Articles
The article shows the research of mechanical properties of specimens obtained by SLS frommetal powder composition of VGH159 alloy after long-term exposure at working temperatures. It has been shown that strength properties don’t decrease essentially after 500-hour exposure at 900С and plasticity reduction of the material have induced by the additional precipitation of phases with Cr and Mo and y'-phase from the solid solution. The comparison of the mechanical properties with passport characteristics of EP648-PS alloy have carried out. It was shown that VZh159 alloy surpasses that alloy in tensile strength at investigated temperature diapason.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 557 s.
3. Kablov E.N., Buntushkin V.P., Morozova G.I., Bazyleva O.A. Osnovnye principy legirovaniya intermetallida Ni3Al pri sozdanii vysokotemperaturnyh splavov [The basic principles of alloying of Ni3Al intermetallic compound at creation of high-temperature alloys] // Materialovedenie. 1998. №7. S. 13–15.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
6. Matilainen V.-P., Pekkarinen J., Salminen F. Weldability of additive manufactured stainless steel // Physics Prosedia. 2016. Vol. 83. P. 808–817.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Sufiyarov V.Sh., Popovich A.A., Borisov E.V., Polozov I.A. Selektivnoe lazernoe plavlenie zharoprochnogo nikelevogo splava [The selection laser melting of heat resisting nickel alloy] // Tsvetnye metally. 2015. №1 (865). S. 79–84.
9. Gryaznov M.Yu., Shotin S.V., Chuvildeev V.N. Effekt mezostrukturnogo uprochneniya stali 316L pri poslojnom lazernom splavlenii [Effect of mesostructural hardening of steel 316L at level-by-level laser fusing] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. №5 (1). S. 43–50.
10. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: October 23, 2017). DOI: 10.18577/2307-6046-2015-0-2-2-2.
11. Evgenov A.G., Rogalev A.M., Karachevcev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoj obrabotki na svojstva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy ЭП648 synthesized by method of the selection laser fusing] // Tehnologiya mashinostroeniya. 2015. №9. S. 11–16.
12. Mostafa A., Rubio I.P., Brailovski V. et al. Structure, texture and phases in 3D printed In718 alloy subjected to homogenization and HIP treatments // Metals. 2017. Vol. 7. No. 196. P. 2–23.
13. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabil'nogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
14. Murayama M., Katayama Y., Hono K. Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at 400°C // Metallurgical and Materials Transactions A. 1999. Vol. 30A. P. 345–353.
15. Nilsson J.-O., Kangas P., Karlsson T., Wilson A. Mechanical Properties, Microstructural Stability and Kinetics of σ-Phase Formation in 29Cr–6Ni–2Mo–0,38N Superduplex Stainless Steel // Metallurgical and Materials Transactions A. 2000. Vol. 31A. P. 35–45.
Studied the characteristics of the mechanical properties of maraging steels in the alloying system Fe–Ni–Mo–Ti–Al, wherein the content of Ti after different heat treatment. Determined the technological parameters of aging, providing an optimal combination of strength properties of steels and their level of impact strength. Given microstructure steels under different heat treatment conditions. Described the dependences of mechanical properties from the cross-sectional dimensions of rods. Studied the influence of titanium on the mechanical properties of steels.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
4. Potak Ya.M. Vysokoprochnye stali [High-strength became]. M.: Metallurgiya, 1972. 208 s.
5. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Martensitostareyushhie stali ‒ novye perspektivnye materialy dlya valov GTD [Maraging became ‒ new perspective materials for GTE shaft] //Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
6. Markova E.S., Yakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostareyushhej stali VKS-180 [Technological features of the production of maraging steel VKS-180] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 01. Available at: http://www.viam-works.ru (accessed: September 15, 2017).
7. Lejbova N.M., Zoteva A.S., Kogan E.S., Felikson A.E. O primenenii martensitno-stareyushhih stalej dlya detalej metallorezhushhih stankov [About application maraging steels for details of metal-cutting machines] // MiTOM. 1974. №10. S. 12–15.
8. Arzamasov B.N., Hovova O.M., Perkas M.D. Puti sovershenstvovaniya svojstv martensitno-stareyushhih stalej [Ways of improvement of properties maraging steels] // Zagotovitelnye proizvodstva v mashinostroenii. 2003. №9. S. 43–46.
9. Belyakov L.N. K voprosu o mehanizme α→γ prevrashheniya v martensitno-stareyushhih stalyah [To question of the mechanism α →γ transformations in maraging steels] // Metallurgiya: Referativnyj zhurnal. 1976. №3. S. 17–22.
10. Petrakov A.F., Shalkevich A.B. Vysokoprochnye stali v aviastroenii [High-strength became in aircraft industry] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002: yubil. nauch.-tehnich. sb. M.: VIAM, 2002. S. 180–191.
11. Vylezhnev V.P., Kokovyakina S.A., Simonov Yu.N. Suhih A.A. Povyshenie harakteristik nadezhnosti martensitno-stareyushhej stali 03N18K9M5T putem sozdaniya struktury tipa «nanotripleks» [Increase of characteristics of reliability of maraging steel 03N18K9M5T by creation of structure of the nanotriplex type] // MiTOM. 2010. №11. S. 20–24.
12. Shlyamnev A.P., Svistunova T.V., Lapshina O.B., Sorokina N.A. i dr. Korrozionnostojkie, zharostojkie i vysokoprochnye stali i splavy: spravochnik [Corrosion-resistant, heat resisting and high-strength there were also alloys: directory]. M.: Intermet Inzhiniring, 2000. 232 s.
13. Gulyaev A.P. Metallovedenie. izd. 5-e pererab. [Metallurgical science. ed. 5th rev.]. M.: Metallurgiya, 1978. 648 s.
14. Shherbakov A.I., Krylov S.A., Kalicev V.A., Ignatov V.A. Razrabotka tehnologii vyplavki vysokoprochnoj martensitostareyushhej stali VKS-180-ID (01N18K9M5T), mikrolegirovannoj RZM [Development of a technology for melting of high-strength maraging steel VKS-180-ID
micro-alloyed with REMs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 04. Available at: http://www.viam-works.ru (accessed: September 15, 2017). DOI: 10.18577/2307-6046-2015-0-2-4-4.
15. Perkas M.D., Kardonskij V.M. Vysokoprochnye martensitno-stareyushhie stali [High-strength maraging became]. M.: Metallurgiya, 1970. 223 s.
16. Belyakov L.N. Razvitie teorii fazovyh prevrashhenij i razrabotka sposobov termicheskoj obrabotki nizkouglerodistyh martensitno-stareyushhih i nerzhaveyushhih azotiruemyh stalej: dis. … d-r tehn. nauk [Development of the theory of phase transformations and development of ways of thermal processing low-carbonaceous maraging and corrosion-proof nitrated by the steels: thesis, Dr. Sc. (Tech.)]. M., 1981. 400 s.
The article discusses the technological features of manufacturing chromium alloy, the manufacture of granules with the plasma rotary atomization for the purpose of further compaction. Influence of the content of refractory elements in the alloy, the particle size and morphology of granules. In addition to the base composition containing 30% molybdenum and 5% iron was studied compositions with increased content of molybdenum and addition of tungsten. Сhromium alloy designed for the manufacture of die tooling capable of operating at temperatures above 1100°C.
2. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54. 4. Figlin S.Z., Bojcov V.V., Kalpin Yu.G., Kaplin Yu.I. Izotermicheskoe deformirovanie metallov [Isothermal deformation of metals]. M.: Mashinostroenie, 1978. 239 s.
5. Demenok O.B., Ganeev A.A., Demenok A.O., Kulakov B.A. Analiz uslovij raboty lityh shtampovyh materialov, rabotayushhih pri 50–1000°S, i trebovaniya k nim pri shtampovke v izotermicheskih usloviyah [The analysis of operating conditions of the cast stamp materials working at 50-1000°C, and requirements to them when punching in isothermal conditions] // Vestnik YuUrGU. Ser.: Metallurgiya, 2014. T. 14. №1. S. 41–47.
6. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1. S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
7. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Shpagin A.S. Vliyanie teploobmena mezhdu zagotovkoj i shtampom na process shtampovki zagotovok detalej aviacionno-kosmicheskogo naznacheniya na specializirovannyh izotermicheksih pressah [Influence of heat exchange between workpiece and die on forming process of aerospace parts by special isothermal presses] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 03. Available at: http://www.viam-works.ru (accessed: September 27, 2017). DOI: 10.18577/2307-6046-2016-0-10-3-3.
8. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
9. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
10. Moiseev N.V., Nekrasov B.R., Letnikova E.Yu., Vydumkina S.V. Shtampovye materialy dlya vysokotemperaturnoj izotermicheskoj deformacii na vozduhe [Stamp materials for high-temperature isothermal deformation on air] // KShP OMD. 2017. №7. S. 25–30.
11. Kaplin Yu.I., Melimevker O.D., Buntushkin V.P. Intermetallidnyj splav – shtampovyj material dlya izostaticheskogo deformirovaniya [Intermetallic alloy – stamp material for isostatic deformation] // Aviacionnaya promyshlennost. 1981. №9. S. 48–50.
12. Splav na osnove hroma: pat. 1818877 SSSR ; zayavl 19.06.91; opubl. 27.07.95, Byul №21. 3 s.
13. Splav na osnove hroma i izdelie, vypolnennoe iz nego: pat. 2211875 Ros. Federaciya [Alloy on the basis of chrome and the product which has been executed of it: pat. 2211875 Rus. Federation]; zayavl. 17.12.2001; opubl. 27.08.06, Byul №24. 3 s.
14. Splav na osnove hroma i izdelie, vypolnennoe iz nego: pat. 2221892 Ros. Federaciya [Alloy on the basis of chrome and the product which has been executed of it: pat. 2221892 Russ. Federation]; zayavl. 11.11.2002; opubl. 20.01.04, Byul. №2. 3 s.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Gessinger G.H. Poroshkovaya metallurgiya zharoprochnyh splavov [Powder metallurgy of hot strength alloys]. Chelyabinsk: Metallurgiya, 1988. 318 s.
17. Moskvichev Yu.P., Panin V.I., Ageev S.V., Chajnov N.D., Myagkov L.L. Granulnye kompozity i effektivnost ih primeneniya [Granules composites and efficiency of their application] // Armaturostroenie. 2011. №1 (70). S. 44–48.
Influence of direct crystallizations parameters for crystalline structure, structure of high coercive station and magnetic properties permanent magnetic alloys UNDK25BA with niobium, silicon and sulfur has been investigated. It is established that UNDK25BA alloys have tendency to formation of a regular crystal structures (column or single-crystal); there is an opportunity to make such magnets on the equipment UVNS-5 intended for smelting of shovels for gas-turbine engines. The contains providing the greatest magnetic properties exceeding requirements of GOST 17809–72 and the level of foreign analogs are defined.
2. Oliver D.A., Shedden J.W. Cooling of Permanent Magnet Alloys in a Constant Magnetic Field // Nature. 1938. Vol. 142. Issue 3587. P. 209.
3. Pucykin G.G., Pashkov P.P., Vejcil M.Ya. Issledovanie teplofizicheskih uslovij polucheniya i struktury kristallicheski anizotropnyh postoyannyh magnitov [Research of heatphysical conditions of receiving and structure crystal anisotropic constant magnets] // Fizika metallov i metallovedenie. 1963. T. 15. Vyp. 4. S. 118–123.
4. Lobyncev E.S., Glushko I.M., Kuznecov V.M. Poluchenie magnitov so stolbchatoj strukturoj metodom lit'ya v sotovye formy [Receiving magnets with stolbchaty structure casting method in cellular forms] // Elektrotehnicheskaya promyshlennost. Elektrotehnicheskie stali. 1974. Vyp. 9 (38). S. 15–19.
5. Livshic B.G., Enikeev G.H., Blatov V.G. Poluchenie magnitov vysokih energij iz splava YuNDK35T5BA v promyshlennyh usloviyah [Receiving magnets of high energy from alloy YuNDK35T5BA in industrial conditions] // IV Vsesoyuz. konf. po postoyannym magnitam. Novocherkassk: AN SSSR, 1971. S. 38.
6. Sklyarov A.E., Chaban I.P., Gridnev A.I., Vlasov V.G. Poluchenie monokristallov splavov dlya postoyannyh magnitov v promyshlennyh usloviyah [Receiving monocrystals of permanent magnet alloys in industrial conditions] // Vyrashhivanie tugoplavkih redkih metallov. M.: Nauka, 1973. S. 8–11.
7. Pikunov M.V., Belyaev I.V., Sidorov E.V. Kristallizaciya splavov i napravlennoe zatverdevanie otlivok [Crystallization of alloys and directional solidification of molding]. Vladimir: Vladimirskij gosudarstvennyj universitet. 2002. 213 s.
8. Cherednichenko I.V., Ospennikova O.G., Piskorskij V.P., Valeev R.A., Buzenkov A.V. Ekonomicheskie aspekty proizvodstva postoyannyh magnitov (obzor) [The economics aspects of manufacturing permanents magnets (review)] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №4 (22). St. 06. Available at: http://materialsnews.ru (accessed: October 02, 2017).
9. Sergeev V.V., Bulygina T.I. Magnitotverdye materialy [Magneto firm materials]. M.: Energiya, 1980. 222 s.
10. GOST 21559–76. Materialy magnitotverdye spechennye [State Standard 21559–76. Magneto firm sintered materials]. M.: Izd-vo standartov, 1976. 20 s.
11. GOST 17809–72. Materialy magnitotverdye litye [State Standard 17809–72. Magneto firm molded materials]. M.: Izd-vo standartov, 2001. 7 s.
12. GOST R 52956–2008. Materialy magnitotverdye spechennye na osnove splava neodim-zhelezo-bor [State Standard P 52956–2008. Materials magneto firm sintered on the basis of alloy neodim-iron-boron]. M.: Standartinform, 2008. 8 s.
13. Kekalo I.B., Samarin B.A. Fizicheskoe metallovedenie precizionnyh splavov. Splavy s osobymi magnitnymi svojstvami [Physical metallurgical science of precision alloys. Alloys with special magnetic properties]. M.: Metallurgiya, 1989. 497 s.
14. Kablov E.N., Piskorskij V.P., Burhanov G.S., Valeev R.A., Moiseeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Termostabilnye kolcevye magnity s radialnoj teksturoj na osnove Nd(Pr)–Dy–Fe–Co–B [Thermostable ring magnets with radial structure on the basis of Nd(Pr)–Dy–Fe–Co–B] // Fizika i himiya obrabotki materialov. 2011. №3. S. 43–47.
15. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Nazarova N.V. Vliyanie disproziya i kobalta na temperaturnuyu zavisimost namagnichennosti i fazovyj sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence of dysprosium and cobalt on temperature dependence of magnetization and phase structure of material of Nd–Dy–Fe–Co–B system] // Metallovedenie i termicheskaya obrabotka metallov. 2007. №4. S. 3–10.
16. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence praseodymium on magnetic properties and phase structure of material of Nd–Pr–Dy–Fe–Co–B system ] // MiTOM. 2005. №6. S. 12–16.
17. Petrakov A.F., Piskorskij V.P., Burhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Pr)–Dy–Fe–Co–B c vysokim soderzhaniem So [Features of agglomeration of magnets of Nd(Pr)–Dy–Fe–Co–B with the high contents With] // MiTOM. 2012. №7. S. 3–9.
18. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
19. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
20. Kablov E.N., Ospennikova O.G., Korolev D.V., Piskorskij V.P., Valeev R.A., Rezchikova I.I. Mehanizm vliyaniya soderzhaniya bora i termoobrabotki na svojstva magnitov sistemy Nd–Fe–Al–Ti–B [Influence mechanisms of boron content and heat treatment on the properties of Nd–Fe–Al–Ti–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 30–34. DOI: 10.18577/2071-9140-2015-0-S2-30-34.
21. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
22. Kolyadov E.V., Gerasimov V.V., Visik E.M. Lite metodom napravlennoj kristallizacii s upravlyaemym gradientom temperatury na fronte kristallizacii [Molding by method of the directed crystallization with managed temperature gradient at the front crystallization] // Litejnoe proizvodstvo. 2016. №8. S. 24–26.
23. Bondarenko Yu.A., Echin A.B. Napravlennaya kristallizaciya zharoprochnogo splava s peremennym upravlyaemym gradientom [The directed crystallization of hot strength alloy with variable managed gradient] // Voprosy materialovedeniya. 2016. №3 (87). S. 5–58.
The issue of production of high-purity metal-powder compositions (powder) of titanium alloys by the method of induction gas atomization is reviewed in the article. With this method of production of titanium powders required technological properties and granulometric composition are improved with low content of gas impurities, which meets the requirements for raw materials for additive technologies. In FSUE «VIAM» the VIPiGR 50/500 unit operated with the method of induction gas atomization and allowing to obtain titanium powders with a low content of oxygen impurities (not more than 0,15% by weight) and hydrogen (not more than 0,01% by weight) was installed and commissioned in operation. The main characteristics of metal powder complexes from alloys of high-purity Ti-4-6 and VT20 obtained on the unit are presented.
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Kablov E.N. Materialy i tehnologii VIAM v konstrukciyah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC Aviadvigatel] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
4. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
5. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Tr. Mezhdunar. nauch.-tehnich. konf. «Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie». M.: VIAM, 2006. S. 39–55.
6. Inozemcev A.A., Bashkatov I.G., Koryavcev A.S. Titanovye splavy v izdeliyah razrabotki OAO «Aviadvigatel» [Titanium alloys in products of development of JSC «Aviadvigatel»] // Sovremennye titanovye splavy i problemy ih razvitiya. M.: VIAM, 2010. S. 43–46.
7. Sirotkin O.S. Sovremennoe sostoyanie i perspektivy razvitiya additivnyh tehnologij [Current state and perspectives of development of the additive technologies] // Aviacionnaya promyshlennost. 2015. №2. S. 22–25.
8. Gasser А., Backes G., Kelbassa I., Weisheit A., Wissenbach K. Laser Additive Manufacturing. Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) in Turbo-Engine Application // Laser Technik Journal. 2010. Vol. 7. P. 58–63. DOI: 10.1002/latj.201090029.
9. Kablov E.N. Poroshki izbavlyayut ot lishnego: intervyu [Powders relieve of the superfluous: interview] // Ekspert. 2014. №9. S 46–51.
10. Belov S.V., Volkov S.A., Magerramova L.A. Perspektivy primeneniya additivnyh tehnologij v proizvodstve slozhnyh detalej gazoturbinnyh dvigatelej iz metallicheskih materialov [Perspectives of application of the additive technologies in production of difficult details of gas turbine engines from metal materials] // Sb. dokl. konf. «Additivnye tehnologii v rossijskoj promyshlennosti». M.: VIAM, 2015. S. 21–28.
11. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 20–26.
12. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
13. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanasev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev dlya diffuzionnoj vakuumnoj pajki, poluchennyh metodom atomizacii rasplava [Research of finely divided powders of solders for the diffusion vacuum soldering, received by atomization method melt] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 79–87.
14. Logacheva A.I. Kompleksnaya tehnologiya izgotovleniya tonkostennyh elementov metodom poroshkovoj metallurgii dlya proizvodstva detalej iz konstrukcionnyh i funkcionalnyh splavov na osnove titana i nikelya dlya izdelij raketno-kosmicheskoj tehniki: dis. … dokt. tehn. nauk [Complex manufacturing techniques of thin-walled elements method of powder metallurgy for production of details from constructional and functional titanium-based alloys and nickel for products of space-rocket equipment: thesis, Dr. Sc. (Tech.)]. Korolev, 2017. S. 33–36.
15. Vostrikov A.V., Garibov G.S., Ber L.B., Shlyapin S.D. Issledovanie fiziko-mehanicheskih svojstv granul iz novogo vysokoprochnogo nikelevogo splava, izgotovlennyh metodom PREP [Research of physicomechanical properties of granules from the new high-strength nickel alloy, made by the PREP method] // Tehnologiya legkih splavov. 2013. №2. S. 69–75.
This article presents the researches of the technological properties of metal-powder compositions of VT6 and VT20 titanium alloys obtained by induction melting and gas atomization. Researches of chemical composition, gas porosity, surface morphology and other technological properties of metal-powder compositions of VT6 and VT20 titanium alloys were conducted. Work is performed within development of technology of receiving the fine-dispersed of metal-powder compositions of VT6 and VT20 titanium alloys for enhancing of their use in the additive technologies.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Kablov E.N. Materialy i tehnologii VIAM v konstrukciyah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC Aviadvigatel] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
6. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
7. Inozemcev A.A., Bashkatov I.G., Koryavcev A.S. Titanovye splavy v izdeliyah razrabotki OAO «Aviadvigatel» [Titanium alloys in products of development of JSC «Aviadvigatel»] // Sovremennye titanovye splavy i problemy ih razvitiya. M.: VIAM, 2010. S. 43–46.
8. Magerramova L.A., Nozhnickij Yu.A., Vasilev B.E., Kinzburskij B.C. Primenenie additivnyh tehnologij dlya izgotovleniya detalej perspektivnyh gazoturbinnyh dvigatelej [Application of the additive technologies for manufacturing of details of perspective gas turbine engines] // Tehnologiya legkih splavov. 2015. №4. S. 7–13.
9. Zlenko M.A., Nagajcev M.V., Dovbysh V.M. Additivnye tehnologii v mashinostroenii. Posobie dlya inzhenerov [The additive technologies in mechanical engineering]. M.: NAMI, 2015. S. 34–44.
10. Shejhaliev Sh.M., Shemyakina O.A. Novosti poroshkovoj metallurgii. NETRAMM i RST [News of powder metallurgy. NETRAMM and RST] // Zhurnal Vesna. 2016. №6. S. 1–4.
11. Дудихин Д.В., Сапрыкин А.А. Способы получения сферических порошков для аддитивных лазерных технологий [Ways of receiving spherical powders for the additive laser technologies] // MASTER’S JOURNAL. 2016. №1. С. 51–55.
12. Mancevich N.M. Issledovatelskaya baza polucheniya metallicheskih poroshkov dlya additivnyh tehnologij [Research base of receiving metal powders for the additive technologies]. M.: ATOMJeKSPO, 2015. C. 6–8.
13. Dovbysh V. M., Zabednov P.V., Zlenko M.A. Additivnye tehnologii i izdeliya iz metalla [The additive technologies and metal wares]. M.: NAMI, 2015. S. 29–31.
14. Gu D.D., Meiners W., Meiners W., Wissenbach K., Poprawe R. Laser Additive Manufacturing of Metallic Components: Materials, Processes, and Mechanisms // International Materials Reviews. 2012. Vol. 57. P. 137–164.
15. ASTM B213. Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel.
16. Knjazev A.E. Proizvodstvo granul titanovogo splava Ti–6Al–4V [Production of granules of Ti-6Al-4V titanium alloy] // Tehnologiya legkih splavov. 2010. №4. S. 46–48.
