Articles
The research results of deformation temperature influence on structure, mechanical and corrosion properties of extruded products of Al–Mg–Si alloy V-1341 additionally doped with small additions of Ca made in industrial-scale production of JSC «KUMW» metallurgical plant are presented. Extrusion is maintained at low (300–350°C) and high (450–500°C) temperatures. Corrosion resistance (intergranular corrosion and layer corrosion) of extruded products is investigated. Comparison of mechanical properties after thermal processing in laboratory and metallurgical workshop conditions is also given.
2. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Kablov E.N. Materialy dlya aviakosmicheskoj tekhniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
5. Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran» / gen. ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. S. 12.
6. Makhsidov V.V., Kolobnev N.I., Karimova S.A., Sbitneva S.V. Vzaimosvyaz struktury i korrozionnoj stojkosti v splave 1370 sistemy Al–Mg–Si–Cu–Zn [Interrelation of structure and corrosion resistance in alloy of the 1370th Al-Mg-Si-Cu-Zn system] // Aviacionnye materialy i tehnologii. 2012. №1. S. 8–13.
7. Hirsch J. Virtual fabrication of aluminium products. Microstructural modeling in Industrial Alumi-nium Production. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, 2006.
8. Kolobnev N.I., Ber L.B., Khokhlatova L.B., Ryabov D.K. Struktura, svojstva i primenenie splavov sistemy Al–Mg–Si–(Cu) [Structure, properties and application of alloys of Al-Mg-Si-(Cu) system] // MiTOM. 2011. №9. S. 40–45.
9. Očenášek V., Sedláček P. The effect of surface recrystallized layers on properties of extrusions and forgings form high strength aluminium alloys // 20-th International Conference on Metallurgy and Materials. Brno, 2011. P. 853–860.
10. Byrol Y. The effect of processing and Mn content on the T5 and T6 properties of AA6082 Profiles // Journal of Material Processing Technology. 2006. No. 173. P. 84–91.
11. Archakova Z.N., Balakhoncev G.A. i dr. Alyuminievye splavy. Struktura i svojstva polufabrikatov iz alyuminievykh splavov: spravochnik [Aluminum alloys. Structure and properties of semi-finished products from aluminum alloys: directory]. M.: Metallurgiya, 1974. 432 s.
12. Sweet E.D., Caraher S.K., Danilova N.V., Zhang X. Effect of Extrusion Parameters on Coarse Grain Surface Layer in 6xxx-Series Extrusions // Proceedings of the 8th International Aluminum Extrusion Technology Seminar. V. 1. Orlando, 2004. P. 115–126.
13. Sherstnev P., Zamani A. Modeling of static and geometric dynamic recrystallization during hot extrusion of Al–Mg–Si alloy // Materials Science Forum. 2014. V. 794–796. P. 728–733.
14. Antipov V.V., Senatorova O.G., Kolobnev N.I., Tkachenko E.A. I.N. Fridlyander i ego splavy [I.N.Fridlyander and his alloys] // Tsvetnye metally. 2013. №9. S. 28–29.
15. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red.
E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 152.
16. Grushko O.E., Ovchinnikov V.V., Alekseev V.V., Gureeva M.A., Shamraj V.F., Klochkov G.G. Struktura, sposobnost' k vydavke i svarivaemost' listov iz splavov sistemy Al–Mg–Si [Structure, ability to extrusion and bondability of sheets from Al-Mg-Si system alloys] // MiTOM. 2007. №7 (625). S. 15–22.
17. Ovsyannikov B.V., Grushko O.E., Klochkov G.G., Varchenya P.A., Bulgakova E.G., Popov V.I. Industrial development of hi-tech alloy B-1341 of Al–Mg–Si system alloyed by calcium // Proceedings of the 11 ICAA. 2008. V. 1. P. 222–228.
18. Klochkov G.G., Grushko O.E., Ovchinnikov V.V., Shamray V.F., Girsh R.I. The structure, formability and weldability of B-1341 Al–Mg–Si alloy sheets // Ibid. P. 241–247.
19. Klochkov G.G., Grushko O.E., Popov V.I., Ovchinnikov V.V., Shamraj V.F. Struktura, tehnologicheskie svojstva i svarivaemost listov iz splava V-1341 sistemy Al–Mg–Si [Structure, technological properties and bondability of sheets from alloy V-1341 of Al–Mg–Si system] // Aviacionnye materialy i tehnologii. 2011. №1. S. 3–8.
20. Kurdyumov A.V., Inkin S.V., Chulkov V.S., Shadrin G.G. Metallicheskie primesi v al-yuminievykh splavakh [Metal impurities in aluminum alloys]. M.: Metallurgiya, 1988. 143 s.
21. Grushko O.E., Ivanova L.A., Inkin S.V. i dr. Vliyanie primesnykh e'lementov na tekhnolog-icheskuyu plastichnost' alyuminievo-litievykh splavov [Influence of primesny elements on technological plasticity of aluminum-lithium alloys] // Tekhnologiya legkikh splavov. 1992. №1. S. 53–56.
22. Grushko O.E., Shevelyova L.M. Primesi shhelochnykh i shhelochno-zemelnykh metallov v alyuminievo-litievom splave 1420 [Impurity of alkali and alkaline earth metals in aluminum-lithium alloy 1420] // Tsvetnye metally. 1994. №4. S. 48–52.
23. Hyung-Won Park, In-Sang Jeong, Yeong-Hwa Kim, Su-Gun Lim. Effect of Ca addition on microstructure of semi-solid Al–Zn–Mg al alloys during reheating // Proceedings of the 12 ICAA. 2010. P. 1726–1729.
