Articles
The results of studies of the structure and rheological properties of the experimental alloy based on ternary Ni–Al–Co system for development gas turbine disk technology are presented. Application specifics of protective coatings technology (РСТ) based on vitreous during isothermal forging of the experimental alloy ingots based on ternary Ni–Al–Co on the air are considered. The effectiveness of PCT in the deformation process is experimentally demonstrated.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
3. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej no-vogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] // Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
6. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 38–52.
7. High temperature resistant cobalt base superalloy: pat. 2010/0061883 US; publ. 11.03.10.
8. Cobalt base alloy with high heat resistance and high strength and process for producing the same: pat. 2008/0185078 Japan; publ. 07.08.08.
9. Ternary nickel eutectic alloy: pat. 2009/0136381 UK; publ. 28.05.08.
10. Irridium-based alloy with high heat resistance and high strength and process for producing the same: pat. 2008/0206090 Japan; publ. 28.08.08.
11. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
12. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP4. S. 13–19.
13. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Issledovanie kompozicij sistemy Ni–Al–Co pri razrabotke novogo zharoprochnogo deformiruemogo intermetallidnogo splava [Investigation experimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 10. St. 01. Available at: http://www.viam-works.ru (accessed: May 21, 2015).
14. Ponomarenko D.A., Rozenenkova V.A., Skugorev A.V., Shishkov S.Yu. Effektivnoe ispolzovanie zashhitnyh tehnologicheskih pokrytij pri izotermicheskoj shtampovki na vozduhe slozhnoprofilnyh detalej iz titanovyh splavov [Effective use of protective technological coverings at isothermal punching on air of difficult profile details from titanium alloys] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2014. №9. S. 44–48.
15. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Effektivnaya tehnologiya izgotovleniya diskov GTD iz zharoprochnyh nikelevyh splavov [Effective manufacturing techniques of disks GTD from heat resisting nickel alloys] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka metallov davleniem. 2013. №10. S. 13–17.
Review of modern single crystal Ni-based alloys is presented, including their chemical composition, structure and properties. The influence of addition agents on the structure stability, formation of undesired phases and toughening mechanism as well as rare earth metals influence on the structure and high temperature properties of superalloys are shown.
2. Kablov E.N. Zharoprochnye konstrukcionnye materialy [Heat resisting constructional materials] // Litejnoe proizvodstvo. 2005. №7. S. 2–7.
3. Petrushin N.B., Svetlov I.L., Ospennikova O.G. Litejnye zharoprochnye nikelevye splavy [Cast heat resisting nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 15–19.
4. Kuznecov V.P., Lesnikov V.P., Konakova I.P., Petrushin N.V., Muboyadzhyan S.A. Struktura i fazovyj sostav monokristallicheskogo splava VZhM4 s gazocirkulyacionnym zashhitnym pokrytiem [Structure and phase composition of VZhM4 single-crystal alloy with gas circulating protecting cover] // MiTOM. 2011. №3. S. 28–32.
5. Kablov E.N., Demonis I.M., Petrushin N.V. Materials and Technologies for New Generation Aeroengines / In: 4th European Conference for Aerospace Sciences. Saint Petersburg. 2011.
6. Petrushin N.B., Ospennikova O.G., Visik E.M., Rassohina L.I., Timofeeva O.B. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat resisting nickel alloys of low density] // Litejnoe proizvodstvo. 2012. №6. S. 5–11.
7. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 38–52.
8. Tolorajya V.N., Orehov N.G., Lomberg B.S. Korrozionnostojkie zharoprochnye splavy dlya krupnogabaritnyh monokristal'nyh turbinnyh lopatok [Corrosion-resistant hot strength alloys for large-size single-crystal turbine blades] // MiTOM. 2003. №1. S. 30–32.
9. Gerasimov V.V., Visik E.M., Kolyadov E.V. Ob osvoenii tehnologii polucheniya krupnogabaritnyh lityh lopatok s monokristallicheskoj strukturoj [About development of technology of receiving large-size cast blades with single-crystal structure] // Litejnoe proizvodstvo. 2014. №3. S. 29–32.
10. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Innovacionnaya tehnologiya proizvodstva zharoprochnogo splava ZhS32-VI s uchetom pererabotki vseh vidov othodov v usloviyah sertificirovannogo serijnogo proizvodstva FGUP «VIAM» [The innovation technology of high temperature GS32-VI alloy production considering the recycling of all scrap appearance at certificated quantity production of FGUP «VIAM»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 01. Available at: http://www.viam-works.ru (accessed: February 15, 2015). DOI: 10.18577/2307-6046-2014-0-6-1-1.
11. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://www.viam-works.ru (accessed: February 15, 2015). DOI: 10.18577/2307-6046-2014-0-9-1-1.
12. Kablov E.N., Tolorajya V.N., Demonis I.M., Orehov N.G. Napravlennaya kristallizaciya zharoprochnyh nikelevyh splavov [The directed crystallization of heat resisting nickel alloys] // Tehnologiya legkih splavov. 2007. №2. S. 60–70.
13. Chubin Yang, Lin Liu, Xinbao Zhao, Yafeng Li, Jun Zhang, Hengzhi Fu. Dendrite morphology and evolution mechanism of nickel-based single crystal super alloys grown along the <001> and <011> orientations // Progress in Natural Science: Materials International. 2012. №22. P. 407–413.
14. Fu Wang, Dexin Ma, Jun Zhang, Andreas Bührig-Polaczek. Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloys solidified during downward and upward directional solidification processes // Journal of Alloys and Compounds. 2015. №620. P. 24–30.
15. Lee J.S., Gu J.H., Jung H.M., Kim E.H., Jung Y.G., Lee J.H. Directional Solidification Microstructure Control in CM247LC Superalloy //Materials Today: Proceedings. 2014. №1. P. 3–10.
16. Gerasimov V.V., Visik E.M., Kolyadov E.V. Vzaimosvyaz formy fronta kristallizacii so strukturoj zharoprochnyh splavov v processe napravlennoj kristallizacii [The relationship shape of the crystallization front with the structure of heat-resistant alloys in the process of crystallization] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 02. Available at: http://www.viam-works.ru (accessed: February 15, 2015). DOI: 10.18577/2307-6046-2014-0-6-2-2.
17. Simmonds S., D’Souza N., Ryder K.S., Dong H. Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation // IOP Conf. Series: Materials Science and Engineering. 2011. №27.
18. Xiong Jichun, Li Jiarong, Liu Shizhong. Surface Recrystallization in Nickel Base Single Crystal Superalloy DD6 // Chinese Journal of Aeronautics. 2010. №23. P. 478–485.
19. Li Zhonglin, Xiong Jichun, Xu Qingyan, Li Jiarong, Liu Baicheng. Deformation and recrystallization of single crystal nickel-based superalloys during investment casting // Journal of Materials Processing Technology. 2015. №217. P. 1–12.
20. Guang Xie, Jian Zhang, Lang-hong Lou. Effect of cyclic recovery heat treatment on surface recrystallization of a directionally solidified superalloy // Progress in Natural Science: Materials International. 2011. №21. P. 491–495.
21. F. Wang, D.X. Ma, J. Zhang, S. Bogner, A. Bührig-Polaczek. A high thermal gradient directional solidification method for growing superalloy single crystals // Journal of Materials Processing Technology. 2014. V. 214. P. 3112–3121.
22. Reed R.C. The Superalloys Fundamentals and Applications. Cambridge University Press. 2006. 390 p.
23. Kupkovits R.A., Smith D.J., Neu R.W. Influence of minimum temperature on the thermomechanical fatigue of a directionally-solidified Ni-base superalloy // Procedia Engineering. 2010. №2. P. 687–696.
24. Filippini M. Notched fatigue strength of single crystals at high temperature // Procedia Engineering. 2011. №10. P. 3787–3792.
25. Amaro R.L., Antolovich S.D., Neu R.W., Staroselsky A. On thermo-mechanical fatigue in single crystal Ni-base superalloys // Procedia Engineering. 2010. №2. P. 815–824.