Article is devoted to innovative manufacturing techniques of products from polymeric materials – to the additive FDM and SLS technologies implemented now in VIAM Federal State Unitary Enterprise. Their advantages and shortcomings are shown, optimum conditions of use are given. Properties of the thermoplastic compositions developed for application in the FDM and SLS technologies are given. It is established that properties of the samples made on the additive FDM and SLS technologies of developed the thermoplastic compositions, are at one level with properties of the samples received in the traditional way of pressure casting, and do not concede to foreign analogs.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
3. Smirnov O.I., Skorodumov S.V. Modelirovanie tehnologii poslojnogo sinteza pri razrabotke izdelij slozhnoj formy [Modeling of technology of level-by-level synthesis when developing products of difficult form] // Sovremennye naukoemkie tehnologii. 2010. №4. S. 83–87.
4. Kablov E.N. Poroshki izbavlyayut ot lishnego: intervyu [Powders relieve of the superfluous: interview] // Ekspert. 2014. №49. S. 46–51.
5. Petrova G.N., Sapego Yu.A., Larionov S.A., Platonov M.M., Laptev A.B. Pozharobezopasnye termoplastichnye materialy dlya 3D-tehnologii [Fireproof thermoplastic materials for 3D-technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 07. Available at: http://www.viam-works.ru (accessed: September 28, 2017). DOI: 10.18577/2307-6046-2017-0-9-7-7.
6. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
7. Lužanin O., Movrin D., Plančak M. Experimental investigation of extrusion speed and temperature effects on arithmetic mean surface roughness in FDM built spectmens // Journal for Technology of Plasticity. 2013. Vol. 38. P. 179–191.
8. Barnatt C. 3D Printing: The Next Industrial Revolution. USA: CreateSpace Independent Publishing Platform, 2013. P. 8–20.
9. Turner B., Strong R., Gold S. A review of melt extrusion additive manufacturing processes: I. Process design and modeling // Rapid Prototyping Journal. 2014. No. 20/3. P. 192–204. DOI: 10.1108/RPJ-01-2013-0012.
10. Dudeк P. FDM 3D printing technology in manufacturing composite elements // Archives of Metallurgy and Materials. 2013. Vol. 58. Iss. 4. DOI: 10.2478/amm-2013-0186.
11. Croccolo D., De Agostinis M., Olmi G. Experimental characterization and analytical modelling of the mechanical behavior of fused deposition processed parts made of ABS-M30 // Computational Materials Science. 2013. Vol. 79. P. 506–518. DOI: 10.1016/j.commatsci.2013.06.041.
12. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimizaciya sostava polimernoj kompozicii s ponizhennoj pozharnoj opasnostyu na osnove polikarbonata dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Optimization of structure of polymeric composition with the lowered fire danger on the basis of polycarbonate for technology of the 3D-press the melted polymeric thread] // Izvestiya vuzov. Ser.: Himiya i himicheskaya tehnologiya. 2017. T. 60. №1. S. 87–94.
13. Platonov M.M., Larionov S.A. Issledovanie fazovyh perehodov i struktury polimernyh poroshkovyh kompozicij na osnove polidodekalaktama, poluchennyh metodom kristallizacii iz rastvorov v poljarnyh aprotonnyh rastvoriteljah [Investigation of phase transitions and structure of the polymer powder compositions based on polydodecanolactam obtained by crystallization from solutions in polar aprotic solvents] // Aviacionnye materialy i tehnologii. 2016. №S1 (43). S. 65–73. DOI: 10.18577/2071-9140-2016-0-S1-65-73.
14. Mikulenok I.O. Opredelenie reologicheskih svojstv termoplastichnyh kompozicionnyh materialov [Definition of rheological properties of thermoflexible composite materials] // Plasticheskie massy. 2011. №7. S. 26–30.
15. Huang S.H., Liu P., Mokasdar A., Hou L. Additive manufacturing and its societal impact: a literature review // International Journal of Advanced Manufacturing Technology. 2013. Vol. 67. P. 1191–1203. DOI: 10.1007/s00170-012-4558-5.
16. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
17. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manufacturing and Industrial Engineering. 2012. Vol. 11 (1). P. 24–27.
18. Hill N., Haghi M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate // Rapid Prototyping Journal. 2014. Vol. 20/3. P. 221–227. DOI: 10.1108/RPJ-04-2013-0039.
19. Goodridge R.D., Tuck C.J., Hague R.J.M. Laser sintering of polyamides and other polymers // Progress in Materials Science. 2012. Vol. 57. P. 229–267. DOI: 10.1016/j.pmatsci.2011.04.001.
20. Kruth J.-P., Levy G., Klocke F., Childs T.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing // Annals of the CIRP. 2007. Vol. 56/2. P. 730–759. DOI: 10.1016/j.cirp.2007.10.004.
21. Sorokin A.E., Platonov M.M., Larionov S.A. Selektivnoe lazernoe splavlenie polimernyh kompozicij na osnove poliamida 12 [Selective laser sintering of polymer compositions based on polyamide 12] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 05. Available at: http://www.viam-works.ru (accessed: September 28, 2017). DOI: 10.18577/2307-6046-2017-0-9-5-5.
22. Rauta S., Jattib V.S., Khedkarc N.K., Singhd T.P. Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts // Procedia Materials Science. 2014. Vol. 6. P. 1625–1630.
23. Novakova-Marcincinova L., Novak-Marcincin J. Verification of mechanical properties of abs materials used in FDM rapid prototyping technology // Proceedings in Manufacturing Systems. 2013. Vol. 8. Iss. 2. P. 87–92.
24. Petrova G.N., Starostina I.V., Rumyanceva T.V., Sapego Yu.A. Effektivnost povysheniya kachestva izdelij iz polikarbonata termoobrabotkoj [Efficiency of improvement of quality of products from polycarbonate heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 06. Available at: http://www.viam-works.ru (accessed: September 28, 2017). DOI: 10.18577/2307-6046-2017-0-9-6-6.
25. Sidorina A.I., Gunyaeva A.G. Rynok uglerodnyh volokon i kompozitov na ih osnove (obzor) [The market of carbon fibers and composites on their basis (overview)] // Himicheskie volokna. 2016. №4. S. 48–53.
26. Petrova G.N., Bejder E.Ya., Starostina I.V. Litevye termoplasty dlya izdelij aviacionnoj tehniki [Molded thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №6. S. 10–15.
27. Kraev I.D., Shuldeshov E.M., Platonov M.M., Yurkov G.Yu. Obzor kompozicionnyh materialov, sochetayushhih zvukozashhitnye i radiozashhitnye svojstva [Composite materials combining acoustic and radio shielding properties] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 60–67. DOI: 10.18577/2071-9140-2016-0-4-60-67.
28. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozicionnye materialy na termoplastichnoj matrice [Polymeric composite materials on thermoflexible matrix] // Izvestiya vuzov. Ser.: Himiya i himicheskaya tehnologiya. 2016. T. 59. №10. S. 61–71.
29. Sytyj Yu.V., Sagomonova V.A., Yurkov G.Yu., Celikin V.V. Novye konstrukcionnye funkcionalnye PKM na osnove termoplastov i tehnologii ih formovaniya [New constructional functional PCM on the basis of thermoplastics and technology of their formation] // Aviacionnaya promyshlennost, 2013. №2. S. 12.
30. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professiya, 2006. S. 29–30.
31. Petrova G.N., Starostina I.V., Rumyanceva T.V. Issledovanie vozmozhnosti markirovki detalej iz polikarbonata [Study of the possibility of marking parts of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 11. Available at: http://www.viam-works.ru (accessed: September 28, 2017). DOI: 10.18577/2307-6046-2016-0-10-11-11.
32. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
33. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
34. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation ] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
35. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 240 s.
36. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
37. Lazareva T.K., Ermakin S.N., Kostyagina V.A. Problemy sozdaniya kompozicionnyh materialov na osnove konstrukcionnyh termoplastov [Problems of creation of composite materials on the basis of constructional thermoplastics] // Uspehi v himii i himicheskoj tehnologii. 2010. T. 24. №4. S. 58–63.