24. Trond Furu, Nadia Telioui, Carl Behrens, Jochen Hasenclever, Paul Schaffer. Trace elements in aluminium alloys: their origin and impact on processability and product properties // Ibid.
P. 282–289.
25. Dric A.M., Rokhlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E. Issledovanie vliyaniya dopolnitel'nogo legirovaniya na okislyaemost pri nagreve splavov alyuminiya s magniem [Re-search of influence of additional alloying on oxidability when heating alloys of aluminum with magnesium] // Tsvetnye metally. 2011. №6. S. 67–71.
26. Strigavkova E., Vajs V., Mikhna S. Issledovanie struktury i zhidkotekuchesti splava sistemy Al–Si–Mg s razlichnym soderzhaniem kalciya [Research of structure and fluidity of alloy of Al-Si-Mg system with the different content of calcium] // Metallurg. 2012. №9. S. 84–88.
27. Rokhlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E. Svojstva magnievykh splavov, legirovannykh kalciem [Properties of the magnesium alloys alloyed by calcium] // Metallurgiya mashinostroeniya. 2008. №2. S. 31–35.
28. Rokhlin L.L. i dr. Magnievye splavy, legirovannye kalciem [The magnesium alloys alloyed by calcium] // MiTOM. 2009. №4. S. 14–19.
29. Belov V.D., Koltygin A.V., Belov N.A., Pliseckaya I.V. Innovacii v oblasti litejnykh magnievykh splavov [Innovations in the field of cast magnesium alloys] // Metallurg. 2010. №5. S. 67–70.
30. Skornyakov V.I., Antipov V.V., Semovskikh S.V. Razvitie metallurgicheskogo proizvodstva Kamensk-Uralskogo metallurgicheskogo zavoda dlya polufabrikatov iz novykh alyuminievykh splavov [Development of metallurgical production of Kamensk-Uralsky Metallurgical Works for semi-finished products from new aluminum alloys] // Tsvetnye metally. 2013. №9. S. 30–33.
31. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Treatment of materials using selective laser melting technology allows obtaining different products from a wide range of metallic materials. Aluminum powders allow also manufacturing construction elements. Achieving required strength of many aluminum alloys depends on applied heat treatment. The article presents investigation results of heat treatment parameters influence on tensile strength characteristics as well as the results of fractographic research. The work is carried out under the realization of integrated research area 10.3. «Technologies of atomization for producing high quality metallic powders for additive manufacturing and powders for brazing» («The strategic directions of development of materials and technologies for their processing for the period till 2030»)
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia ] // Redkie zemli. 2014. №3. S. 8–13.
4. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003. Vol. 301 (5637). P. 1225–1227.
5. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technik Journal. 2012. No. 9 (2). P. 33–38.
6. Vilaro T., Colin C., Bartout J.D. et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy // Materials Science and Engineering Structural Materials Properties Microstructure and Processing. 2012. Vol. 534. P. 446–451.
7. Guan K., Wang Z. M., Gao M. et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel // Materials & Design. 2013. Vol. 50. P. 581–586.
8. Wang Z.M., Guan K., Gao M. et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting // Journal of Alloys and Compounds. 2012. Vol. 513. P. 518–523.
9. Vrancken B., Thijs L., Kruth J.P. et al. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties // Journal of Alloys and Compounds. 2012. Vol. 541. P. 177–185.
10. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava E'P648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskikh poroshkov // Trudy VIAM: e'lektron. nauch.-tekhnich. zhurn. 2015. №2. St. 02. URL: http://www.viam-works.ru (data obrashheniya: 19.07.2016). DOI:10.18557/2307-6046-2015-0-2-2-2.
11. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] //Aviacionnye materialy i tehnologii. 2015. №4. S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
12. Ryabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Change of mechanical properties of alloy 1913 at two-level artificial aging] // Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
13. Kolobnev N.I., Ber L.B., KHokhlatova L.B., Ryabov D.K. Struktura, svojstva i primenenie splavov sistemy Al–Mg–Si–(Cu) [Structure, properties and application of alloys of Al-Mg-Si-(Cu) system] // Metallovedenie i termicheskaya obrabotka metallov. 2011. №9. S. 40–45.
14. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
15. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tekhnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
16. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
17. Kempen K., Thijs L., Van Humbeeck J., Kruth J.P. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting // Phys. Procedia. 2012. Vol. 39. P 439–446.
18. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties // J. Mater. Process. Tech. 2013. Vol. 213. P. 1387–1405.
19. Brandl E., Heckenberger U., Holzinger V. et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior // Materials & Design. Vol. 34. P. 159–169.
20. Kablov E.N. Shestoj tekhnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
Development of 3D-printing technologies made it possible to prepare half-finished product and components from metal powders including those from aluminum alloys. These technologies allow procuring complex products with high improved material efficiency. However the high crystallization speed during selective laser sintering causes manufacture of structures that are not typical for classical casting technologies. The research results of the microstructure changes of AK9ch material during various kinds of heat treatment (annealing, solution treatment), the results of the optical microscopy and TEM studies are introduced. The work is carried out under the realization of integrated research area 10.3. «Technologies of atomization for producing high quality metallic powders for additive manufacturing and powders for brazing» («The strategic directions of development of materials and technologies for their processing for the period till 2030»)
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 01, 2016).
5. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
6. Thijs L., Kempen K., Kruth J.-P., Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder // Acta Mater. 2013. Vol. 61. P. 1809–1819.
7. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technik Journal. 2012. No. 9 (2). P. 33–38.
8. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003. Vol. 301 (5637). P. 1225–1227.