26. Okazaki M., Sakaguchi M., Yamagishi S. Subcritical Crack Growth on Crystallographic Planes in a Ni-base Superalloy: Relevance to Orientations // Procedia Engineering. 2013. №55. P. 677–684.
27. Xianfeng Ma, Huiji Shi, Jialin Gu, Guofeng Chen, Oliver Luesebrink, Harald Harders In-situ observations of the effects of orientation and carbide on low cycle fatigue crack propagation in a single crystal superalloy // Procedia Engineering. 2010. №2. P. 2287–2295.
28. Leidermark D., Moverare J., Segersäll M., Simonsson K., Sjöström S., Johansson S. Evaluation of fatigue crack initiation in a notched singlecrystal superalloy component // Procedia Engineering. 2011. №10. P. 619–624.
29. Johansson S., Moverare J., Leidermark D., Simonsson K., Kanesund J. Investigation of localized damage in single crystals subjected to thermalmechanical fatigue (TMF) // Procedia Engineering. 2010. №2. P. 657–666.
30. Fu B., Zhang J., Harada H. Interaction between crack and twins in TMS-82 superalloy during thermomechanical fatigue process // Progress in Natural Science: Materials International. 2013. №23. P. 508–513.
31. Staroselsky A., Cassenti Brice N. Creep, plasticity, and fatigue of single crystal superalloy // International Journal of Solids and Structures. 2011. №48. P. 2060–2075.
32. Giraud R., Hervier Z., Cormier J., Gilles Saint-martin, Hamon F., Milhet X., Mendez J. Strain Effect on the γʹ Dissolution at High Temperatures of a Nickel-Based Single Crystal Superalloy // Metallurgical and materials transactions A. 2013. №44A. P. 131–146.
33. Samal M.K., Ghosh S. Evaluation of Creep Deformation and Mechanical Properties of Nickel-based Superalloys through FE Analysis Based on Crystal Plasticity Models // Procedia Engineering. 2013. №55. P. 342–347.
34. Haofang Sun, SuguiTian, NingTian, HuichenYu, Xianlin Meng Microstructure heterogeneity and creep damage of DZ125 nickel-based superalloy //Progress in Natural Science: Materials International. 2014. №24. P. 266–273.
35. Wang L., Wang D., Liu T., Li X.W., Jiang W.G., Zhang G. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy //Materials Characterization. 2015. №104. P. 81–85.
36. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 15, 2015).
37. Davis J.R. ASM specialty handbook: nickel, cobalt, and their alloys // ASM International. 2000. 421 p.
38. Yu P., Wang W., Wang F. Influence of cyclic frequency on oxidation behavior of K38 superalloy with yttrium additions at 1273 K // Journal of Rare Earths. 2011. №2. P. 119–123.
39. Shi Z., Liu S., Han M., Li J. Influence of yttrium addition on high temperature oxidation resistance of single crystal superalloy // Journal of Rare Earths. 2013. V. 31. №8. P. 795–799.
40. Lia X.L., Heb S.M., Zhoua X.T., Zoua Y., Lia Z.J., Lib A.G., Yua X.H. Effects of rare earth yttrium on microstructure and properties of Ni–16Mo–7Cr–4Fe nickel-based superalloy // Materials Characterization. 2014. №95. P. 171–179.
41. Song X., Wang L., Liu Y., Hui-ping M.A. Effects of temperature and rare earth content on oxidation resistance of Ni-based superalloy // Progress in Natural Science: Materials International. 2011. V. 21. №3. P. 227–235.
42. Improved low sulfur nickel-base single crystal superalloy with ppm addition of lanthanum and yttrium: pat 2012036494 JP; publ. 23.02.12.
43. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlya lopatok gazovyh turbin (Prodolzhenie) [Reny in heat resisting nickel alloys for blades of gas turbines (Continuation)] // Materialovedenie. 2000. №3. S. 38–43.
44. Shishkareva L.M., Kuz'mina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: February 15, 2015). DOI: 10.18577/2307-6046-2014-0-1-6-6.
45. Mottura A., Reed R.C. What is the role of rhenium in single crystal superalloys? /In: MATEC Web of Conferences. 2014. V. 14. №01001. DOI: 10.1051/matecconf/20141401001.
46. Liu B., Raabe D., Roters F., Arsenlis A. Interfacial dislocation motion and interactions in single-crystal superalloys // Acta Materialia. 2014. №79. P. 216–233.
47. Zheng-Guang Liu, Chong-Yu Wang, Tao Yu G. Influence of Re on the propagation of a Ni/Ni3Al interface crack by molecular dynamics simulation // Modelling and Simulation in Materials Science and Engineering. 2013. V. 21. №4. DOI: 10.1088/0965-0393/21/4/045009.
48. Du J.P., Wang C.Y., Yu T. Construction and application of multi-element EAM potential (Ni–Al–Re) in γ/γʹ Ni-based single crystal superalloys // Modelling and Simulation in Materials Science and Engineering. 2013. V. 21. №1. DOI: 10.1088/0965-0393/21/1/015007.
49. Guoqing Zu, Lirong Liu, Tao Jin, Zhuangqi Hu. Effect of Ti on microstructural evolution of Re containing single crystal superallys // Procedia Engineering. 2012. №27. P. 969–975.
50. Zhenxue Shi, Jiarong Li, Shizhong Liu. Effect of long term aging on microstructure and stress rupture properties of a nickel-based single crystal superalloy // Progress in Natural Science: Materials International. 2012. №22. P. 426–432.
51. Li P., Li Q.Q., Jin T., Zhou Y.Z., Li J.G., Sun X.F., Zhang Z.F. Effect of Re on low-cycle fatigue behaviors of Ni-based single-crystal superalloys at 900°C // Materials Science & Engineering A. 2014. V. 603. P. 84–92.
52. Yu X.X., Wang C.Y., Zhang X.N., Yan P., Zhang Z. Synergistic effect of rhenium and ruthenium in nickel-based single-crystal superalloys // Journal of Alloys and Compounds. 2014. №582.
P. 299–304.
53. Matuszewski K., Rettig R., Singer R.F. The effect of Ru on precipitation of topologically close packed phases in Re – containing Ni-base superalloys: Quantitative FIB-SEM investigation and 3D image modeling / In: MATEC Web of Conferences. 2014. V. 14. №09001. DOI: 10.1051/matecconf/20141409001.
54. Jing-yang Chen, Qiang Feng, La-mei Cao, Zu-qing Sun. Influence of Ru addition on microstructure and stress-rupture property of Ni-based single crystal superalloys // Progress in Natural Science: Materials International. 2010. №20. P. 61–69.
55. Chatterjee D., Hazari N., Das N. Influence of Ru Addition on Microstructure, Creep and Rupture Properties of Nickel-based DS Superalloy // Procedia Engineering. 2013. №55. P. 51–57.
56. Medvedeva N.I., Ivanovskii A.L. Ab-initio study of Re and Ru effect on stability of TCP nanoparticles in Ni-based superalloys // Nanosystems: physics, chemistry, mathematics. 2014. №5.
P. 486–493.
57. Shi Q., Huo J., Cao L., Li J., Ding X., Zheng Y., Feng Q. Compositional effect on TCP phase formation in Ru-containing Ni-based single crystal superalloys / In: MATEC Web of Conferences. 2014. V. 14. №01002. DOI: 10.1051/matecconf/20141401002.
58. Kamal Nayan Goswami, Mottura A. Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys? // Materials Science & Engineering A. 2014. №617. P. 194–199.
59. Nobuyasu Tsuno, Satoshi Takahashi. Creep deformation behaviour of Rhenium free Ni-based single crystal superalloys LSC-15 / In: MATEC Web of Conferences. 2014. V. 14. №20002. DOI: 10.1051/matecconf/20141420002.
