localised Porosity in Composite Materials // ECNDT 2006-9th European Conference on NDT 2006. Germany, Berlin. Available at: http://www.ndt.net/article/ecndt2006/doc/Tu.2.1.4.pdf (accessed: August 01, 2016).
25. Je-Woong Park et al. Ultrasonic Influence of Porosity Level on CFRP Composite Laminates Using Rayleigh Probewaves // Acta Mechanica Solida Sinica. 2008. Vol. 21. No. 4. P. 298–307. DOI: 10.1007/s10338-008-0834-1.
26. Im K.H. et al. On fiber direction and porosity content using ultrasonic pitch-catch technique in CFRP composite solid laminates // 18th International Conference on Composite Materials. 2011. Available at: http://iccm central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug25 (Thursday)/Th04%20Numerical%20Methods%20in%20Composite%20Materials/Th04-6-AK0992.pdf (accessed: August 01, 2016).
27. Carsten Brandt, Peter Maa. A State Space Approach for the Non-Destructive Evaluation of CFRP with Ultrasonic Testing // 7th International Symposium on NDT in Aerospace. Mo.3.A.1. 2015. Available at: http://www.ndt.net/article/aero2015/papers/Mo_3_A_1_Brandt_v2.pdf (accessed: August 01, 2016).
The systematic study of thermal properties of low-molecular fluorooligomers – industrial fluorinated paraffins of PPU brand has been carried out. Thermal analysis techniques, in particular a differential scanning calorimetry (DSC) and simultaneous thermal analysis (STA) were used. The features of the thermal decomposition of materials and their behavior under heating have been revealed. Crystallization kinetics of fluorinated paraffins has been determined.
2. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Buznik V.M. Ftorpolimernye materialy: primenenie v neftegazovom komplekse [Ftorpolimernye materials: application in oil and gas complex]. M.: Neft' i gaz, 2009. Ser.: Akademicheskie chteniya. Vyp. 61. C. 31.
5. Buznik V.M., Fomin V.M., Alkhimov A.P., Ignateva L.N. i dr. Metallopolimernye nano-kompozity [Metalpolymeric nanocomposites] // Integratsionnye proekty SO RAN. Novosibirsk: Izd-vo SO RAN, 2005. Vyp. 2. S. 260.
6. Kondrashov E.K., Nefedov N.I., Vereninova N.P., Kushch P.P., Kichigina G.A., Kiryukhin D.P., Buznik V.M. Modifikatsiya ftorsopolimernykh pokrytiy telomerami s tselyu povysheniya ikh gidrofobnosti [Updating of ftorsopolimerny coverings by telomeres for the purpose of increase of their water repellency] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №1. S. 2–10.
7. Boynovich L.B., Emelyanenko A.M. Gidrofobnye materialy i pokrytiya: printsipy sozdaniya, svoystva i primenenie [Waterproof materials and coverings: principles of creation, property and application] // Uspekhi khimii. 2008. №77 (7). S. 619–638.
8. Boinovich L.B., Emelyanenko A.M. A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media // Advances in Colloid and Interface Science. 2012. Vol. 179–182. P. 133–141.
9. Buznik V.M. Sverkhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers]// Aviatsionnye materialy i tekhnologii. 2013. №1. S. 29–34.
10. Tsvetnikov A.K., Matveenko L.A., Puz A.V., Egorkin V.S. i dr. Nanodispersnyy politet-raftoretilen Forum i ego vliyanie na fizicheskie svoystva lakokrasochnykh pokrytiy [Nanodisperse polytetrafluoroethylene Forum and its influence on physical properties of paint coatings] // La-kokrasochnye materialy i ikh primenenie. 2016. №1–2. S. 63–67.
11. Tsvetnikov A.K., Kalacheva T.A., Buznik V.M. Vliyanie ultradispersnogo politet-raftoretilena FORUM® na khimicheskuyu stoykost' lakokrasochnykh pokrytiy [Influence of ultradisperse FORUM® polytetrafluoroethylene on chemical resistance of paint coatings] // Lakokrasochnye materialy i ikh primenenie. 2001. №1. S. 20–21.