9. Guan K., Wang Z.M., Gao M. et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel // Materials & Design. 2013. Vol. 50. P. 581–586.
10. Illarionov E'.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tekhnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
11. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
12. Buchbinder D. et al. Rapid Manufacturing of Aluminium Parts for serial Production via Selective Laser Melting // Proc. of International User’s Conference on Rapid Prototyping-Tooling & Manufacturing «Euro-uRapid 2007». Germany, Frankfurt/Main. Dec. 3–4, 2007.
13. Read N., Wang W., Essa K. et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development // Materials & Design. 2015. Vol. 65. P. 417–424.
14. Ryabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Change of mechanical properties of alloy 1913 at two-level artificial aging] // Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
15. Kempen K., Thijs L., Van Humbeeck J., Kruth J.P. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting // Phys. Procedia. 2012. Vol. 39. P. 439–446.
16. Manfredi D., Calignano F., Krishnan M. et al. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering // Materials. 2013. Vol. 6 (3). P. 856–869.
17. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties // J. Mater. Process. Tech. 2013. Vol. 213. P. 1387–1405.18. Weingartena C. Formation and reduction of hydrogen porosity during selective lasermelting of AlSi10Mg // Journal of Materials Processing Technology. 2015. V. 221. P. 112–120.
18. Weingartena C. Formation and reduction of hydrogen porosity during selective lasermelting of AlSi10Mg // Journal of Materials Processing Technology. 2015. Vol. 221. P. 112–120.
19. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science&Engineering A. 2014. V. 590. P. 153–160.
Compositions of Al–Cu filler materials with additions of Sc, Hf, Nd, Ag to provide with improved resistance to hot cracking and mechanical properties of welding joints of high-strength aluminum-lithium alloys comparing with those obtained using the serial welding filler material SV-1201 are developed. It is shown that application of the developed filler materials is perspective for manufacturing welded structures and provides with increased operating reliability and durability.
2. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnye alyuminievye splavy i tehnologii ih soedineniya dlya izdelij aviakosmicheskoj tehniki [Perspective aluminum alloys and technologies of their connection for products of aerospace equipment] // Tez. dokl. 2-oj Mezhdunar. konf. «Alyuminij-21. Svarka i pajka». 2012. St. 8.
3. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti i perspektivy svarki alyuminijlitievyh splavov [Features and perspectives of welding of aluminum lithium alloys] // Aviacionnye materialy i tehnologii. 2002. №4. S. 3–12.
4. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
5. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
6. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: November 12, 2015). DOI: 10.18577/2307-6046-2015-0-4-6-6.
7. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleev M.D. Svarka alyuminievyh splavov v aviakosmicheskoj promyshlennosti [Welding of aluminum alloys in the aerospace industry] // Svarka i diagnostika. 2013. №2. S. 47–52.
8. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A., Ovchinnikov V.V. Svarka treniem s peremeshivaniem vysokoprochnyh alyuminij-litievyh splavov V-1461, V-1469 [Friction bonding with hashing high-strength aluminum-lithium alloys V-1461, V-1469] // Svarochnoe proizvodstvo. 2015. №7. S. 21–25.
9. Nikiforov G.D. Metallurgiya svarki plavleniem alyuminievyh splavov [Metallurgy of fusion welding of aluminum alloys]. M.: Mashinostroenie, 1972. 164 s.
10. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 18, 2015).
11. Lukin V.I., Skupov A.A., Panteleev M.D., Gorelova L.P. Zavisimost svarivaemosti splavov sistemy Al–Mg (serii 5XXX) ot sootnosheniya legiruyushhih elementov (Sc, Zr i Mn) [Dependence of bondability of alloys of Al-Mg system (5XXX series) on ratio of doping elements (Sc, Zr and Mn)] // Svarka i Diagnostika. 2015. №4. S. 9–12.
12. Lukin V.I., Skupov A.A., Panteleev M.D., Ioda E.N. Vliyanie dobavok skandiya na svarivaemost' alyuminievyh splavov sistemy Al–Mg [Influence of additives of scandium on bondability of aluminum alloys of Al-Mg system] // Svarka i diagnostika. 2016. №1. S. 13–15.
13. Krupinski М., Labisz K., Dobranski L.A., Rdzawski Z. Derivative thermo analysis of the Al–Si cast alloy with addition of rare earths metals // Archives of Foundry Engineering. 2010. Vol. 10. P. 79–82.
14. Wang Wen-tao, Zhang Xin-ming, Gao Zhi-guo, Jia Yu-zhen, Ye Ling-ying, Zheng Da-wei, Liu Ling. Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate // Journal of Alloys and Compounds. 2010. No. 1–2. P. 366–371.
15. Ivanova A.O., Vahromov R.O., Grigorev M.V., Senatorova O.G. Issledovanie vliyaniya malyh dobavok serebra na strukturu i svojstva resursnyh splavov sistemy Al–Cu–Mg [Effect of small additive of silver on structure and properties of Al–Cu–Mg alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 01. Available at: http://www.viam-works.ru (accessed: January 25, 2016). DOI: 10.18577/2307-6046-2014-0-10-1-1.
16. Mukhopadhyay A.K. and Reddy G.M. Influence of trace addition of Ag on the weldability of Al–Zn–Mg–Cu–Zr base 7010 alloy // Materials Science Forum. 2002. Vol. 396–402. P. 1665–1670.