60. Samojlov A.I., Nazarkin R.M., Moiseeva N.S. Nestesnennyj misfit v zharoprochnyh monokristallicheskih nikelevyh splavah [Unembarrassed misfit in heat resisting single-crystal nickel alloys] // Zavodskaya laboratoriya. Diagnostika materialov. 2011. T. 77. №11. S. 36–38.
61. Nairong Sun, Lanting Zhang, Zhigang Li, Aidang Shan. The effect of microstructure on the creep behavior of a low rhenium-containing single crystal nickel-based superalloy // Materials Science and Engineering. A. 2014. №606. P. 175–186.
62. Creep-resistant, Rhenium-free nickel base superalloy: pat. 20140119941 US; publ. 05.01.14.
63. Jacqueline Wahl, Harris K. New single crystal superalloys – overview and update /MATEC Web of Conferences. 2014. V. 14. №17002. DOI: 10.1051/matecconf/20141417002.
64. Monokristallicheskij splav na osnove Ni dlya lopatok turbin [Single-crystal alloy on the basis of Ni for blades of turbines]: pat. 2518838 Ros. Federaciya; opubl. 10.06.14.
65. High strength Ni-based superalloy, and gas turbine using the same: pat. 2014074208 JP; publ. 04.24.14.
66. Ni-based superalloy: pat. 2013053327 JP; publ. 03.21.13.
67. Low rhenium single crystal superalloy for turbine blade and vane: pat. 2013119668 JP; publ. 06.17.13.
68. Rhenium-free single crystal superalloy for turbine blade and vane application: pat. 2013108166 JP; publ. 06.06.13.
69. Ni-based single crystal superalloy: pat. 8771440 US; publ. 07.08.14.
70. Yoshihiro Kondo, Yuusuke Kubo, Nobuhiro Miura, Yoshinori Murata, and Akira Yoshinari. Creep properties of a new Re free single crystal Ni-based superalloy, NKH71 /In: MATEC Web of Conferences. 2014. 14. №20003. DOI: 10.1051/matecconf/20141420003.
The increase of the articles operating temperature makes critical the task of creation of casting magnesium alloys with high strength and heat-resistant characteristics. Provision of high strength and heat resistant properties of cast magnesium alloys can be achieved by alloying with prospective elements, including selection and optimization of thermal processing conditions. An integrated doping of several rare-earth metals of yttrium (Y, Nd) and cerium (Ce, La, Pr) subgroups in different proportions can be perspective. Expensive rare-earth metals such as erbium, gadolinium, samarium and others can be tested as microadditives improving heat-resistant characteristics of the alloy. When doping rare earth elements, a steady effect of grain boundaries hardening with Mg12Nd, Mg12Ce, Mg12La, Mg24Y5 compounds as well as a significant reduction in oxidation of magnesium alloy even at the content of 0,1 to 1,0% of such REM as yttrium, dysprosium, erbium, gadolinium. The yttrium, neodymium and
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotayushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: July 27, 2015).
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] //Nauka v Rossii. 2012. №3. S. 36–44.
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: July 27, 2015).
8. Goncharenko E.S., Kornysheva I.S. Otlivki iz alyuminievyh splavov. Issledovaniya, materialy, tehnologii [Casting from aluminum alloys. Researches, materials, technologies] // Litejnoe proizvodstvo. 2013. №2. S. 2–4.
9. Goncharenko E.S., Kornysheva I.S. Perspektivy primeneniya otlivok iz alyuminievyh splavov [Perspectives of application of otlivka from aluminum alloys] // Litejnoe proizvodstvo. 2012. №1. S. 21–23.
10. Duyunova V.A., Goncharenko E.S., Muhina I.Yu., Uridiya Z.P., Volkova E.F. Nauchnoe nasledie akademika I.N. Fridlyandera. Sovremennye issledovaniya magnievyh i litejnyh alyuminievyh splavov // Tsvetnye metally. 2013. №9. S. 71–78.
11. Kablov E.N., Muhina I.Yu., Korchagina V.A. Prisadochnye materialy dlya formovochnyh smesej pri lit'e magnievyh splavov [Filler materials for forming mixes when molding magnesium alloys] // Litejnoe proizvodstvo. 2007. №5. S. 15–18.
12. Frolov A.V., Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Vliyanie tehnologicheskih parametrov plavki na strukturu i svojstva novyh magnievyh splavov [Influence of technological parameters of melting on structure and property of new magnesium alloys] // Metallurgiya mashinostroeniya. 2014. №2. S. 26–29.
13. Antipov V.V., Vahromov R.O., Duyunova V.A., Nochovnaya N.A. Materialy s vysokoj udelnoj prochnostyu na osnove alyuminiya, magniya, titana i tehnologii ih pererabotki [Materials with high specific strength on the basis of aluminum, magnesium, titanium and technology of their processing] // Boepripasy i spechimiya. 2013. №3. S. 51–55.
14. Rohlin L.L. Magnievye splavy, soderzhashhie redkozemelnye metally [The magnesium alloys containing rare earth metals]. M.: Nauka, 1980. 190 s.
15. Muhina I.Yu. Struktura i svojstva novyh litejnyh magnievyh splavov [Structure and properties of new cast magnesium alloys] // Litejnoe proizvodstvo. 2011. №12. S. 12–14.
16. Muhina I.Yu., Duyunova V.A., Frolov A.V., Uridiya Z.P. Vliyanie legirovaniya RZM na zharoprochnost' litejnyh magnievyh splavov [Influence of alloying of RZM on thermal stability of cast magnesium alloys] // Metallurgiya mashinostroeniya. 2014. №5. S. 34–38.
17. Muhina I.Yu., Uridiya Z.P., Stepanov V.V. Issledovanie kachestva magnievo-cirkonievoj ligatury [Research of quality of magnesium-zirconium ligature] / V kn. Magnievye splavy dlya sovremennoj tehniki. M.: Nauka, 1992. S. 135–142.
18. Splav na osnove magniya [Magnesium-based alloy]: pat. 2318031 Ros. Federaciya; opubl. 27.02.2008.
19. Splav na osnove magniya i izdelie, vypolnennoe iz nego [Magnesium-based alloy and the product which has been executed of it]: pat. 2293784 Ros. Federaciya; opubl. 20.02.2007.
20. Rejnor G.V. Metallovedenie magniya i ego splavov. Per. s angl. [Metallurgical science of magnesium and its alloys. Translation form English]. M.: Metallurgiya. 1964. 477 s.
The basic stages of producing castings of VT40 alloy, doping system, mold, selecting a mode of ingots and forms melting , HIP modes, method of internal defects diagnostics are considered. Particular attention is paid to complex alloying additions of α- and β-stabilizers, as well as additional doping with oxygen and carbon. The effect of doping on the comprehensive strength of the alloy is shown. The advantages of ceramic molds application comparing with graphite ones are considered. It is found that to obtain high-quality castings it is necessary to observe all technological operations.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauchno-informacionnyh materialov. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: Saturday. scientific information materials. 3rd ed., processed and added]. M.: VIAM, 2015. S. 427–430.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
6. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
7. Nochovnaya N.A. Perspektivy i problemy primeneniya titanovyh splavov [Perspectives and problems of application of titanium alloys] // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2007. Vyp. «Perspektivy razvitiya i primeneniya titanovyh splavov dlya samoletov, raket, dvigatelej i sudov»: sb. dokladov yubilejnogo soveshhaniya, posvyashhennogo 55-letiyu titanovoj laboratorii. S. 4–8.
8. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Ekonomnolegirovannye titanovye splavy dlya sloistyh metallopolimernyh kompozicionnyh materialov [Low-cost alloyed titanium alloys for metal-polymer laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. Available at: http://www.viam-works.ru (accessed: September 17, 2015). DOI: 10.18577/2307-6046-2014-0-11-2-2.
9. Kochetkov A. S., Nochovnaya N.A., Bokov K.A. Osobennosti processa plavki ekonomnolegirovannogo litejnogo titanovogo splava VT40L [Features of melting process of economically alloyed cast VT40L titanium alloy] // Metallurg. 2015. №10. S.81–83.