12. Nefedov N.I., Kondrashov E.K., Ponomarenko S.A., Gorbenko O.M., Petrova A.P., Buznik V.M. Osobennosti stroeniya ftorparafinov i pokrytiy na ikh osnove [Features of structure ftorparafinov and coverings on their basis] // Vse materialy. Entsiklopedicheskiy spravochnik. 2017. №2 (v pechati).
13. Buznik V.M., Vopilov Yu.T., Yurkov G.Yu., Ignat’tva L.N., Toropov A.N., Smirnov M.A. The structural features of fluorinated paraffinns // Polymer Science. Ser. A. 2015. No. 4. Р. 415–424.
14. Ignatieva L.N., Gorbenko O.M., Kuryavyi V.G., Savchenko N.N., Pavlov A.D., Mashtalyar D.V., Bouznik V.M. Characteristics of the structure and properties of low-temperature fractions recov-ered from the powder ultradispersed polytetrafluoroethylene by sublimation // Journal of Fluorine Chemistry. 2013. Vol. 156. P. 246–252.
15. Poroshok-uskoritel dlya obrabotki poverkhnosti plastikovykh lyzh i sposob ego polucheniya [Powder accelerator for surface treatment of plastic skis and way of its receiving]: pat. 2264375 Ros. Federatsiya. №2009146365/05; zayavl. 14.12.2009; opubl. 20.11.2005. Byul. №23 (II ch.). 7 s.
16. Walczak M. Role and properties of the confined amorphous phase of polymers. Dissertation: Ecole nationale supérieure darts et métiers – ENSAM. 2012. P. 160.
17. Zinet M., Refaa Z., Boutaous M., Xin S., Bourgin P. Thermophysical Characterization and Crys-tallization Kinetics of Semi-Crystalline Polymers // Journal of Modern Physics. 2013. Vol. 4. P. 28–37.
18. Ebnesajjad S. Fluoroplastics. William Andrew, 2000. Vol. 1: Non-Melt Processible Fluoroplastics 370 p.
19. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. ISO 11357-7:2002 Plastics-Differential scanning calorimetry (DSC). Part 7: Determination of crystallization kinetics.
21. Meng Z., Yang L., Geng W., Yao Y., Wang X., Liu Y. Kinetic Study on the Isothermal and Nonisothermal Crystallization of Monoglyceride Organogels // The Scientific World Journal. 2014. Article ID 149753.
22. Freire E., Bianchi O., Martins J.N., Monteiro E.E.C., Forte M.C.M. Non-isothermal crystallization of PVDF/PMMA blends processed in low and high shear mixers // Journal of Non-Crystalline Solids. 2012. Vol. 358. P. 2674–2681.
23. Nefedov N.I., Guseva M.A., Khaskov M.A., Ignateva L.N., Buznik V.M. Osobennosti tempe-raturnogo povedeniya nizkomolekulyarnykh ftoroligomerov [Features of temperature behavior of low-molecular ftoroligomer] // Vysokomolekulyarnye soedi-neniya. 2017 (v pechati).
24. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
25. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
26. Vopilov Yu.E., Nikitin L.N., Khokhlov A.R., Buznik V.M. Separatsiya nizkomolekulyarnykh fraktsiy ultradispersnogo politetraftoretilena sverkhkriticheskim dioksidom ugleroda [Separation of low-molecular fractions of ultradisperse polytetrafluoroethylene by supercritical carbon dioxide] // Sverkhkriticheskie Flyuidy: Teoriya i Praktika. 2009. T. 4. №2. S. 4–14.