38. Nefedov N.I., Kondrashov E.K., Ponomarenko S.A., Gorbenko O.M., Buznik V.M., Petrova A.P. Peculiarities of the structure of fluoroparaffins and coatings on their basis // Polymer Science. Series D. 2017. Vol. 10. No. 3. P. 269–273.
39. Process for the manufacture of polyamide 12 powder with a high melting point: pat. CA 2498712 C; publ. 15.06.10.
40. Use of a polyamide 12 for selective laser sintering: pat. EP 0911142 B1; publ. 03.08.05.
41. Method of selective laser sintering with improved materials: pat. US 7794647 B1; publ. 14.08.06.
42. Seltzera R., De la Escalerab F.M., Seguradoa J. Effect of water conditioning on the fracture behavior of PA12 composites processed by selective laser sintering // Materials Science and Engineering: A. 2011. Vol. 528. P. 6927–6933. DOI: 10.1016/j.msea.2011.05.045.
43. Manfred S., Antonio A., Konrad W. Polymer Powders for Selective Laser Sintering (SLS) // 30th International Conference of the Polymer Processing Society. Cleveland, Ohio, 2014. P. 7–12.
The main non-autoclave technologies for the production of parts made of polymer composite materials (PCM) based on glass and carbon fillers and melt thermosetting binders for use in the aviation and automotive industry, as well as their advantages and disadvantages are considered. Basic schemes of assembling packages for various types of molding are presented, with the use of appropriate equipment and hardware design.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt & Tehnologii. 2016. №4. S. 41–46.
4. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aviadvigatel»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
5. Kablov E.N. O nastoyashhem i budushhem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossijskaya akademiya nauk. 2015. 19 yanvarya.
6. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
7. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: June 10, 2017). DOI 10.18577/2307-6046-2014-0-4-6-6.
8. Timoshkov P.N., Platonov A.A., Hrulkov A.V. Propitka plenochnym svyazuyushhim (RFI) kak perspektivnaya bezavtoklavnaya tehnologiya polucheniya izdelij iz PKM [Film resin infusion as an advanced method for out-of-autoclave processing of polymer composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 09. Available at: http://www.viam-works.ru (accessed: June 10, 2017). DOI: 10.18577/2307-6046-2015-0-5-9-9.
9. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
10. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozicionnye materialy, poluchennye putem propitki plenochnym svyazuyushhim [The polymeric composite materials received by impregnation by the film binding] // Kompozicionnye materialy. 2011. №11. S. 2–6.
11. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
12. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: June 05, 2017).
13. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
14. Chursova L.V., Dushin M.I., Hrulkov A.V., Muhametov R.R. Osobennosti tehnologii izgotovleniya detalej iz kompozicionnyh materialov metodom propitki pod davleniem [Features of manufacturing techniques of details from composite materials impregnation method under pressure] // Kompozicionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. mezhotras. nauch.-tehnich. konf. M.: VIAM, 2009. S. 17.
15. Raskutin A.E., Hrulkov A.V., Yazvenko L.N. Polimernoe plenochnoe pokrytie dlya konstrukcij iz PKM (obzor) [Polymer film coating for PCM structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2 (50). St. 05. Available at: http://www.viam-works.ru (accessed: October 25, 2017). DOI: 10.18577/2307-6046-2017-0-2-5-5.
In this article, main features of the dispersion hardening of metal composite materials (MМС) based on an aluminum matrix were considered using the example of the Al–Cu–Mg–SiC, Al–Mg–Si–Cu–SiC, Al–Mg–Si–Cu–B4C and Al–Zn–Mg–Cu–SiC systems. It was shown that the aging kinetics of MMC differs from the aging kinetics of aluminum alloys: hardness and strength of MMC reach their maximum values in a shorter time. The effect of the volume fraction of the reinforcing component on the dispersion hardening of composite materials was analyzed. Рhase composition and features of the interaction at the matrix/reinforcement interface were studied.
2. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 18, 2017). DOI: 10.18577/2307-6046-2015-0-4-6-6.
3. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
4. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 20–26.
5. Aviacionnye materialy i tehnologii [Aviation materials and technologies] / pod obshh. red. E.N. Kablova. 2017. №S. S. 11–16.
6. Chawla N., Shen Y.-L. Mechanical Behavior of Particle Reinforced Metal Matrix Composites // Advanced Engineering Materials. 2001. Vol. 3. No. 6. Р. 357–429.
7. Davis L.C., Allison J.E. Residual stresses and their effects on deformation // Metallurgical Transactions: A. 1993. Vol. 24. No. 11. Р. 2487–2496.
8. Vogelsang M., Arsenault R.J., Fisher R.M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites // Metallurgical Transactions: A. 1986. Vol. 17. No. 3. Р. 379–389.
9. Arsenault R.J., Wu S.B. A comparison of PM vs. melted SiC/Al composites // Scripta Metallurgica. 1988. Vol. 22. No. 6. P. 767–772.
10. Ganesh V.V., Chawla N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation // Materials Science and Engineering: A. 2005. Vol. 391. No. 1–2. P. 342–353.
11. Serpova V.M., Shavnev A.A., Grishina O.I., Krasnov E.I., Solyaev Yu.O. Smachivaemost' i mezhfaznoe vzaimodejstvie v metallicheskom kompozicionnom materiale na alyuminievoj matrice, armirovannoj oksidom alyuminiya [Wettability and interphase interaction in metal composite material on the aluminum matrix reinforced by aluminum oxide] // Materialovedenie. 2014. №12. S. 29–35.
12. Sidorov D.V., Shherbakova G.I. Vysokotehnologichnye komponenty kompozicionnyh materialov i specialnye volokna dlya shirokogo spektra primeneniya [Hi-tech components of composite materials and special fibers for application broad spectrum] // Himicheskaya tehnologiya. 2016. T. 17. №4. S. 183–192.
13. Polmear I.J. Light Alloys: Metallurgy of the Light Metals, John Wiley & Sons, Australia, 1995. 496 p.
14. Papazian J.M. Effects of SiC whiskers and particles on precipitation in aluminum matrix composites // Metallurgical Transactions: A. 1988. Vol. 19. No. 12. P. 2945–2953.
15. Oguocha I.N.A., Yannacopoulos S. Precipitation and dissolution kinetics in Al–Cu–Mg–Fe–Ni alloy 2618 and Al–alumina particle metal matrix composite // Materials Science and Engineering: A. 1997. Vol. 231. No 1–2. P. 25–33.
16. Badini C., Marino F., Verné E. Calorimetric study on precipitation path in 2024 alloy and its SiC composite // Materials Science and Engineering: A. 1995. Vol. 191. No. 1–2. P. 185–191.
17. Cottu J.-P., Couderc J.-J., Viguier B., Bernard L. Influence of SiC reinforcement on precipitation and hardening of a metal matrix composite // Journal of Materials Science. 1992. Vol. 27. No. 11. P. 3068–3074.
18. Hunt E., Pitcher P.D., Gregson P.J. Precipitation reactions in 8090 SiC particulate reinforced MMC // Scripta Metallurgica et Materialia. 1990. Vol. 24l. No. 5. P. 937–941.
19. Hadianfard M.J., Mai Y.-W., Healy J.C. Effect of ceramic reinforcement on the ageing behaviour of an aluminium alloy // Journal of Materials Science. 1993. Vol. 28. No. 13. P. 3665–3669.
20. Oguocha I.N.A. Characterization of Aluminum Alloy 2618 and its Composites Containing Alumina Particles: thesis, PhD. Ottawa: Department of Mechanical Engineering University of Saskatchewan, 1998. 200 p.
21. Choi H.J., Min B.H., Shin J.H., Bae D.H. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes // Composites Part A: Applied Science and Manufacturing. 2011. Vol. 42. No. 10. P. 1438–1444.