10. Magnickij O.N. Litejnye svojstva titanovyh splavov [Foundry properties of titanium alloys]. L.: Mashinostroenie, 1968. 65 s.
11. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33.
12. Yasinskij K.K. Vliyanie soderzhaniya kisloroda na mehanicheskie i tehnologicheskie svojstva litejnyh titanovyh splavov [Influence of the oxygen content on mechanical and technological properties of cast titanium alloys] // Titan. 1998. №10. S. 7–12.
13. Kalachev B.A. Osnovnye principy legirovaniya titanovyh splavov [Basic principles of alloying of titanium alloys] // Izvestiya vuzov. Cvetnaya metallurgiya. 1996. №4. S. 14–23.
14. Bratuhin A.G., Bibikov E.L., Glazunov S.G. i dr. Proizvodstvo fasonnyh otlivok iz titanovyh splavov [Production of mold castings from titanium alloys]. M.: Izd-vo VILS, 1998. 154 s.
15. Andreev A.L., Anoshkin N.F., Bochvar G.A. i dr. Titanovye splavy. Plavka i lite titanovyh splavov [Titanium alloys. Melting and molding of titanium alloys]. M.: Metallurgiya, 1978. 383 s.
16. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgiya, 1992. 352 s.
17. Niinomi M. Recent trends in titanium research and development in Japan // Proc. 12th World Conf. on Titanium. 2011. V. I. P. 30–37.
18. Heglei Qu et al. Defects easy occur in VAR titanium ingots // Proc. 12th World Conf. on Titanium. 2011. V. I. P. 126–129.
19. Davydenko L.V., Belova S.B., Davydenko R.A., Egorova Yu.B. O vozmozhnosti primeneniya titanovyh splavov v avtomobilestroenii [About possibility of application of titanium alloys in automotive industry] // Avtomobilnaya promyshlennost'. 2010. №10.
S. 41–43.
20. Cui Chunxiang, Hu BaoMin, Zhao Lichen, Liu Shuangjin. Titanium alloy production technology, market prospects and industry development // Materials and Design. 2011. №32. Р. 1684–1691.
21. Zhu J. et al. Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys // Mat. Sci. & Eng.: A. 2003. V. 339 (1–2). P. 53–62.
22. Schevchenko D.M., Ward R.M. Liquid metal pool behavior during the vacuum arc remelting of INCONEL 718 // Metall. Mater. Trans. B. 2009. V. 40B (6). P. 263.
23. Thamar E. Mora and Swavik A. Spiewak. Prediction of temperature in vacuum arc remelting in the presence of strong disturbances // Journal of Manufacturing Processes. 2003. V. 5. №1. P. 46–53.
24. Antashev V.G., Nochovnaya N.A., Shiryaev A.A., Izotova A.Yu. Perspektivy razrabotki novyh titanovyh splavov [Perspectives of development of new titanium alloys] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 60–67.
25. Nochovnaya N.A., Alekseev E.B., Yasinskij K.K., Kochetkov A.S. Specifika plavki i sposoby polucheniya slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobiya [Specifics of melting and ways of receiving ingots of intermetallic titanium alloys with the raised content of niobium] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 53–59.
26. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details]. Available at: http://www.viam-works.ru (accessed: September 17, 2015).
The article describes main factors allowing to extend the application area for VT8-1 alloy in GTE parts for rotary – fan drives and compressors of high and low pressure. Comparative characteristics of the mechanical properties (strength, ductility, toughness, FCGR) of disks die forgings of VT8-1 and VT6 alloys with respect to large-sized forgings drives for the fan and first stage of low pressure compressors , as well as drives of the HPC of VT8-1 and VT9 alloys (characteristics of strength, fracture toughness, FCGR, heat resistance) applicable for parts with working temperature up to 500°С are presented.
2. Barussad A., Desvalles Y., Guedou J.Y. Control of the microstructure in large titanium discs. Application to the high pressure compressor of the GE90 aeroengine / In: Titanium–95: Science and Technology. UK. The institute of Materials. 1996. P. 1599–1608.
3. Krivtsov V.S., Pavlenko V.N., Volkov I.V. Ocenka vliyaniya ryada faktorov na soprotivlenie ustalosti titanovyh splavov [Impact assessment of number of factors on resistance of fatigue of titanium alloys] // Problemy mashinostroeniya. 2011. T.14. № 6. S. 37–41.
4. Istrakova A.R., Kashapov O.S., Kalashnikov V.S. Issledovanie vliyaniya rezhimov otzhiga na strukturu i fazovyj sostav shtampovok monokoles iz splava VT8-1 [Research of influence of modes of annealing on structure and phase structure of punchings of monoalloy wheels BT8-1] // Vestnik MAI. 2015. №2. S. 142–151.
5. Sposob termicheskoj obrabotki vysokoprochnyh (α+β)-titanovyh splavov [Way of thermal processing high-strength (α +β)-titanium alloys]: pat. 2465366 Ros. Federaciya; opubl. 15.09.11.
6. Sposob termomehanicheskoj obrabotki izdelij iz titanovyh splavov [Way of thermomechanical processing of products from titanium alloys]: pat. 2457273 Ros. Federaciya; opubl. 05.04.11.
7. Horev A.I. Teoreticheskie i prakticheskie osnovy povysheniya konstrukcionnoj prochnosti sovremennyh titanovyh splavov [Theoretical and practical bases of increase of constructional durability of modern titanium alloys] // Tehnologiya legkih splavov. 2007. №2. S. 144–153.
8. Horev A.I. Razrabotka konstrukcionnyh titanovyh splavov dlya izgotovleniya detalej i uzlov aviakosmicheskoj tehniki [Development of structural titanium alloys for manufacturing of details and nodes of aerospace equipment] // Svarochnoe proizvodstvo. 2009. №3. S. 13–23.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
10. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch. tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: July 27, 2015).
12. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
13. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgiya, 1992. 352 s.
14. Malysheva S.P., Murzinova M.A., Zherebcov S.V., Salishhev G.A. Mehanicheskie svojstva ul'tramelkozernistogo titanovogo splava VT6 [Mechanical properties of ultrafine-grained BT6 titanium alloy] // Perspektivnye materialy. 2011. №12.
S. 316–320.
15. Popov A.A., Demakov S.L., Popova M.A., Rossina N.G., Elkina O.A. Vydelenie chastic silicidov v zharoprochnyh titanovyh splavah [Allocation of particles of silicides in heat resisting titanium alloys] // Titan. 2013. №1 (39). S. 4–13.
Temperature and duration parameters of multiphase (α+α2+β)-structure stability in VT6 (Ti–6.25Al–4.1V, % wt.) titanium alloyformed by thermohydrogen treatment (THT) upon 0.8% wt. hydrogen doping are determined. It is revealed that the structure after THT with the subsequent vacuum annealing at 625 and 650°С possesses the maximal thermal stability during isothermal ageing (more than 100 hours at temperatures up to 650°С).
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: June 19, 2015).
5. Nochovnaya N.A. Perspektivy i problemy primeneniya titanovyh splavov [Perspectives and problems of application of titanium alloys] // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2007. Vyp. «Perspektivy razvitiya i primeneniya titanovyh splavov dlya samoletov, raket, dvigatelej i sudov». S. 4–8.
6. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Ekonomnolegirovannye titanovye splavy dlya sloistyh metallopolimernyh kompozicionnyh materialov [Low-cost alloyed titanium alloys for metal-polymer laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. Available at: http://www.viam-works.ru (accessed: June 19, 2015). DOI: 10.18577/2307-6046-2014-0-11-2-2.
7. Ilin A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaya tehnologiya titanovyh splavov [Hydrogen technology of titanium alloys]. M.: Izd. dom MISiS. 2002. 392 s.
8. Kolachev B.A., Ilin A.A., Nosov V.K., Mamonov A.M. Dostizheniya vodorodnoj tehnologii titanovyh splavov [Achievements of hydrogen technology of titanium alloys] // Tehnologiya legkih splavov. 2007. №3. S. 10–26.