The article presents the main stages of work activities of Ivan Philippovich Kolobnev, as well as alloys developed under his leadership. The prospects of development of casting high-temperature, high-strength and corrosion-resistant aluminum alloys are shown. Experience accumulated by Kolobnev in the development of high-temperature aluminum alloys is now being implemented in the framework of the complex research area 8.4. «High-strength corrosion-resistant weldable magnesium and cast aluminum alloys for the new generation aerospace technologies» («The strategic directions of development of materials and technologies of their reprocessing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: January 25, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
5. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
6. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
7. Alyuminievye splavy v aviakosmicheskoy tekhnike [Aluminum alloys in aerospace equipment] / pod obshch. red. E.N. Kablova M.: Nauka, 2001. 192 s.
8. Kolobnev I.F., Altman M.B. Gazovaya poristost i metody borby s ney v alyuminievykh otlivkakh [Gas porosity and methods of fight against it in aluminum casting]. M.: ITEIN, 1948. 49 s.
9. Kolobnev I.F. Fasonnoe lite alyuminievykh splavov [Shaped casting of aluminum alloys]. M.: Mashgiz, 1953. 266 s.
10. Lebedev V.M., Melnikov A.V., Postnikov N.S., Cherkasov V.V. Vysokoeffektivnye liteynye alyuminievye splavy [Highly effective cast aluminum alloys] // Aviatsionnye materialy na rubezhe XX–XXI vekov: nauch.-tekhn. sb. M.: VIAM, 1994. S. 101–105.
11. Kolobnev I.F. Liteynye alyuminievye splavy [Cast aluminum alloys]. M.: Oborongiz, 1961. 112 s.
12. Altman M.B. Metallurgiya liteynykh alyuminievykh splavov [Metallurgy of cast aluminum alloys]. M.: Metallurgiya, 1972. 153 s.
13. Kolobnev I.F. Zharoprochnost' liteynykh alyuminievykh splavov [Thermal stability of cast aluminum alloys]. 2-e izd. M.: Metallurgiya, 1973. 320 s.
14. Kolobnev I.F. i dr. Vysokoprochnyy germetichnyy splav V124 [High-strength tight alloy В124]. M.: GOSNINTI, 1969. 29 s.
15. Altman M.B., Stromskaya N.P. Povyshenie svoystv standartnykh liteynykh alyuminievykh splavov [Increase of properties of standard cast aluminum alloys]. M.: Metallurgiya, 1984. 128 s.
16. Goncharenko E.S., Kornysheva I.S. Perspektivy primeneniya otlivok iz alyuminievykh splavov [Perspectives of application of otlivka from aluminum alloys] // Liteynoe proizvodstvo. 2012. №1. S. 21–23.
17. Goncharenko E.S., Kornysheva I.S. Otlivki iz alyuminievykh splavov. Issledovaniya, materialy, tekhnologii [Casting from aluminum alloys. Researches, materials, technologies] // Liteynoe proizvodstvo. 2013. №2. S. 2–4.
18. Kolobnev I.F. Termicheskaya obrabotka alyuminievykh splavov [Thermal processing of aluminum alloys]. 2-e izd. M.: Metallurgiya, 1966. 396 s.
19. Duyunova V.A., Goncharenko E.S., Mukhina I.Yu., Uridiya Z.P., Volkova E.F. Nauchnoe nasle-die akademika I.N. Fridlyandera. Sovremennye issledovaniya magnievykh i liteynykh alyu-minievykh splavov [Scientific heritage of academician I.N.Fridlyandera. Modern researches of magnesium and cast aluminum alloys] // Tsvetnye metally. 2013. №9. S. 71–78.
20. Goncharenko E.S., Alyabev I.P., Trapeznikov A.V., Ogorodov D.V. Poluchenie otlivok iz splava VAL20 putem optimizatsii konstruktsii detaley izdeliy OAO «Tupolev» [Receiving otlivka from alloy ВАЛ20 by optimization of design of details of products of JSC Tupolev] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №8. St. 01. Available at: http://www.viam-works.ru (accessed: January 25, 2016). DOI: 10.18577/2307-6046-2014-0-8-1-1.