22. Lin G., Zhen-zhu Z., Gui-song W., Bin X.U. Effect of aging treatment on mechanical properties of (SiCw & SiCp)/2024Al hybrid nanocomposites // Transactions of Nonferrous Metals Society of China. 2005. Vol. 16. P. 387–391.
23. Saheb N., Khalil A., Hakeem A.S., Laoui T. Age Hardening Behavior of Carbon Nanotube Reinforced Aluminum Nanocomposites // Journal of Nano Research. 2013. Vol. 21. P. 29–35.
24. Oguocha I.N.A., Yannacopoulos S. Natural ageing behaviour of cast alumina particle-reinforced 2618 aluminium alloy // Journal of Materials Science. 1996. Vol. 31. No. 12. P. 3145–3151.
25. Gribkov A.N., Aksenov A.A., Zhezher M.V., Zolotorevskij V.S. Struktura i svojstva dispersnouprochnennogo kompozicionnogo materiala Al–3%Cu–1%Mg–20%SiC, poluchaemogo metodom mehanicheskogo legirovaniya [Structure and properties of the dispersnouprochnenny Al-3%Cu–1%Mg–20%SiC composite material received by method of mechanical alloying] // Tehnologiya legkih splavov. 1994. №3–4. S. 36–42.
26. Lee H.-L., Lu W.-H., Chan L.-I. Aging behavior of powder metallurgy composite // Scripta Metallurgica et Materialla. 1992. Vol. 26. P. 1723–1726.
27. Pal S., Mitra R., Bhanuprasad V.V. Aging behavior of Al–Cu–Mg alloy–SiC composites // Materials Science and Engineering A. 2008. Vol. 480. P. 496–505.
28. Wang Z., Li C., Wang H., Zhu X., Wu M. Aging Behavior of Nano-SiC/2014Al Composite Fabricated by Powder Metallurgy and Hot Extrusion Techniques // Journal of Materials Science & Technology. 2016. Vol. 32. No. 10. P. 1008–1012.
29. Hayoune A., Hamana D. Structural evolution during non-isothermal ageing of a dilute Al–Cu alloy by dilatometric analysis // Journal of Alloys and Compounds. 2009. Vol. 474. No. 1–2. P. 118–123.
30. Wang L.M., Flower H.M., Lindley T.C. Precipitation of the ω phase in 2024 and 2124 aluminum alloys // Scripta Materialia. 1999. Vol. 41. No. 4. P. 391–396.
31. Gouma P.I., Lloyd D.J., Mills M.J. Precipitation processes in Al–M–Cu alloys // Materials Science and Engineering: A. 2001. Vol. 319–321. P. 439–442.
32. Guo J., Yuan X. The aging behavior of SiC/Gr/6013Al composite in T4 and T6 treatments // Materials Science and Engineering: A. 2009. Vol. 499. No. 1–2. P. 212–214.
33. Liu P., Wang A., Xie J., Hao S. Characterization and evaluation of interface in SiCp/2024 Al composite // Transactions of Nonferrous Metals Society of China. 2015. Vol. 25. P. 1410–1418.
34. He Y., Wang N., Qiao B., Feng L., Chen Z. SiC/Al interface feature of Al–Fe–V–Si alloy reinforced with SiC particles // The Chinese Journal of Nonferrous Metals. 2010. Vol. 20. No. 7. Р. 1302–1308.
35. Zhang S., Cui Y., Song Y. Microstructural study of SiCp/Al composite prepared by pressureless infiltration // Journal of Materials Engineering. 2000. Vol. 10. P. 3−7.
36. Cheng N., Zeng S., Liu Z. Рreparation, microstructures and deformation behavior of SiCp/6066 Al composites produced by PM route // Journal of Materials Processing Technology. 2008. Vol. 202. No. 1–3. P. 27–40.
37. Li B., Luo B., He K., Zeng L., Fan W., Bai Z. Effect of aging on interface characteristics of
Al–Mg–Si/SiC composites // Journal of Alloys and Compounds. 2015. Vol. 649. P. 495–499.
38. Li Y.Z., Wang Q.Z., Wang W.G., Xiao B.L., Ma Z.Y. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites // Materials Science & Engineering: A. 2015. Vol. 620. P. 445–53.
39. Bhaduri A., Gopinathan V., Ramakrishnan P., Miodownik A.P. Processing and properties of SiC particulate reinforced Al–6,2Zn–2,5Mg–1,7Cu alloy (7010) matrix composites prepared by mechanical alloying // Materials Science and Engineering A. 1996. Vol. 221. P. 94–101.
40. Yuan W., An B. Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCp composite // Transactions of Nonferrous Metals Society of China. 2012. Vol. 22. P. 2080–2086.
41. Chen K.H., Liu H.W., Liu Y.Z. The effect of promotively-solutionizing treatment on the mechanical properties and fracture of ultra high strength 7055 aluminum alloys // Journal of Central South University of Technology. 2002. Vol. 31. P. 528–531.
42. Wang F., Xiong B.Q., Zhang Y.G. Age-hardening characteristic of an Al–Zn–Mg–Cu alloy produced by spray deposition // Rare Metals. 2007. Vol. 26. P. 163–168.
43. Ludtka G.M., Laughlin D.E. The influence of microstructure and strength on the fracture mode and toughness of 7xxx series aluminum alloys // Metallurgical Transactions 1982. Vol. 13A. P. 411–418.
44. Bruce M., Claire M., Ravi S. The influence of Al3Zr dispersoids on the recrystallization of hot-deformed AA7010 alloys // Metallurgical and Materials Transactions A. 2001. Vol. 32.P. 625–632.
45. Sahin A., Sarioglu F. Effect of reinforcement on precipitation behavior in Al 7075/TiCp composite // Scripta Materialia. 1997. Vol. 37. P. 1117–1121.
The thermal decomposition of samples of several carbon- and organic plastics in atmosphere of nitrogen and air was studied using thermographic method. Characteristics of mass loss and thermal transitions of the materials were revealed when heated. It is established, that binding of carbon plastics is destroyed by heating at ~300–410°C, and their pyrolysis in contrast to incineration retains exteriorly individual carbon fibers. Adhesive of organic plastics decomposes at ~390°C, and their fibers become carbonized or fade/oxidize. The rational parameters of thermal treatment of studied samples composits were grounded, providing the ability to extract from they secondary fibers or to produce carbonized materials, requiring study of their properties as adsorbents.
2. Kablov E.N. Materialy – osnova lyubogo dela [Materials – basis of any business] // Delovaya slava Rossii. 2013. №2 (40). S. 4–9.
3. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: September 17, 2017). DOI: 10.18577/2307-6046-2015-0-8-9-9.
4. Hrulkov A.V., Gusev Yu.A., Mishkin S.I., Doriomedov M.S. Effektivnost utilizacii kompozicionnyh materialov [Efficiency of utilization of composite materials] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №6 (24). St. 09. Available at: http://www. materialsnews.ru (accessed: September 17, 2017).
5. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
6. Nikolajkin N.I. Analiz modeli vozdejstviya rezultatov proizvodstvennyh processov grazhdanskoj aviacii na okruzhayushhuyu sredu [The analysis of model of influence of results of productions of civil aviation on environment] // Nauchnyj vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta grazhdanskoj aviacii. 2006. №100. S. 48–54.
7. Oliveux G., Dandy L.O., Leeke G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties // Progress in Materials Science. 2015. Vol. 72. P. 61–99.
8. Howarth J., Mareddy S.S.R., Mativenga P.T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite // Journal of Cleaner Production. 2014. Vol. 81. P. 46–50.
9. Pinero-Hernanza R., Garcia-Serna J., Dodds C. et al. Chemical recycling of carbon fiber composites using alcohols under subcritical and supercritical conditions // The Journal of Supercritical Fluids. 2008. Vol. 46. Issue 1. P. 83–92.