9. Ilin A.A., Skvorcova S.V., Mamonov A.M., Kollerov M.Yu. Fazovye i strukturnye prevrashheniya v titanovyh splavah raznyh klassov pod dejstviem vodoroda [Phase and structural transformations in titanium alloys of different classes under the influence of hydrogen] // Titan. 2007. №1. S. 32–37.
10. Skvorcova S.V., Panin P.V., Nochovnaya N.A., Grushin I.A., Mitropolskaya N.G. Vliyanie vodoroda na fazovye i strukturnye prevrashheniya v titanovom splave VT6 [Influence of hydrogen on phase and structural transformations in BT6 titanium alloy] // Tehnologiya legkih splavov. 2011. №4. S. 35–40.
11. Ilin A.A., Skvorcova S.V., Panin P.V., Shalin A.V. Vliyanie termovodorodnoj obrabotki i plasticheskoj deformacii na strukturoobrazovanie v titanovyh splavah raznyh klassov [Influence of thermohydrogen treating and plastic strain on structurization in titanium alloys of different classes] // Aviacionnaya promyshlennost. 2009. №4. S. 31–36.
12. Panin P.V., Dzunovich D.A., Zasypkin V.V. Sozdanie dvuhfaznoj kompozitnoj struktury v alfa-splave Ti–6Al s pomoshh'yu termovodorodnoj obrabotki [Creation of diphasic composite structure in Ti–6Al alpha alloy by means of thermohydrogen treating] // Nauchnye trudy (Vestnik MATI). 2012. №19 (91). S. 33–37.
13. Panin P.V., Grushin I.A., Mitropolskaya N.G. Issledovanie zakonomernostej izmeneniya strukturno-fazovogo sostoyaniya titanovogo splava VT6 pri dopolnitelnom legirovanii vodorodom [Research of patterns of change of structural and phase condition of BT6 titanium alloy at additional alloying hydrogen] // Nauchnye trudy (Vestnik MATI). 2013. №20 (92). S. 31–34.
14. Panin P.V., Dzunovich D.A., Lukina E.A. Upravlenie strukturoj i svojstvami titanovyh splavov pri obratimom legirovanii vodorodom i plasticheskoj deformacii [Management of structure and properties of titanium alloys at reversible alloying hydrogen and plastic strain] / V sb. materialov XIX nauch.-tehnich. konf. molodyh uchenyh i specialistov. RKK «Jenergiya». 2012. Ser. XII. Vyp. 1–2. S. 103–107.
15. Panin P.V. Zakonomernosti formirovaniya fazovogo sostava i struktury v titanovyh splavah pri termovodorodnoj obrabotke i plasticheskoj deformacii: avtoref. dis. … kand. tehn. nauk [Patterns of forming of phase structure and structure in titanium alloys at thermohydrogen treating and plastic strain: thesis author's abstract Candidate of Technical Sciences.]. M, 2009. 24 s.
16. Ovchinnikov A.V., Nosov V.K., Afonin V.E., Panin P.V. Osnovnye zakonomernosti deformacii splavov titan–vodorod [Main patterns of deformation of alloys titanium-hydrogen] // Tehnologiya legkih splavov. 2007. №3. S. 96–99.
17. Ilin A.A. Mehanizm i kinetika fazovyh i strukturnyh prevrashhenij v titanovyh splavah [The mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka, 1994. 304 s.
18. Panin P.V., Dzunovich D.A., Alekseev E.B. Sposoby opisaniya fazovogo sostava titanovyh splavov, dopolnitelno legirovannyh vodorodom (obzor) [Ways of phase areas representation in titanium alloys additionally doped with hydrogen (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 03. Available at: http://www.viam-works.ru (accessed: June 19, 2015). DOI: 10.18577/2307-6046-2015-0-3-3-3.
19. Panin P.V., Shiryaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitelno legirovannogo vodorodom [Creation of the temperature and concentration chart of phase composition of the BT6 titanium alloy which has been in addition alloyed by hydrogen] // Tehnologiya mashinostroeniya. 2014. №3. S. 5–9.
Various methods for producing structural materials with functional properties by introducing carbon nanotubes (CNTs) into a polymer composite material (PCM) matrix are presented. It is shown that the conductivity of the CNT-filled composites depends not only on CNTs type, concentration and polymer matrix composition, but also on the nanocomposite production method. Thus hybrid PCMs combining high electric conductivity and good physical and mechanical properties can be produced by using extruders ensuring high shear stress. Using CNTs as the reinforcing filler allows producing PCM with the record tensile strength of 3,8 GPa, tensile modulus of 293 GPa and conductivity of 1230 S/cm. Decorating CNTs with metal nanoparticles allows increasing conductivity of the hybrid PCMs by several orders.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Russian nanotechnologies. 2013. V. 8. №3–4. Р. 163–185.
3. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Kislyakov P.P., Hohlov Yu.A., Krynin A.G., Kondrashov S.V. Poluchenie i primenenie polimernoj plenki s prozrachnym elektroprovodyashhim pokrytiem na osnove oksida indiya, legirovannogo olovom [Receiving and application of polymer film with transparent electroconducting coating on the basis of the indium oxide alloyed by tin] // Trudy VIAM : elektron. nauch.-tenhich. zhurn. 2013. №11. St. 06. Available at: http://viam-works.ru (accessed at: June 17, 2015).
5. Yurkov G.Yu., Kondrashov S.V., Kraev I.D. Nanokompozity na osnove polijetilena vysokogo davleniya i nanochastic kobal'ta: sintez, struktura i svojstva [Nanocomposites based on high-density polyethylene and cobalt nanoparticles: synthesis, structure and properties] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 29–33.
6. Akatenkov R.V., Anoshkin I.V., Belyaev A.A., Bitt V.V., Bogatov V.A., Dyachkova T.P., Kutsevich K.E., Kondrashov S.V., Romanov A.M., Shirokov V.V., Horobrov N.V. Vliyanie strukturnoj organizacii uglerodnyh nanotrubok na radiojekraniruyushhie i elektroprovodyashhie svojstva nanokompozitov [Influence of the structural organization of carbon nanotubes on radio shielding and electrocarrying-out properties of nanocomposites] // Aviacionnye materialy i tehnologii. 2011. №1. S. 35–42.
7. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovaniya polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializovannymi nanotrubkami [Features of forming of polymeric grids when curing epoxy oligomers with functionalizing nanotubes] // Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
8. Fan-Long J., Soo-Jin P. A review of the preparation and properties of carbon nanotubes-reinforced polymer composites // Carbon Letters. 2011. V. 12. №2. Р. 57–69.
9. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional ugleplastikov carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
10. Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene // Polymer. 2004. V. 45. P. 739–748.
11. Fornes T.D., Baur J.W., Sabba Y., Thomas E.L. Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes // Polymer. 2006. V. 47. P. 1704–1714.
12. Kim K.H., Jo W.H. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites // Carbon. 2009. V. 47. P. 1126–1134.
13. Jia Z., Wang Z., Xu C., Liang J., Wei B., Wu D., Zhu S. Study on poly(methyl methacrylate)/carbon nanotube composites // Mater Sci Eng, A. 1999. V. 271. P. 395–400.
14. Siochi E.J., Working D.C., Park C., Lillehei P.T., Rouse J.H., Topping C.C., Bhattacharyya A.R., Kumar S. Melt processing of SWCNT-polyimide nanocomposite fibers // Compos Part B: Eng. 2004. V. 35. P. 439–446.
15. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites // Composites Science and Technology. 2009. V. 69. P. 1486–1498.
16. Polymer–carbon nanotube composites. Preparation, properties and applications. Ed. McNally T., Pötschke P. Woodhead Publishing Limited. 2011. 820 р.
17. Carbon Nanotubes – Polymer Nanocomposites / ed. Yellampalli Siva. Published by InTech, 2011.
396 р.