17. Ryabov D.K., Vakhromov R.O., Ivanova A.O. [An effect of small additions of elements with high solubility in aluminium on microstructure of ingots and cold-rolled sheets made of Al–Mg–Sc alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 05. Available at: http://www.viam-works.ru (accessed: January 25, 2016). DOI: 10.18577/2307-6046-2015-0-9-5-5
18. Elagin V.I. Legirovanie deformiruemyh alyuminievyh splavov perehodnymi metallami [Alloying of deformable aluminum alloys transition metals]. M.: Metallurgiya, 1975. 248 s.
19. Dric A.M., Ovchinnikov V.V. Rezultaty issledovanij svarivaemosti vysokoprochnyh splavov sistemy Al–Cu–Li–Mg, legirovannyh serebrom, skandiem i cirkoniem [Results of researches of bondability of high-strength alloys of the Al–Cu–Li–Mg system alloyed by silver, scandium and zirconium] // Tehnologiya legkih splavov. 2011. №1. S. 29–38.
The issues of development and research of prospective titanium alloys are in focus from the point of view of «economical» alloyage approach. The properties of low-cost titanium alloys developed in FSUE «VIAM» are shown in comparison with foreign analogues. The features of cast alloy VT40L (Ti–Al–V–Mo–Fe–Si) and new structural alloys VT44 (Ti–Al–REE) and VT45 (Ti–Al–V–Fe–REE) are considered, the two latter alloys are designed both for independent use in low- and medium-strained constructions and for titanium-polymer laminates which give opportunity to provide with 20 percent weight reduction comparing to that of bulk-metal constructions with the same load bearing capacity. It is shown that the new near-α and (α+β) REE-containing alloys have improved mechanical and service properties.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: July 14, 2016).
5. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Sovremennye ekonomnolegirovannye titanovye splavy: primenenie i perspektivy razvitiya [The modern economically alloyed titanium alloys: application and development perspectives] // MiTOM. 2016. №9 (735). S. 8–15.
6. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Ekonomnolegirovannye titanovye splavy dlya sloistyh metallopolimernyh kompozicionnyh materialov [Low-cost alloyed titanium alloys for metal-polymer laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. Available at: http://www.viam-works.ru (accessed: July 14, 2016). DOI: 10.18577/2307-6046-2014-0-11-2-2.
7. Panin P., Nochovnaya N., Kablov D., Alexeev E. Low-cost titanium alloys for titanium-polymer layered composites // Proc. of 29th Congress of the International Council of the Aeronautical Sciences (ICAS 2014). St.-Petersburg. September 7–12, 2014 (CD).
8. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] // Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: July 14, 2016).
12. Splav na osnove titana i izdelie, vypolnennoe iz nego: pat. 2222627 Ros. Federaciya [Titanium-based alloy and the product which has been executed of it: pat. 2222627 Rus. Federation]; opubl. 27.01.04.
13. Skvorcova S.V., Filatov A.A., Dzunovich D.A., Panin P.V. Vliyanie soderzhaniya alyuminiya na deformiruemost titanovyh splavov pri normalnoj temperature [Influence of the content of aluminum on deformability of titanium alloys at normal temperature] // Tehnologiya legkih splavov. 2008. №3. S. 40–45.
14. Titanium-aluminum-vanadium alloys and products made therefrom: pat. 5980655 US; publ. 09.11.99 (Y. Kosaka; Titanium Metals Corp.).
15. High strength Ti alloy and its production method: pat. JP 2004010963; publ. 15.02.2004 (A. Suzuki, T. Noda).
16. Kosaka Y. et al. Recent development of titanium and its alloys in automotive and motorcycle applications // Proc. of 11th World Conf. on Titanium. 2007. Vol. II. P. 1383–1386.
17. Alpha plus beta type titanium alloy: appl. US 2009/0169416; publ. 02.07.09 (Morris Manning Martin LLP).
18. Titanium alloy part and method of manufacturing same: pat. 2508643 EP; publ. 10.10.12 (K. Takahashi et al.; Nippon Steel Corp.).
19. Ilin A.A., Skvorcova S.V., Dzunovich D.A., Panin P.V., Shalin A.V. Vliyanie parametrov termicheskoj i termomehanicheskoj obrabotki na teksturoobrazovanie v listovyh polufabrikatah iz titanovyh splavov [Influence of parameters of thermal and thermomechanical processing on structure produced in sheet semi-finished products from titanium alloys] // Tehnologiya mashinostroeniya. 2012. №8. S. 8–12.
The study of influence of alloying elements content (aluminum, tin, silicon and iron) in the near alpha titanium alloy VТ46 in room and elevated temperatures (500 and 550°С) is performed. It is found that reducing the content of elements such as aluminum, tin, silicon comparing with a nominal composition leads to decrease in creep strength characteristics of the material. Content of iron has a significant effect only on the level of strength in relatively low test temperatures.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
4. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Orlov M.R. Strategicheskie napravleniya razvitiya Ispytatelnogo centra FGUP «VIAM» [Strategic directions of development of the Test center FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
6. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgiya, 1992. 352 s.
7. Pavlova T.V., Kashapov O.S., Kondrateva A.R., Kalashnikov V.S.Vozmozhnosti po rasshireniyu oblasti primeneniya splava VT8-1 dlya diskov i rabochih koles kompressora [Opportunities to expand the VT8-1 alloy application for disks and compressor rotor wheels] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3 (39). St. 05. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2016-0-3-5-5.
8. Kashapov O.S., Pavlova T.V. Issledovanie vliyaniya parametrov ctruktury polufabrikatov iz splava VT41 na mehanicheskie svojstva [Research of influence of parameters of structure of semi-finished products from alloy ВТ41 on mechanical properties] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie, 2015. №2 (101). S. 138–145.