10. Pickering S.J. Recycling technologies for thermoset composite materials–current status // Composites Part A: Applied Science and Manufacturing. 2006. Vol. 37. Issue 8. P. 1206–1215.
11. Pimenta S., Pinho S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook // Waste Management. 2011. Vol. 31. Issue 2. P. 378–392.
12. Nikolajkin N.I., Nikolajkina N.E., Melehova O.P. Ekologiya: uchebnik dlya vuzov [Ecology: the textbook for higher education institutions]. M.: Drofa, 2004. 624 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Feng N., Wang X., Wu D. Surface modification of recycled carbon fiber and its reinforcement effect on nylon-6 composites: Mechanical properties, morphology and crystallization behaviors // Current Applied Physics. 2013. Vol. 13. Issue 9. P. 2038–2050.
15. Shibryaeva L.S., Gorbunova I.Yu., Kerber M.L. Termookislitel'naya destrukciya kompozicii na osnove epoksidnogo oligomera [Thermooxidizing destruktsiya of composition on the basis of epoxy oligomer] // Himicheskaya fizika. 2014. T. 33. №9. S. 65–77.
16. Kodolov V.I. Goryuchest i ognestojkost polimernyh materialov [Combustibility and fire resistance of polymeric materials]. M.: Himiya, 1976. 126 s.
17. Zaharov A.K. K voprosu o kinetike processa termicheskogo razlozheniya ugleplastikov. Himiya i tehnologiya uglerodistyh materialov [To question of kinetics of process of thermal decomposition carbon plastics. Chemistry and technology of carbonaceous materials] // Trudy MHTI im. D.I. Mendeleeva. 1979. Vyp. 105. S. 101–102.
18. Kudryavcev G.I., Zhmaeva I.V. Organicheskie volokna – armiruyushhie materialy [Organic fibers – reinforcing materials] // Zhurnal VHO. 1978. №3. S. 253–258.
19. Process for preparating acitve carbon fibers: pat 3464268 USA. B01 4 21/18; publ: 13.07.76.
20. Plankovskij S.I., Garin V.O., Cegelnik E.V. Sovremennye metody utilizacii polimernyh kompozicionnyh materialov [Modern methods of utilization of polymeric composite materials] // Otkrytye informacionnye i kompyuternye integrirovannye tehnologii. 2011. №51. S. 186–193.
21. Shimkin A.A. Termicheskij analiz v kontrole kachestva polimernyh materialov [The thermal analysis in quality control of polymeric materials] // Sb. tez. dokl. XX Mendeleevskogo sezda po obshhej i prikladnoj himii v 5 t. Ekaterinburg: UrO RAN, 2016. T. 1. S. 130.
22. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: September 17, 2017). DOI: 10.18577/2307-6046-2016-0-8-12-12.
23. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: September 17, 2017). DOI: 10.18577/2307-6046-2015-0-12-12-12.
In this article, peculiarities of magnetron sputtering of metals and semiconductors in the presence of reactive gases are discussed. Aluminum, titanium, and silicon targets were used. Oxygen and atmospheric air dissolved in argon were used as reactive gases. An influence of oxygen and atmospheric fractions in the gas mixture on the discharge voltage and oxides’ deposition rate during sputtering was investigated.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64.
3. Kablov E.N., Kondrashov S.V., Yurkov G.Y. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Nanotechnologies in Russia. 2013. Vol. 8. No. 3–4. Р. 163–185.
4. Khokhlov Yu.A., Bogatov V.A, Krynin A.G. Vliyanie raspredeleniya magnitnogo polya na svojstva ITO pokrytiya, poluchaemogo na polimernoj plenke metodom reaktivnogo magnetronnogo osazhdeniya [An influence of the magnetic field distribution on properties of ITO coating deposited on a polymer film by reactive magnetron sputtering method] // Trudy VIAM : electron. nauch.-tenhich. zhurn. 2014. №12. St. 11. Available at: http://viam-works.ru (accessed: October 09, 2017). DOI: 10.18577/2307-6046-2014-0-12-11-11.
5. Bogatov V.A., Kondrashov S.V., Hohlov Yu.A. Mnogofunkcionalnye opticheskie pokrytiya i materialy [Multifunction optical coatings and materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 343–348.
6. Krynin A.G., Hohlov Yu.A., Bogatov V.A., Kislyakov P.P. Prozrachnye interferencionnye pokrytiya dlya funkcionalnyh materialov ostekleniya [Transparent interferential coatings for functional materials of glazing] // Trudy VIAM : elektron. nauch.-tenhich. zhurn. 2013. №11. St. 05. Available at: http://viam-works.ru (accessed at: October 09, 2017).
7. Bogatov V.A., Hohlov Yu.A. Mnogofunkcionalnye opticheskie pokrytiya, poluchaemye metodami plazmennoj tehnologii, i sposoby kontrolya ih optiko-fizicheskih harakteristik [The multifunction optical coatings received by methods of plasma technology, and ways of control of their optic and physical characteristics] // Aviacionnye materialy i tehnologii. 2001. №1. S. 93–99.
8. Kelly P.J., Arnell R.D. Magnetron sputtering: a review of recent developments and application // Vacuum. 2000. Vol. 56. P. 159–172.
9. Rossnagel S.M. Sputter Deposition // Opportunities for Innovation: Advanced Surface Engineering. Switzerland: Technomic Publishing Co., 1995. 186 с.
10. Danilin B.S., Syrchin V.K. Magnetronnye raspylitelnye sistemy [Magnetronnye spraying systems]. M.: Radio i svyaz, 1982. 72 s.
11. Bassett G.A. Continuous observation of the growth of vacuum evaporated metal films // Proceeding of the European Regional Conference on Electron Microscopy. 1960. Vol. 1. P. 270–275.
12. Berlin E.V., Sejdman L.A. Poluchenie tonkih plenok reaktivnym magnetronnym napyleniem [Receiving thin films by reactive magnetron dusting]. M.: Tehnosfera, 2014. 256 s.
13. Odynec L.L., Orlov V.M. Anodnye oksidnye plenki [Anode oxide films]. L.: Nauka, 1990. 200 s.
14. Bollman W. The Experimental Foundations of Particle Physics // Physical review. 1956. Vol. 103. P. 1588–1594.
15. Silicox J., Whelan M.J. Structure and Properties of Thin Films. John Willey and Sons, London. 1959. 183 p.
16. Gusev E.P., Popov A.P. Nachalnaya stadiya okisleniya metallov v modeli reshetochnogo gaza [Initial stage of oxidation of metals in model of the lattice gas] // Poverhnost. 1991. №2. S. 33–46.
17. Kubashevskij O.V., Gopkins B.A. Okislenie metallov i splavov [Oxidation of metals and alloys]. M.: Metallurgiya, 1968.
S. 370–428.
18. Kulikov I.S. Termodinamika oksidov [Thermodynamics of oxides]. M.: Metallurgiya, 1986. 358 s.
The paper covers the problems of methodological support in the part of assessing the resistance to corrosion and biofouling of metallic materials during full-scale marine tests, as well as a review of the research work of the GCTC VIAM, aimed at developing, improving, clarifying and supplementing the methods of marine testing. Attention is focused on the impact of ecological and biological aspects on complex technical systems and the need for testing materials for biological resistance as an integral part of climate testing.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57. DOI: 10.18577/2071-9140-2014-0-1-51-57.
5. Laptev A.B. S uchetom posledstvij izmenenij klimata [Taking into account consequences of climate changes] // Industriya. Inzhenernaya gazeta. 2017. №5. S. 5.
6. Karpov V.A. Biokorroziya v morskoj srede i osnovy primeneniya zashhitnyh pokrytij: avtoref. dis. … d-r tehn. nauk [Biocorrosion in the marine environment and bases of application of protecting covers: thesis, Dr. Sc. (Tech.)]. M., 2012. 48 s.