18. Irzhak V.I. Jepoksidnye kompozicionnye materialy s uglerodnymi nanotrubkami [Epoxy composite materials with carbon nanotubes] // Uspehi himii. 2011. №8. S. 821–839.
19. Rakov E.G. Uglerodnye nanotrubki v novyh materialah [Carbon nanotubes in new materials] //Uspehi himii. 2013. T. 82. №1. S. 227–247.
20. Mamunya Ye., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites // Compos. Sci. Techn. 2008. V. 68.
Р. 1981–1988.
21. Malliaris A., Turner D.T. Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders // J. Appl Phys. 1971. V. 42. №2. Р. 614–618.
22. Grunlan J.C., Mehrabi A.R., Bannon M.V., Bahr J.L. Water-based single-walled nanotube–filled polymer composite with an exceptionally low percolation threshold // Adv. Mater. 2004. V. 16. №2. Р. 150–153.
23. Grossiord N., Loos J., van Laake L., Maugey M., Zakri C., Koning C.E., Hart A.J. High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers // Adv. Funct. Mater. 2008. V. 18. P. 3226–3234.
24. Goldel A., Potschke P. Carbon nanotubes in multiphase polymer blends Polymer–carbon nanotube composites: Preparation, properties and applications. Woodhead Publishing Limited, 2011. Р. 587–620.
25. Pötschke P., Pegel S., Claes M., Bonduel D. A novel strategy to incorporate carbon nanotubes into thermoplastic matrices // Macromolecular Rapid Communications. 2008. V. 29. Р. 244–251.
26. Wu S. Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects // Polym. Eng. Sci. 1987. V. 27. Р. 335–343.
27. Shimizu H., Komori K., Inoue T. The phase behavior of polymer blends under high shear flow/high pressure fields // Trans. of Mater. Res. Soc. Jpn. 2004. V. 29. Р. 263–265.
28. Lebovitz A.H., Khait K., Torkelson J.M. Stabilization of Dispersed Phase to Static Coarsening: Polymer Blend Compatibilization via Solid-State Shear Pulverization // Macromolecules. 2002.
V. 35. Р. 8672–8675.
29. Mezhikovskij S.M., Irzhak V.I. Himicheskaya fizika otverzhdeniya oligomerov [Chemical physics of curing of oligomers]. M.: Nauka, 2008. 269 s.
30. McIntosh D., Khabashesku V.N., Barrera E.V. Benzoyl Peroxide Initiated In Situ Functionalization, Processing, and Mechanical Properties of Single-Walled Carbon Nanotube-Polypropylene Composite Fibers // J. Phys. Chem. C. 2007. V. 111. Р. 1592–1600.
31. Li Y., Shimizu H. Conductive PVDF/PA6/CNT nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures // Macromolecules. 2008. V. 41. Р. 5339–5344.
32. Kasaliwal G., Goldel A., Potschke P. Influence of processing conditions in smallscale melt mixing and compression molding on the resistivity and morphology of polycarbonate-MWNT composites // Journal of Applied Polymer Science. 2009. V. 112. Р. 3494–3509.
33. Krause B., Pötschke P., Häußler L. Influence of small scale mixing conditions on electrical resistivity of carbon nanotube-polyamide composites // Compos Sci Technol. 2009. V. 69 (10). Р. 1505–1515.
34. Logakis E., Pandis C., Peoglos V., Pissis P., Pionteck J., Potschke P., Micuikand M., Omastova M. Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites //Polymer. 2009. V. 50 (21). Р. 5103–5111.
35. Reia da Costa E.F., Skordos A.A., Partridge I.K., Rezai A. RTM processing and electrical performance of carbon nanotube modified epoxy/fiber composites // Composites Part A: Applied Science and Manufacturing. 2012. V. 43. №4. Р. 593–602.
36. Garcia E.J., Wardle B.L., Hart A.J., Yamamoto N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ // Composites Science and Technology. 2008. V. 68. Р. 2034–2041.
37. Singh B.P., Bharadwaj P., Choudhary V., Mathur R.B. Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites // Appl Nanosci. 2014. V. 4. №4. Р. 421–428.
38. Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements // Carbon. 2012. V. 50. Р. 2377–2395.
39. Garcia E.J., Saito D.S., Megalini L., Hart A.J., Guzman de Villoria R., Wardle B.L. Fabrication and Multifunctional Properties of High Volume Fraction Aligned Carbon Nanotube Thermoset Composites // Journal of Nano Systems & Technology. 2009. V. 1. №1. Р. 1–11.
40. Cheng Q., Wang J., Jiang K., Li Q., Fan Sh. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites // J. Mater. Res. 2008. V. 23. №11. Р. 2975–2983.
41. Wang X., Yong Z.Z., Li Q.W., Bradford P.D., Liu W., Tucker D.S., Cai W., Wang H., Yuan F.G., Zhu Y.T. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites // Mater. Res. Lett. 2013. V. 1. №1. Р. 19–25.
42. Mubeen S., Zhang T., Yoo B., Deshusses M.A., Myung N.V. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor // J. Phys. Chem. C. 2007. V. 111. Р. 6321–6327.
43. Bekyarova E., Itkis M.E., Cabrera N., Zhao B., Yu A., Gao J., Haddon R.C. Electronic Properties of Single-Walled Carbon Nanotube Networks // J. Am. chem. soc. 2005. V. 127. Р. 5990–5995.
44. Chakravarthi D.K., Khabashesku V.N., Vaidyanathan R., Blaine J., Yarlagadda Sh., Roseman D., Zeng Q., Barrera E.V. Carbon Fiber–Bismaleimide Composites Filled with Nickel-Coated Single-Walled Carbon Nanotubes for Lightning-Strike Protection // Adv. Funct. Mater. 2011. V. 21.
Р. 2527–2533.
Influence of vacuum annealing on structure of ion-plasma VSDP-4+VSDP-23 coating made with double aluminizing technology is researched. Coatings made with intermediate heat-treatment are compared to those with increased amount of aluminum alloy sprayed at once. The advantage of standard annealing with the temperature not exceeding 1050 °С is shown. It is also shown that addition of intermediate heat treatment doesn’t influence much on the structure of coating.
2. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
3. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M. Sovremennoe sostojanie i osnovnye tendencii razvitija vysokotemperaturnyh teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD [Current state and the main tendencies of development of high-temperature heat-protective coverings for working blades of turbines of aviation GTE] // Aviacionnaja promyshlennost. 2008. №4. S. 33–37.
4. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
5. Kablov E.N., Mubojadzhjan S.A. Teplozashhitnye pokrytija dlja lopatok turbin vysokogo davlenija perspektivnyh GTD [Heat-protective coverings for blades of high-pressure turbines of perspective GTE] // Metally. 2012. №1. S. 5–13.
6. Budinovskij S.A., Kablov E.N., Mubojadzhjan S.A. Primenenie analiticheskoj modeli opredelenija uprugih naprjazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniju vysokotemperaturnyh zharostojkih pokrytij dlja rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 26–37.
7. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
8. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
9. Budinovskij S.A. Primenenie analiticheskoj modeli opredelenija uprugih mehanicheskih i termicheskih naprjazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniju zharostojkih aljuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] // Uprochnjajushhie tehnologii i pokrytija. 2013. №3. S. 3–11.
10. Budinovskij S.A., Muboyadzhjan S.A., Gajamov A.M., Matveev P.V. Razrabotka ionno-plazmennyh zharostojkih metallicheskih sloev teplozashhitnyh pokrytij dlja ohlazhdaemyh rabochih lopatok turbin [Development of ion-plasma heat resisting metal layers of heat-protective coverings for cooled working blades of turbines] // MiTOM. 2013. №11. S. 16–21.
11. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
13. Budinovskij S.A., Smirnov A.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlja rabochih i soplovyh lopatok turbiny iz zharoprochnyh i intermetallidnyh splavov [Development of thermal barrier coatings for rotor and nozzle turbine blades made of nickel-base super- and intermetallic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.viam-works.ru (accessed: June 03, 2015). DOI: 10.18577/2307-6046-2015-0-4-5-5.