9. Savushkin A.N., Kashapov O.S., Golynec S.A. Vliyanie skorosti nagruzheniya na mehanicheskie svojstva zharoprochnyh titanovyh splavov [An influence of loading rate on mechanical properties of heat-resistant titanium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 04. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2015-0-3-4-4.
10. Kalashnikov V.S., Kashapov O.S., Pavlova T.V., Istrakova A.R. Issledovanie svarnyh soedinenij splava VT41, poluchennyh metodom ELS [Investigation of VT41 alloy welded joints produced by EBW] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 81–88. DOI: 10.18577/2071-9140-2014-0-S5-81-88.
11. Pavlova T.V., Kashapov O.S., Nochovnaya N.A. Titanovye splavy dlya gazoturbinnyh dvigatelej [Titanium alloys for gas turbine engines] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 8–14.
12. Pavlova T.V., Kashapov O.S., Nochovnaya N.A., Belyaev M.S. Sovremennye titanovye splavy i tehnologii, primenyaemye dlya detalej i uzlov GTD [Modern titanium alloys and the technologies applied to details and GTD nodes] // Sb. tez. dokl. nauch.-tehnich. kongressa po dvigatelestroeniyu «Dvigateli–2012». M.: ASSAD, 2012. S. 347–349.
13. Ilyin A., Kolachev B., Volodin V., Ryndenkov D. About the purposefulness of comprasion of titanium alloys in terms of aluminium and Molybdenium equivalents // Titanium 99. Science and technology. 1999. P. 53–60.
14. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Povyshenie prochnostnyh harakteristik zharoprochnyh psevdo-α-titanovyh splavov [Strengthening of high-temperature near-α-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №S5. C. 73–80. DOI: 10.18577/2071-9140-2014-0-S5-73-80.
15. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Vliyanie soderzhaniya zheleza na mehanicheskie svojstva pokovok iz zharoprochnogo titanovogo splava VT41 [Effect of iron content on mechanical properties of forgings from heat-resistance titanium alloy VТ41] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 01. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2015-0-10-1-1.
16. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Vliyanie soderzhaniya zheleza na mehanicheskie svojstva prutkov iz zharoprochnogo titanovogo splava VT41 [An effect of iron content on mechanical properties of bars made of heat-resistant titanium alloy VТ41] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 02. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2015-0-3-2-2.
The results of properties comparative research of materials developed by FSUE «VIAM» for hardening the bandage shelves of gas turbine engines rotor blades and properties of foreign materials used for hardening of the friction components operating in extreme conditions particularly for improving wear resistance of the blades bandage shelves are presented. This work is carried out in the frames of integrated scientific directions: 9.7. «High-temperature deformable alloys and the composite materials strengthened by high-melting metal fibers and particles, abraded sealing materials» and 10.3. «Technologies of atomization for production of fine-dispersed high-quality powders of different metal alloys for the additive technologies» («The strategic directions of materials and technologies of their processing development for the period till 2030»)
2. Migunov V.P., Chatynyan L.A., Ivanov E.V., Antonova G.S., Soloveva T.A. Iznosostojkie i antifrikcionnye materialy dlya uzlov treniya [Wearproof and antifriction materials for friction nodes] // Aviacionnaya promyshlennost. 1982. №8. S. 71–73.
3. Petrik I.A., Perimilovskij I.A. Dalnejshee razvitie tehnologii uprochneniya bandazhnyh polok lopatok turbiny iz zharoprochnyh splavov [Further development of technology of hardening of bandage shelves of turbine blades from hot strength alloys] // Tehnologicheskie sistemy. 2001. №3 (9). S. 90–92.
4. Pejchev G.I., Zamkovoj V.E., Andrejchenko N.V. Sravnitelnye harakteristiki iznosostojkih splavov dlya uprochneniya bandazhnyh polok rabochih lopatok [Comparative characteristics of wear-resistant alloys for hardening of bandage shelves of working blades] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2010. №9 (76). S. 102–104.
5. Dmitrieva G.P., Cherepova T.S., Kosorukova T.A., Nichiporenko V.I. Struktura i svojstva iznosostojkogo splava na osnove kobalta s karbidom niobiya [Structure and properties of wear-resistant alloy on the basis of cobalt with columbium carbide] // Metallofizika i novejshie tehnologii. 2015. T. 37. №7. S. 973–986.
6. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
7. Buntushkin V.P. Issledovanie i razrabotka zharostojkogo intermetallidnogo splava i pokrytij dlya teplonagruzhennyh detalej aviacionnyh gazovyh turbin: avtoref. dis. … kand. tehn. nauk [Research and development of heat resisting intermetallidny alloy and coverings for the heatloaded details of aviation gas turbines: thesis. … Cand.Tech.Sci.]. M., 1976. 26 s.
8. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
9. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: July 15, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
10. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoj osnove dlya lazernoj LMD-naplavki [Research of finely divided metal powder of hot strength alloy on nickel basis for the laser LMD weldings] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
11. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: July 15, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
12. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: July 15, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
13. Available at: http://www.rolledalloys.com/alloys (accessed: July 15, 2016).
14. Available at: http://www.stellite.com/ (accessed: July 15, 2016).
15. Pejchev G.I., Miloserdov A.B., Andrejchenko N.V. Issledovanie legkoplavkih evtektik v mikrostrukture iznosostojkogo splava HTN-61 [Research fusible evtektik in HTN-61 wear-resistant alloy microstructure] // Vestnik dvigatelestroeniya. 2012. №1. S. 211–214.
16. Tihomirova T.V., Gajduk S.V. Issledovanie metodom CALPHAD vliyaniya otnosheniya volframa k kremniyu na fazovyj sostav i harakteristicheskie temperatury kobaltovogo splava [Research by the CALPHAD method of influence of the relation of tungsten to silicon on phase structure and characteristic temperatures of cobalt alloy] // Vestnik dvigatelestroeniya. 2014. №2. S. 206–210.