7. Lebedev E.M., Permitin Yu.E., Karaeva N.I. K voprosu ob obrastanii plastin na Chernom more [To question of overgrowing of plates on Black Sea] // Trudy IOAN. 1963. T. 10. S. 82–93.
8. Lebedev E.M. Nekotorye aktualnye voprosy izucheniya obrastaniya i zashhity ot nego [Some topical issues of studying of overgrowing and protection against it] // Izuchenie processov morskogo bioobrastaniya i razrabotka metodov borby s nim. L.: ZIN, 1987. S. 62–64.
9. Miheev A.I. Vliyanie obrastaniya i nizkih temperatur na bezopasnuyu ekspluataciyu sudov [Influence of overgrowing and low temperatures on safe operation of vessels] // Vodnyj transport. 2013. Vyp. 3. S. 56–61.
10. Shkabara N.A. Ekologo-tehnologicheskoe izuchenie pokrytiya bar'ernogo tipa dlya zashhity ot korrozii i morskogo obrastaniya neftegazoprovodov, plavuchih sredstv i portovyh sooruzhenij (na primere Gelendzhikskoj buhty): avtoref. dis. … kand. tehn. nauk [The ecologist technological studying of covering of barrier type for corrosion protection and sea overgrowing of oil and gas pipelines, watercrafts and port installations (on example of the Gelendzhiksky bay): thesis, PhD (Tech.)]. Krasnodar, 2015. 113 s.
11. Panchenko Yu.M., Strekalov P.V., Nikulina T.V. Vliyanie uderzhannyh produktov korrozii na tormozhenie korrozionnogo processa. Ch. I. Pervye dva goda [Influence of the withheld products of corrosion on braking of corrosion process. H. I. First two years] // Korroziya: materialy, zashhita. 2013. №2. S. 9–18.
12. Borodavkin P.P. Morskie neftegazovye sooruzheniya: uchebnik dlya vuzov [Sea oil and gas constructions: the textbook for higher education institutions]. M.: Nedra-Biznescentr, 2006. Ch. 1: Konstruirovanie. 555 s.
13. Starokon I.V. O vliyanii korrozionnogo vozdejstviya na razvitie ustalostnyh treshhin na morskih neftegazovyh sooruzheniyah (MNGS) [About influence of corrosive attack on development of fatigue cracks on sea oil and gas constructions (SOGC)] // Fundamentalnye issledovaniya. 2012. №11. Ch. 5. S. 1214–1219.
14. Pravila klassifikacii, postrojki i oborudovaniya plavuchih burovyh ustanovok i morskih stacionarnyh platform [Ruled classifications, construction and the equipment of floating drilling rigs and offshore fixed platforms]. SPb.: Morskoj registr sudohodstva, 2008. 483 s.
15. Markovich R.A., Kan M.K., Mihajlov S.V. Korroziya i metody zashhity zony peremennogo smachivaniya metallokonstrukcij gidrotehnicheskih sooruzhenij estakadnogo tipa [Corrosion and methods of protection of zone of variable wetting of metalwork of hydraulic engineering constructions of platform type ] // Gidrotehnika. 2014. №4. S. 71.
16. Microbially Influenced Corrosion of Materials: Scientific and Engineering Aspects / eds. E. Heitz, H.-C. Flemming, W. Sand. Springer-Verlag, Berlin, Heidelberg, 1996. 475 p.
17. Dazhang Yang, Jianhua Liu, Xiaoxue E, Linlin Jiang. Experimental study of composition and influence factors on fouling of stainless steel and copper in seawater // Annals of Nuclear Energy. 2016. Vol. 94. P. 767–772.
18. Al-Muhanna K., Habib K. Marine bio-fouling of different alloys exposed to continuous flowing fresh seawater by electrochemical impedance spectroscopy // Journal of Saudi Chemical Society. 2016. Vol. 20. Issue 4. P. 391–396.
19. Mansfeld F., Little B. Microbiologically influenced corrosion of copper-based materials exposed to natural seawater // Electrochimica Acta. 1992. Vol. 37. Issue 12. P. 2291–2297.
20. Koryakova M.D., Filonenko N.Yu., Kaplin Yu.M. Issledovanie korrozii vysokolegirovannyh stalej v morskoj vode pod balyanusami [Research of corrosion high-alloy steel in sea water under barnacles] // Zashhita metallov. 1995. T. 31. №2. S. 219–221.
21. Kaplin Yu.M., Koryakova M.D., Nikitin V.M., Suponina A.P. Mehanizm korrozii stali pod osnovaniem balyanusa [The mechanism of corrosion of steel under the basis barnacles] // Zashhita metallov. 1998. T. 34. №1. S. 89–93.
22. Koryakova M.D., Nikitin V.M., Speshneva N.V. Rol bakterialnoj plenki pod balyanusami v korrozii vysokolegirovannoj stali v morskoj vode [Role of bacteriemic film under barnacles in corrosion of high-alloy steel in sea water // Zashhita metallov. 1998. T. 34. №2. S. 208–211.
23. Karpov V.A., Kovalchuk Yu.L., Beleneva I.A., Petrosyan V.G. Issledovanie korrozii metallov v tropicheskih morskih vodah [The study of the corrosion of metals in tropical marine waters] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №6 (24). St. 03. Available at: http://www.materialsnews.ru (accessed: November 08, 2017).
24. Lebedev E.M., Ilin I.H. Metody issledovanij morskogo i okeanicheskogo obrastaniya [Methods of researches of sea and oceanic overgrowing] // Obrastanie i biopovrezhdeniya. Ekologicheskie problemy. M.: Nauka, 1992. S. 65–76.
25. Zinova A.D. Opredelitel zelenyh, buryh i krasnyh vodoroslej yuzhnyh morej SSSR [Determinant of green, brown and red algas of the southern seas of the USSR]. M.–L., 1967. 397 s.
26. Gluhenkij I.Yu., Lavrentev A.V., Popova G.G. Modelirovanie avarijnyh razlivov nefti v Kerchenskom prolive [Modeling of emergency oil spillages in the Strait of Kerch] // Bezopasnost v tehnosfere. 2014. №6. S. 3–6.
27. Cvetkov V.Ya. Geoinformacionnye sistemy i tehnologii [Geoinformation systems and technologies]. M.: Finansy i statistika, 1998. 230 s.
28. Morskaya korroziya [Sea corrosion]. M.: Metallurgiya, 1983. 512 s.
29. Protasov V.N. Teoriya i praktika primeneniya polimernyh pokrytij v oborudovanii i sooruzheniyah neftegazovoj otrasli [The theory and practice of application of polymer coatings in the equipment and constructions of the oil and gas industry]. M.: Nedra-Biznescentr, 2007. 374 s.
30. Dolgopolskaya M.A. Eksperimentalnoe izuchenie processa obrastaniya v more [Experimental studying of process of overgrowing in the sea] // Trudy Sevastopolskoj biologicheskoj stancii. 1954. T. 8. S. 157–173.
31. Dolgopolskaya M.A., Degtyarev P.F. Biologicheskoe obosnovanie dlya stendovyh ispytanij sredstv zashhity ot obrastaniya [Biological justification for stand tests of security features from overgrowing] // Biologicheskie issledovaniya Chernogo morya i ego promyslovyh resursov. M.: Nauka, 1968. S. 132–136.
32. Izuchenie processov morskogo bioobrastaniya i razrabotka metodov borby s nim [Studying of processes of sea biofouling and development of methods of fight against it]. L.: Zoologicheskij institut AN SSSR, 1987. 132 s.
33. Ilin I.N. Metody izucheniya obrastaniya v okeane [Methods of studying of overgrowing at the ocean] // Ekologicheskie aspekty zashhity tehniki i materialov. Teoriya i praktika naturnyh ispytanij. M.: IPEE RAN, 2000. Ch. 2. S. 32–36.