14. Matveev P.V., Budinovskij S.A. Issledovanie svojstv zashhitnyh zharostojkih pokrytij dlya intermetallidnyh nikelevyh splavov tipa VKNA dlya rabochih temperatur do 1300°C [Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300°C] // Aviacionnye materialy i tehnologii. 2014. №3. S. 22–26.
15. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
16. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
17. Mumm D.R., Evans A.G., Spitsberg I.T. Characterization Of A Cyclic Displacement Instability For A Thermally Grown Oxide In A Thermal Barrier System // Acta Materials. 2001. V. 49. P. 2329–2340.
18. Haynes J.A., Pint B.A., Porter W.D., Wright I.G. Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys // Materials at high temperatures. 2004. V. 21 (2). Р. 87–94.
19. Rabiel A., Evans A.G. Failure Mechanisms Associated With The Thermally Grown Oxide In Plasma-Sprayed Thermal Barrier Coatings // Acta Materials. 2000. V. 48. P. 3963–3976.
20. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60.
Cobalt-based alloys can be applied as superalloys together with nickel ones for parts operating at high temperatures. Rare earth elements (REM) have positive impact on long-term strength, ductility, viscosity, deformation of the alloy at high temperatures , and reduce the harmful effects of fusible (S, Pb, Sn, Bi), connecting them in refractory compounds. The positive effect of rare-earth elements on the alloys properties is exercises in a fairly narrow range of concentrations. Therefore, to obtain improved material properties it is necessary to strictly control the REM content in the alloys. As a result of this work the technique of determination of cerium in Co–Cr–W–Ta–Ti–Ce alloys in the concentrations range 0,002–0,02 wt. % using a reagent redoksan Ι is de-veloped.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP4. C. 13–19.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Sidorov V.V., Timofeeva O.B., Kalitsev V.A., Goryunov A.V. Vliyanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashheniya v intermetallidnom splave VKNA-25-VI [Influence of microalloying of RZM on properties and structural phase changes in intermetallidny alloy VKNA-25-VI] //Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
8. Romanova N.B., Pechishheva N.V., Shunyaev K.Yu., Titov V.I., Gundobin N.V. Opredelenie nizkih soderzhanij Zr, Ce, La, Y v nikelevyh zharoprochnyh splavah metodom ICP OES [Definition of low maintenance of Zr, Ce, La, Y in nickel hot strength alloys the ICP OES method] // Zavodskaya laboratoriya. Diagnostika materialov. 2011. T. 77. №7. S. 5–9.
9.Gaiduk O.V., Pantaler R.P., Blank A.B. Spektrofotometricheskoe opredelenie ceriya v prisutstvii Ca, Sr i Al [Spectrophotometric definition of cerium in the presence of Ca, Sr and Al] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. T. 73. №3. S. 15–18.
10. Abrazheev R.V., Gribanova M.V., Dubcova A.A., Makarova D.A., Vojtkevich E.V. Spektrofotometricheskoe issledovanie kompleksoobrazovaniya ionov ceriya i lantana s arsenatami, sulfatami, fosfatami i hloridami s ispolzovaniem konkuriruyushhih reakcij [Spectrophotometric research of complex formation of ions of cerium and lanthanum with arsenatami, sulfates, phosphates and chlorides with use of competing reactions] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2015. T. 58. №4. S. 18–21.
11. Gorbatenko A.A., Beketov V.I., Voronina R.D., Zhuravlev D.A., Lyubomirova O.R., Filatova D.G., Revina E.I. Shemy vozbuzhdeniya monooksidov redkozemelnyh jelementov v lazerno-inducirovannoj molekulyarno-ionizacionnoj spektrometrii plameni [Schemes of excitation of monooxides of rare earth elements in laser induced molecular ionizatsionnoy flame spectrometry] // Zhurnal prikladnoj spektroskopii. 2006. T. 73. №4. S. 544–546.
12. Gajduk O.V., Pantaler R.P., Blank A.B. Fotometricheskoe opredelenie mikrogrammovyh kolichestv Ce (IV) tropeolinom 00 [Photometric definition of microgram quantities of Ce (IV) by tropeolin 00] // Zavodskaya laboratoriya. Diagnostika materialov. 2006. T. 72. №5. S. 12–14.
13. Guzik T.V., Maluka L.M. Kosvennoe redoks-potenciometricheskoe opredelenie ceriya (IV) [Indirect redox-potentiometer definition of cerium (IV)] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2010. T. 53. №11. S. 32–35.
14. Chumakova N.L., Smirnova E.V. Opredelenie lantana, ceriya, neodima, itterbiya i ittriya v geologicheskih probah s ispolzovaniem mnogokanalnogo analizatora atomno-jemissionnyh spektrov [Definition of lanthanum, cerium, neodima, ytterbium and yttrium in geological tests with use of the multi-channel analyzer of nuclear emission spectrums] // Zavodskaya laboratoriya. Diagnostika materialov. 2010. T. 76. №3. S. 3–8.
15. Savvin S.B., Krivenkova N.P., Geller A.B., Mihajlova A.V. Novyj sposob probopodgotovki dlya opredeleniya ceriya v materialah jenergeticheskogo mashinostroeniya [New way of probopodgotovka for cerium definition in materials of power mechanical engineering] // Tyazheloe mashinostroenie. 2012. №9. S. 3–5.
Results of a comparative assessment of corrosion resistance of samples of metal-polymer composite material (MPKM) on the basis of a high-strength tape from VNS-9-Sh steel and a coal plastic VKU-44 in the conditions of the camera of salt fog KST-35 after 1, 2 and 3 months of tests are considered. Influence of various surface pre-treatment of steel plates of the VNS-9-Sh tape on adhesion during production of MPKM samples is considered. Average values of tension before destruction of samples glue joints at mechanical shear tests for shift are defined.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh alyumostekloplastikov na osnove alyuminij-litievogo splava 1441 s ponizhennoj plotnostyu [New class layered aluminum fiberglass on basis aluminum-lithium alloy 1441 with lowered density] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 174–183.
5. Bajgildin D.Yu. Obzor sushhestvujushhih sovremennyh materialov dlya vosstanovleni ya detalej mashin [The overview of existing modern materials for recovery of details of machines] // Sovremennye naukoemkie tehnologii. 2014. №5. S. 16–18.
6. Kirillov V.N., Efimov V.A., Barbotko S.L., Nikolaev E.V. Metodicheskie osobennosti provedeniya i obrabotki rezultatov klimaticheskih ispytanij polimernyh kompozicionnyh materialov [Methodical features of carrying out and processing of results of climatic tests of polymeric composite materials] // Plasticheskie massy. 2013. №1. S. 37–41.
7. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
8. Kablov E.N., Starcev O.V., Deev I.S., Nikishin E.F. Svojstva polimernyh kompozicionnyh materialov posle vozdejstviya otkrytogo kosmosa na okolozemnyh orbitah. Ch. 1 [Properties of polymeric composite materials after influence of outer space on earth orbits. P. 1] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №10. S. 2–9.
9. Kablov E.N., Startsev O.V., Deev I.S., Nikishin E.F. Svojstva polimernyh kompozicionnyh materialov posle vozdejstviya otkrytogo kosmosa na okolozemnyh orbitah. Ch. 2 [Properties of polymeric composite materials after influence of outer space on earth orbits. P.1] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №11. S. 2–16.
10. Kirillov V.N., Efimov V.A. Problemy issledovani ya klimaticheskoj stojkosti aviacionnyh nemetallicheskih materialov [Problems of research of climatic firmness of aviation non-metallic materials] / V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 379–388.
11. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
12. Kirillov V.N., Efimov V.A., Matveenkova T.E., Krivonos V.V., Grebneva T.V., Bolberova E.V. Klimaticheskaya stojkost novyh kompozicionnyh materialov [Climatic firmness of new composite materials] // Aviacionnaya promyshlennost. 2004. №4. S. 44–47.
13. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.viam-works.ru (accessed: July 15, 2015).
