Articles
The article shows the results of research on brazing the beryllium window in a copper frame by the silver 72Ag–28Cu Cusil hard brazing alloy and study of the structure and vacuum density of the brazing joint. Manufacturing techniques and preparations of products for the brazing were developed, brazing modes on the flat simulator and the bent beryllium window were chosen. A batch of bent brazing beryllium windows which successfully passed tests for vacuum density after heating to 650°C during 0,5 h was made. The structure of brazing joints of beryllium with copper was analyzed. In microstructure of brazing the zone of fusing of beryllium and brazing alloy with partial dissolution of beryllium in brazing alloy is registered as well as Cusil brazing zone with copper dissolution. In zone of fusing of beryllium with Cusil two transitional layers in the form of intermetallic phases are observed. In the zone of Cusil brazing alloy there is the presence of Ag–Cu alloy with different concentra
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Istoriya aviatsionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshch. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed/ by E.N.Kablov]. M.: VIAM, 2012. S. 173–180.
4. Berilliy – konstruktsionnyy material XXI veka [Beryllium – constructional material of the XXI century] // Aviacionnye materialy i tehnologii: nauch.-tekhnich. sb. / pod obshch. red. E.N. Kablova. M.: VIAM, 2000. 136 s.
5. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
6. Kaskov V.S. Berillij i materialy na ego osnove [Beryllium and materials on its basis] // Aviacionnye materialy i tehnologii. 2012. №S. S. 222–226.
7. Fokanov A.N., Kaskov V.S., Podurazhnaya V.F. Pajka berilliya so splavom monel pri izgotovlenii rentgenovskih okon [Beryllium brazing with monel alloy in production x-ray windows] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №8. St. 02. Available at: http://www.viam-works.ru (accessed: April 13, 2016). DOI: 10.18577/2307-6046-2014-0-8-2-2.
8. Fokanov A.N., Kaskov V.S., Podurazhnaya V.F., Zhirnov A.D. Payka berilliya s konstruktsionnymi metallami [The beryllium soldering with constructional metals] // Aktualnye voprosy aviatsionnogo materialovedeniya: tez. dokl. Mezhdunar. nauch.-tekhnich. konf. M., 2007. S. 53.
9. Pripoy na osnove medi: pat. 2279957 Ros. Federatsiya [Solder on the basis of copper: stalemate. 2279957 Rus. Federation]; zayavl. 21.12.04; opubl. 20.07.06. Byul. №20.
10. Spravochnik po payke / pod red. I.E. Petrunina [The directory on the soldering / ed. by I.E. Petrunin]. M.: Mashinostroenie, 1984. 400 s.
11. Lashko S.V., Lashko N.F. Payka metallov [Soldering of metals]. M.: Mashinostroenie, 1988. 376 s.
12. Goldberg A. Joining of Beryllium. Lawrence Livermore National Laboratory. Livermore. 2006. P. 1–47. Available at: https://e-reports-ext.llnl.gov/pdf/330011.pdf (accessed: April 13, 2016).
13. Kalin B.A., Fedotov V.T., Sevryukov O.N. Razrabotka i primenenie bystrozakalennykh splavov dlya payki i plakirovaniya konstruktivnykh elementov atomnoy tekhniki [Development and application of the fast-tempered alloys for the soldering and sheathing of constructive elements of nuclear equipment]. Available at: http://www.gidropress.podolsk.ru (accessed: April 13, 2016).
14. Kalin B.A., Fedotov V.T., Sevryukov O.N., Grigor'ev A.E. i dr. Amorfnye lentochnye pripoi dlya vysokotemperaturnoy payki. Opyt razrabotki tekhnologii i primeneniya [Amorphous tape solders for the high-temperature soldering. Experience of development of technology and application] // Svarochnoe proizvodstvo. 1996. №1. S. 15–19.