The chemical composition of γ, γ` and carbide particles in disc blanks from granulated nickel superalloy EP741NP is defined. Investigation of the phase’s chemical composition is performed using X-ray spectral microanalysis having locality 1,5 nm in transmission electron microscope. The γ`-phases particles have an increased content of Ni, Al, Ti, Nb and a lower concentration of Cr, Co, Mo and W than the matrix γ-layer. Particles of carbides contain high boron concentration besides of high carbon content thus theу are the carboborides. It is shown that the carboborides can be divided into two types depending on stoichiometric composition. The larger 0,3–1 micron sized particles are Me(B, C) phase where Me is Ti, Nb, Hf. and the smaller 80–200 nm sized particles corresponds to Ме23(В, С)6 or Ме3(В, С)2, where Ме is Cr, Mo, W. The identification of Me(B, C) particles is carried out using diffraction methods. The work is executed within implementation of integrated scientific direction 2.
2. Kablov E.N. Fiziko-himicheskie i tehnologicheskie osobennosti sozdaniya zharoprochnyh splavov, soderzhashhih renij [Physical and chemical and technological features of creation of the hot strength alloys, containing reniye] // Vestn. Mosk. Un-ta, Ser. 2: Himiya. 2005. T. 46. №3. S. 155–167.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
6. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
7. Chabina E.B., Filonova E.V., Lomberg B.S., Morozova G.I. Evolyuciya struktury i fazovogo sostava deformiruemyh zharoprochnyh nikelevyh splavov dlya diskov GTD s uslozhneniem ih legirovaniya [Evolution of structure and phase composition of deformable heat resisting nickel alloys for disks GTD with complication of their alloying] // MiTOM. 2015. №3. S. 8–12.
8. Garibov G.S., Gric N.M., Vostrikov A.V. i dr. Krupnogabaritnye diski iz granul novogo vysokozharoprochnogo splava VV750P dlya perspektivnyh GTD [Large-size disks from granules of new VV750P high-hot strength alloy for perspective GTD] // Tehnologiya legkih splavov. 2008. №1. S. 31–36.
9. Supersplavy II: Zharoprochnye materialy dlya aerokosmicheskih i promyshlennyh energoustanovok / pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Hagelya [Superalloys of II: Heat resisting materials for space and industrial power installations / ed. by of Ch.T.Sims, N. S. Stoloff, U.K.Hagel]. M.: Metallurgiya, 1995. Kn. 1. 384 s.
10. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz. 4-e izd. [Radiographic and electron-optical analysis. 4th. ed.]. M.: MISiS, 2002. 360 s.
11. Blavette D., Bostel A., Sarrau J.M. Atom-probe microanalysis of a nickel-based superalloy // Metallurg. Trans. 1985. Vol. 16A. No. 10. P. 1703–1711.
12. Morozova G.I. Zakonomernost' formirovaniya himicheskogo sostava γ'/γ-matric mnogokomponentnyh nikelevyh splavov [Pattern of forming of chemical composition γ'/γ-матриц multicomponent nickel alloys] // Doklady Akademii nauk. 1991. T. 320. №6. S. 1413–1416.
13. Sluiter M.H.F., Kawazoe Y. Site Preference of Ternary Additions in Ni3Al // Phys. Review B. 1995. Vol. 51. No. 7. P. 4062–4073.
14. Gale W.F., Totemeier T.C. Smithells Metals References Book. 8th edition. N.Y., 2004. P. 13–25.
15. Burachynsky V., Cahoon J.R. A theory for solute impurity diffusion, which considers engel-brewer valences, balancing the fermi energy levels of solvent and solute, and differences in zero point energy // Metall and Mater. Trans. A. 1997. Vol. 28. P. 563–582.
16. Epishin A.I., Link T., Nolce G., Svetlov I.L. i dr. Diffuzionnye processy v mnogokomponentnoj sisteme nikelevyj zharoprochnyj splav-nikel [Diffusion processes in multi-component system nickel heat resisting alloy] // FMM. 2014. T. 115. №1. S. 23–31.
17. Moniruzzaman Md., Fukaya H., Murata Y., Tanaka K., Irui H. Diffusion of Al and Al-Substituting Elements in Ni3Al at Elevated Temperatures // Mater. Trans. 2012. Vol. 53. No. 12. P. 2111–2118.
18. Wu Q., Li S., Ma Y., Gong S. First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model // Chinese Phys. B. 2012. Vol. 21. No. 10. P. 109102 (1–7).
The article presents a study on the development of methods for the quantification of the surface morphology and structural defects in superalloy synthesized by the method of selective laser melting (SLM). The results of studies on the proposed methods for the quantitative metallographic analysis of samples of superalloys ZHS6K-VI and EP648-VI, obtained at different technological parameters of SLM.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Modern materials – basis of innovative modernization of Russia] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
5. Arginbaeva E.G., Bazyleva O.A. Issledovanie struktury i fiziko-mehanicheskih svojstv intermetallidnyh nikelevyh splavov [The research the structure, physical and mechanical properties of the intermetallic nickel alloys] // Aviacionnye materialy i tehnologii. 2013. №4. S. 14–19.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
8. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: November 27, 2015). DOI: 10.18577/2307-6046-2015-0-2-2-2.
9. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: November 27, 2015). DOI: 10.18577/2307-6046-2014-0-3-1-1.