14. Frolov A.S., Panin S.V. Otsenka parametrov vlagoperenosa ugleplastika aviacionnogo naznacheni ya na nachalnoj stadii naturnoj klimaticheskoj ekspozicii [Early stages of environmental degradation investigated by moisture transfer parameters of CFRP used for aerospace applications] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 08. Available at: http://www.viam-works.ru (accessed: July 15, 2015). DOI: 10.18577/2307-6046-2014-0-7-8-8.
15. Belous V. Ya., Loshhinina A.O., Varlamova V.E., Nikitin Ya.Yu. Korrozionna ya stojkost i podgotovka poverhnosti holodnokatanoj lenty iz stali VNS-9-Sh dl ya izgotovleni ya MPKM [Corrosion resistance and preparation of a surface of a cold rolled tape from VNS9-Sh steel for production of metalpolymeric composite material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 10. Available at: http://www.viam-works.ru (accessed: December 3, 2015). DOI: 10.18577/2307-6046-2015-0-11-10-10.
16. Rasshhupkin V.P., Garib yan G.S., Gurdin V.I. Kompozicionnye materialy sistemy alyuminievye splavy–stal [Composite materials of system aluminum alloys–steels] // Omskij nauchnyj vestnik. 2009. №1 (77). S. 15–16.
The corrosion resistance of aluminum alloys in a summary action of abiotic and biotic factors of space flight is studied. The evaluation of internal changes of aluminum alloys after the corrosion process under the influence of space flight is conducted. Physical and mechanical properties of aluminum alloys after exposure to fluids containing waste products of organisms biodestructors are defined.
2. Kablov E.N., Polyakova A.V., Vasileva A.A., Goryashnik Yu.S., Kirimov V.N. Mikrobiologicheskie issledovaniya aviacionnyh materialov [Microbiological researches of aviation materials] // Aviacionnaya promyshlennost. 2011. №1. S. 35–38.
3. Polyakova A.V., Krivushina N.S., Goryashnik Yu.S., Gunina T.V. Naturnye i uskorennye ispytaniya materialov i topliv na mikrobiologicheskuyu stojkost [Natural and accelerated tests of materials and fuels on microbiological firmness] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №3. S. 20–23.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Little B.J., Ray R.I., Pope R.K. Bioactive Environments: Corrosion // Encyclopedia of Materials: Science and Technology. Second Edition. 2001. P. 533–537.
6. Karimova S.A., Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modelirovanie processa vozdejstviya agressivnyh komponentov promyshlennoj atmosfery na metallicheskie materialy v kamere solevogo tumana [Modeling of process of influence of aggressive components of the industrial atmosphere on metal materials in the salt spray chamber] // Aviacionnye materialy i tehnologii. 2015. №1 (34). 86–94.
7. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
8. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
9. Rozenfeld I. L. Korroziya i zashhita metallov [Corrosion and protection of metals]. M.: Metallurgiya, 1969. 448 s.
10. Sinyavskij V.S., Valkov V.D., Budov G.M. Korroziya i zashhita alyuminievyh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1979. 213 s.
11. Karimova S.A., Zhilikov V.P., Mihajlov A.A., Chesnokov D.V., Igonin T.N., Karpov V.A. Naturno-uskorennye ispytaniya alyuminievyh splavov v usloviyah vozdejstviya morskoj atmosfery [Natural accelerated tests of aluminum alloys in the conditions of influence of the sea atmosphere] // Korroziya: materialy, zashhita. 2012. №10. S. 1–3.
12. Grinevich A.V., Karimova S.A., Kozlov I.A., Rudakov A.G. Raschetnye prochnostnye harakteristiki aviacionnyh materialov pri vozdejstvii vlagi [Rated strength characteristics of aviation materials at moisture influence] / V sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». M. 2012. S. 259–263.
13. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
14. Hohlatova L.B., Kolobnev N.I., Antipov V.V., Karimova S.A., Rudakov A.G., Oglodkov M.S. VliYanie korrozionnoj sredy na skorost rosta treshhiny ustalosti v aljuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Aviacionnye materialy i tehnologii. 2011. №1. S. 16–20.
15. Karimova S.A. Korroziya – glavnyj vrag aviacii [Corrosion – the main enemy of aircraft] // Nauka i zhizn. 2007. №6. S. 34.
Researches on impact assessment of some external influencing operational and climatic factors on combustibility characteristics for several types of textile materials are conducted. Influence of thermal-humidity factors on change of registered characteristics of fire safety is shown.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
5. Barbotko S.L. Ways of providing fire safety of aviation materials // Russian Journal of General Chemistry. 2011. V. 81. №5. P. 1068–1074.
6. Barbotko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznacheniya [Assessment of fire safety of polymeric composite materials of aviation assignment] // Aviacionnaya promyshlennost. 2013. №2. S. 55–58.
7. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
8. Barbotko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznacheniya [Assessment of fire safety of polymeric composite materials of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 56–63.
9. Aviacionnye pravila. Chast 25. Normy letnoj godnosti samoletov transportnoj kategorii; 3-e izd.: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008 [Aviation rules. Part 25. Standards of the flight validity of airplanes of transport category; 3rd ed.: are approved by the Resolution of the 28th session of Council for aircraft and use of air space November 12, 2008]. M.: OAO «Aviaizdat», 2009. 274 s.
10. Barbotko S.L., Shurkova E.N., Volny O.S., Skrylyov N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlya vneshnego kontura aviacionnoj tehniki [Evolution of polymer composite fire-safety for the outer contour of aeronautical engineering] // Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
11. Skryljov N.S., Volnyj O.S., Postnov V.I., Barbotko S.L. Issledovanie vliyaniya teplovyh faktorov klimata na izmenenie harakteristik pozharobezopasnosti polimernyh kompozicionnyh materialov [Research of influence of environment’s thermal factors on fire safety characteristics drift of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 05. Available at: http://www.viam-works.ru (accessed: July 15, 2015).
12. Pickett B.M., Dierdorf D.S., Wells S.P. Firefighting and emergency response study of advanced composites aircraft. Objective 2: Firefighting Effectiveness of Technologies and Agents on Composite Aircraft Fires // Air force research laboratory materials and manufacturing directorate AFRL-RX-TY-TR-2011-0047. 2012. 36 p.
13. N.S. Skrylyov, O.S. Volnyj, D.V. Abramov, E.N. Shurkova Issledovanie vliyaniya teplovlazhnostnyh faktorov na izmenenie harakteristik pozharnoj bezopasnosti PKM, podverzhennyh klimaticheskim vozdejstviyam [Research the influence of temperature and humidity factors on change of fire safety characteristics for polymeric composite materials which are subject to climatic aging] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 12. Available at: http://www.viam-works.ru (accessed: July 15, 2015). DOI: 10.18577/2307-6046-2014-0-7-12-12.
14. Barbotko S.L., Volnyj O.S., Kirienko O.A., Lutsenko A.N., Shurkova E.N. Sopostavlenie metodov ocenki pozharnoj opasnosti polimernyh materialov v razlichnyh otraslyah transporta i promyshlennosti [Comparison of methods of assessment of fire danger of polymeric materials in the different industries of transport and the industry] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №1. S. 2–9.
15. Barbotko S.L. Trebovaniya aviacionnyh norm i metody ocenki pozharnoj bezopasnosti aviacionnyh materialov: istoriya, sovremennoe sostoyanie i perspektivy razvitiya [Requirements of aviation norms and methods of assessment of fire safety of aviation materials: history, current state and development perspectives] // Vestnik Voronezhskogo instituta GPS MChS Rossii. 2014. №3. S. 23–33.
16. Barbotko S.L. Pozharnaya opasnost, metody ocenki i trebovaniya k materialam dlya izgotovleniya vneshnego kontura aviacionnoj tehniki [Fire danger, assessment and requirement methods to materials for manufacturing of external circuit of aviation engineering] // Vestnik Voronezhskogo instituta GPS MChS Rossii. 2014. №4. S. 6–15.