10. Lukina E.A. Osobennosti formirovaniya struktury zharoprochnogo nikelevogo splava ZhS6-K-VI pri selektivnom lazernom splavlenii [Features of forming of structure of heat resisting nickel alloy ZhS6-K-VI at the selection laser fusing] // Tsvetnye metally. 2016. №3 (879). S. 57–63. DOI: 10.17580/tsm.2016.03.09.
11. Smurov I.Yu., Movchan I.A., Yadrojcev I.A., Okunkova A.A., Cvetkova E.V., Cherkasova N.Yu. Additivnoe proizvodstvo s pomoshh'yu lazera [The additive production by means of the laser] // Vestnik MGTU «Stankin». 2011. T. 2. №4. S. 144–146.
12. Carter L.N., Martin C., Withers Ph.J., Attallah M.M. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy // Journal of Alloys and Compounds. 2014. V. 615. Р. 338–347.
13. Grigoryants A.G., Novichenko D.Yu., Smurov I.Yu. Lazernaya additivnaya tehnologiya izgotovleniya pokrytij i detalej iz kompozicionnogo materiala [Laser additive manufacturing techniques of coverings and details from composite material] // Izvestiya vysshih uchebnyh zavedenij. 2011. №7. S. 38–46.
14. Smurov I.Yu., Movchan I.A., Yadrojcev I.A., Okunkova A.A., Cherkasova N.Yu., Antonenkova G.V. Additivnoe proizvodstvo s pomoshh'yu lazera. Provedenie eksperimentalnyh rabot [The additive production by means of the laser. Carrying out experimental works] // Vestnik MGTU «Stankin». 2012. №1. S. 36–38.
15. Ishodzhanova I.V. Primenenie konfokalnoj lazernoj skaniruyushhej mikroskopii dlya resheniya materialovedcheskih zadach [Application of confocalic laser scanning microscopy for the solution of materials science’s tasks] // Prochnost neodnorodnyh struktur: sb. mater. VII Evrazijskoj nauch.-praktich. konf. M.: MISiS, 2014. S. 138.
The deformation behavior of Al-Li alloy V-1469 in conditions of joint influence of applied load and active corrosion environment after carrying out tests according to six schemes is considered. Research of alternation of destruction nature and relief of the alloy surface is conducted; plastic zones of deformation localization which differ on density of strips of sliding, the size and density of corrosion pettings are allocated. The work is executed within implementation of integrated scientific direction 8.1. «High-strength welded aluminum and aluminum-lithium alloys of lowered density with increased fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Orlov M.R. Strategicheskie napravleniya razvitiya Ispytatelnogo centra FGUP «VIAM» [Strategic directions of development of the Test center FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
5. Panin V.E. Fizicheskaya mezomehanika materialov [Physical mesomechanics of materials]. Tomsk: Izd. dom TGU, 2015. 920 s.
6. Panin V.E., Kablov E.N., Pochivalov Yu.I., Panin S.V., Kolobnev N.I. Vliyanie nanostrukturirovaniya poverhnostnogo sloya alyuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuyu dolgovechnost. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer aluminum - lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technical characteristics] // Fizicheskaya mezomehanika. 2012. T. 15. №6. S. 107–111.
7. Seong-Woong Kim, Huck Beng Chew, K. SharvanKumar. In situ TEM study of crack-grain boundary interactions in thin copper foils // Scripta Materialia. 2013. Vol. 68. P. 154–157.
8. Dun Yu., Aleksandrov I.V., Vang D. Vysokoskorostnoe deformacionnoe povedenie ultramelkozernistoj medi [High-speed deformation behavior of ultrafine-grained copper] // Vestnik Ufimskogo gos. aviacionnogo tehnicheskogo un-ta. 2012. T. 16. №1 (46). S. 98–105.
9. Belikova A.F., Buravova C.N., Gordopolov Yu.A. Lokalizaciya deformacii i svyaz ee s deformirovannym sostoyaniem materiala [Localization of deformation and its communication with the deformed condition of material] // Zhurnal tehnicheskoj fiziki. 2013. T. 83. №2. S. 153–155.
10. Shibkov A.A., Zolotov A.E., Zheltov M.A., Shuklinov A.V., Denisov A.A. Dinamika deformacionnyh polos i razrushenie alyuminij-magnievogo splava AMg6 [Dynamics of deformation strips and destruction Amg6 aluminum-magnesium alloy] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1873–1878.
11. Glezer A.M., Shurygina N.A., Zajchenko S.G., Permyakova I.E. Vzaimodejstvie polos deformacionnogo sdviga i nanochastic v amorfno-nanokristallicheskih splavah [Interaction of strips of deformation shift and nanoparticles in amorphous nanocrystalline alloys] // Deformaciya i razrushenie materialov. 2012. №4. S. 2–12.
12. Shibkov A.A., Zolotov A.E., Zheltov M.A., Denisov A.A. Deformacionnyj haos i samoorganizaciya na stadii predrazrusheniya splava AMg6 [Deformation chaos and self-organization at stage of predestruction of alloy АМg6] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1879–1884.
13. Fridlyander I.N., Grushko O.E., Shamraj V.F., Klochkov G.G. Vysokoprochnyj konstrukcionnyj Al–Cu–Li–Mg splav ponizhennoj plotnosti, legirovannyj serebrom [The high-strength constructional Al–Cu–Li–Mg alloy of the lowered density alloyed by silver] // MiTOM. 2007. №6 (624). S. 3–7.
14. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Hohlatova L.B. Alyuminijlitievye splavy [Aluminum lithium alloys] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauchn.-tehn. sb. M.: VIAM, 2007. S. 163–171.
15. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju ekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
16. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: July 20, 2016).
It is reported about research of influence of chemical composition, thermal treatment and microstructure on titanium alloys sensitivity to cracking from hot salt stress corrosion. It is shown that the binary alloy of Ti–Al system containing 3% of Al possesses low sensitivity to cracking from hot salt stress corrosion at tests temperatures 400 and 500°C. At increase of Al quantity to 5–8% in titanium alloys their tendency to cracking significantly increases. The positive role of Fe and Mo, lack of V influence and negative role of Sn as alloying elements in Ti–Al system alloys for their cracking resistance increase from hot salt corrosion at tests temperatures 400 and 500°C is revealed. It is shown that influence of Zr and Cr is ambiguous and depends on the contents of Al in alloys and testing temperature. It is found out that the annealed condition provides with higher resistance to cracking from hot salt corrosion of Ti alloys than thermally strengthened at test temperature lower t
2. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
4. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Khorev A.I. Fundamentalnye i prikladnye raboty po titanovym splavam dlya «Burana» i perspektivnye napravleniya ikh razvitiya [Fundamental and applied projects on titanium alloys and prospective areas of their development as applied to «Buran» spaceship] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 10–14.
6. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 02. Available at: http://www.viam-works.ru (accessed: May 26, 2016).
7. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: May 26, 2016).
8. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
9. Solonina O.P., Glazunov S.G. Titanovye splavy. Zharoprochnye titanovye splavy [Titanium alloys. Heat resisting titanium alloys]. M.: Metallurgiya, 1976. 448 s.
10. Kolachev B.A., Livanov V.A., Bukhanova A.A. Mekhanicheskie svoystva titana i ego splavov [Mechanical properties of titanium and its alloys]. M.: Metallurgiya, 1974. 543 s
11. Gorynin I.V., Ushakov S.S, Khatuntsev A.N., Loshakova I.L. Titanovye splavy dlya morskoy tekhniki [Titanium alloys for sea equipment]. SPb.: Politekhnika, 2007. 387 s.
12. Sinyavskiy S.V. Soprotivlenie titanovykh splavov razlichnym vidam korrozionnogo rastreskivaniya [Resistance of titanium alloys to different types of corrosion cracking] // Tekhnologiya legkikh splavov. 2010. №4. S. 80–85.
13. Li S.Q., Lei J.F., Liu Y.-Y., Yu B.-X., Li Y.-L., Yang R. Fushi Kexue yu Fandhu Jishu. Hot-salt stress corrosion of titanium alloys of Ti811 and TC4 // Corros. Sci. And Prol. Tehnol. 2010. V. 22. N2. P. 79–84.
14. Xiong Y., Zhu S., Wang F. Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature // Corros. Sci. 2008. V. 50. P. 15–22.
15. Ulrich Zwicker. Titan und Titanlegierungen. Springer-Verlag Berlin. Heidelberg. New York, 1974. 512 p.
16. Metallograficheskiy analiz titanovykh splavov: PI1.2.785.2009 [Metallographic analysis of titanium alloys: production instruction 1.2.785.2009]. M.: VIAM, 2009. 45 s.
17. Zakharova L.V. Vliyanie kisloroda vozdukha i tolshchiny solevykh otlozheniy na korrozionnoe rastreskivanie titanovykh splavov pri vysokikh temperaturakh v kontakte s NaCl [Influence of oxygen of air and thickness of salt deposits on corrosion cracking of titanium alloys at high temperatures in contact with NaCl] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №10. St. 12. Available at: http://www.viam-works.ru (accessed: May 26, 2016). DOI: 10.18577/2307-6046-2014-0-10-12-12.
18. GOST 10145–81. Metally. Metod ispytaniya na dlitelnuyu prochnost [Metals. Test method on long durability]. M: Izd-vo standartov, 1981. 7 s.
The methods and techniques of machining technology for polymer composite materials (PCM) are considered. The features of PCM processing, tool selection, modes and methods of PCM processing as well as problems arising in the manufacture of the holes in the PCM structures are described. The major objectives of composites implementation in developing aircraft constructions currently are: – development and implementation of new materials and processes aimed at reducing technological cycles in structures manufacturing, quality improvement by improving the PCM processing technology, increasing tools life for machining technology and cutting modes, implementing universal methods of non-destructive quality control of the finished product; – reducing prices for feedstock and technology; – minimizing the harmful effects on nature, development of green technologies, reducing processing temperature, time of manufacture, development of technologies to exclude further processing in assembly oper
2. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: February 01, 2016).
4. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviatsionnye dvigateli: inform. byul. 2014. №S. S. 43–47.
5. Kablov E.N. O nastoyashchem i budushchem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossiyskaya akademiya nauk. 2015. 19 yanvarya.
6. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
7. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
8. Kogan D.I., Chursova L.V., Petrova A.P. Tekhnologiya izgotovleniya PKM sposobom propitki plenochnym svyazuyushchim [PCM manufacturing techniques in the way of impregnation by the film binding] // Klei. Germetiki. Tekhnologii. №6. 2011. S. 25–29.
9. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Vse materialy. Entsiklopedicheskiy spravochnik. 2011. №11. S. 2–6.
10. Chursova L.V., Dushin M.I., Khrulkov A.V., Mukhametov R.R. Osobennosti tekhnologii izgotovleniya detaley iz kompozitsionnykh materialov metodom propitki pod davleniem [Features of manufacturing techniques of details from composite materials impregnation method under pressure] // Kompozitsionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. mezhotraslevoy nauch.-tekhnich. konf. M.: VIAM, 2009. S. 17.
11. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
12. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: February 01, 2016).
13. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
14. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
15. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016).
16. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.