15. Papin P.A., Field R.D. and Javernick D.A. Characterization of Beryllium Copper Intermetallic Phases at a Beryllium Braze Interface by EPMA and TEM // Microscopy and Microanalysis. Vol. 11: Supplement S02. August, 2005. P. 1852–1853. Available at: http://www.journals.cambridge.org (accessed: April 13, 2016).
In the article the main results of research of high-temperature materials developed by FSUE «VIAM» produced from the metal fibers intended for application as essentially new abraded seals of air-gas channel and sound-absorbing materials of gas turbine engines are presented. The work is executed within the implementation of the complex scientific directions: 9.7. «High-temperature deformable alloys and the composite materials strengthened by high-melting metal fibers and particles, abraded sealing materials» and 15.7. «Porous fiber metal materials for sound-proof designs» («The strategic directions of materials and technologies of their processing development for the period till 2030»)
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Migunov V.P., Farafonov D.P. Issledovanie osnovnyh ekspluatacionnyh svojstv novogo klassa uplotnitelnyh materialov dlya protochnogo trakta GTD [Research of the main operational properties of new class of sealing materials for flowing path of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 15–20.
4. Migunov V.P., Farafonov D.P., Degovets M.L., Stupina T.I. Uplotnitelnye materialy dlya protochnogo trakta GTD [Sealing materials for flowing path of GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 94–97.
5. Migunov V.P., Farafonov D.P., Degovec M.L. Istiraemyj uplotnitelnyj material na osnove volokon iz mednyh splavov [Abradable sealing material made of fibers from copper alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 04. Available at: http://viam-works.ru (accessed: March 30, 2016). DOI: 10.18577/2307-6046-2014-0-9-4-2.
6. Farafonov D.P., Degovets M.L., Serov M.M. Issledovanie svojstv i tehnologicheskih parametrov polucheniya metallicheskih volokon dlya istiraemyh uplotnitelnyh materialov aviacionnyh GTD [The investigation of the properties and technological parameters producing metallic fibers for abradable sealing materials of aircraft GTE] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 02 Available at: http://viam-works.ru (accessed: March 30, 2016). DOI: 10.18577/2307-6046-2014-0-7-2-2.
7. Sobolev A.F., Ushakov V.G., Filippova R.D. Zvukopogloshchayushchie konstruktsii gomogennogo tipa dlya kanalov aviatsionnykh dvigateley [Sound-proof designs of homogeneous type for channels of aircraft engines] // Akusticheskiy zhurnal. 2009. T. 55. №6. S. 749–759.
8. Khaletskiy Yu.D. Effektivnost kombinirovannykh glushiteley shuma aviatsionnykh dvigateley [Efficiency of the combined silencers of noise of aircraft engines] // Akusticheskiy zhurnal. 2012. T. 58. №4. S. 556–562.
9. Sun F.G., Chen H.L., Wu J.H., Feng K. Sound absorbing characteristics of fibrous metal materials at high temperatures // Appl. Acoust. 2010. V. 711. P. 221–235.
10. Smarsly W., Zheng N., Buchheim C.S., Nindel C., Silvestro C., Sporer D., Tuffs M., Schreiber K., Langlade-Bomba C., Andersen O., Goehler H., Simms N.J., McColvin G. Advanced High Temperature Turbine Seals Materials and Designs // Material Science Forum. 2005. V. 492–493.P. 21–26.
11. Simms N.J., Norton J.F., McColvin G. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres // Materials and Corrosion. 2005. V. 56. P. 765–777.
12. Serov M.M., Borisov B.V. Poluchenie metallicheskikh volokon i poristykh materialov iz nikh metodom ekstraktsii visyashchey kapli rasplava [Receiving metal fibers and porous materials from them method of ekstraktsiya of hanging drop rasplava] // Tekhnologiya legkikh splavov. 2007. №3. C. 62–65.
13. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
14. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
15. Kablov E.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunktsionalnye vysokotemperaturnye pokrytiya dlya nikelevykh splavov, uplotnitelnykh metallicheskikh voloknistykh materialov i berillievykh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal fibrous materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 05. Available at: http://www.materialsnews.ru (accessed: March 30, 2016).
16. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Vysokotemperaturnye tonkoplenochnye pokrytiya dlya uplotnitelnyh materialov iz metallicheskih volokon [High-temperature thin-film coverings for sealing materials from metal fibers] // Aviacionnye materialy i tehnologii. 2012. №1. S. 30–36.
17. Felten E.J. Use of Platinum and Rhodium to Improve Oxide Adherence on Ni–8Cr–6Al Alloys // Oxidation of Metals. 1976. V. 10. №l. P. 23–28.
18. Allam I.M., Akuezue H.C., Whittle D.P. Influence of Small Pt Additions on Al2O3 Scale Adherence // Oxidation of Metals.1980. V. 14. №6. P. 517–530.
19. Heidloff A.J., Tang Z., Zhang F., Gleeson B.C. A Сombined Mapping Process for the Development of Platinum-modified Ni-based Superalloys // JOM. 2010. V. 62. P. 48–53.
20. Ballard D.L., Plichak А.L. The use of Precious-metal-modified Nickel-based Superalloys for Thin Gage Apllications // JOM. 2010. V. 62. P. 45–47.
21. Amano T., Takezawa Y., Shiino A., Shishido T. Surface morphology of scale on FeCrAl (Pd, Pt, Y) alloys // Journal of alloys and Compounds. 2008. V. 452. Issue 1. P. 16–22.
22. Amano T. High-temperature oxidation of FeCrAl (Y, Pt) alloys in oxygen-water vapour // Materials at high temperatures. 2011. V. 28. Issue 4. P. 342–348.
23. Amano T. High-temperature oxidation resistance of Al2O3-forming heat-resisting alloys with noble metal and rare earth additions // Materials and Corrosion. 2011. V. 62. №7. P. 659–667.
In modern technology, including aircraft manufacturing, the composite materials with higher static and dynamic strength, fracture toughness compared to traditional homogeneous materials are increasingly used. Among the composite materials the laminated composite materials containing alternating layers of metal and intermetallic or ceramic are of great interest. Four methods such as thermal explosion, reactive sintering, reactive pressing and explosive welding+sintering were considered for obtaining the Ti–TiAl3 metallic-intermetallic laminate composite. The microstructure and phase composition of the samples were studied by the X-ray diffraction, local X-ray spectrum and optical microscopy methods. The study shows that the multilayered composite could be obtained by all four methods
2. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chem-ical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 86. №6. S. 520–530.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Vecchio K.S. Synthetic multifunctional metallic-intermetallic laminate composites // JOM. 2005. Vol. 57 (3). P. 25–31.
6. Price R.D., Jiang F., Kulin R.M., Vecchio K.S. Effects of ductile phase volume fraction on the mechanical properties of Ti–TiAl3 metal-intermetallic laminate (MIL) composites // Materials Science and Engineering. 2011. Vol. A 528 (7). P. 3134–3146. DOI:10.1016/j.msea.2010.12.087.
7. Patselov A., Greenberg B., Gladkovskii S., Lavrikov R., Borodin E. Layered metal-intermetallic composites in Ti–Al system: strength under static and dynamic load // AASRI Procedia. 2012. Vol. 3. P. 107–112. DOI: 10.1016/j.aasri.2012.11.019.
8. Gurevich L.M., Trykov Yu.P., Pronichev D.V. i dr. Svojstva intermetallidnyh prosloek v sloistyh titano-alyuminievyh kompozitah [Properties of intermetallidny layers in layered titano-aluminum composites] // Izvestiya VolgGTU. 2009. №11 (59). S. 35–40.
9. Zelepugin S.A., Mali V.I., Zelepugin A.S., Ilina E.V. Failure of metallic-intermetallic laminate composites under dynamic loading // Shock Compression of Condensed Matter. USA, American Institute of Physics. 2012. Vol. 1426. P. 1101–1104. DOI: 10.1063/1.3686471.
10. Zelepugin S.A., Ilina E.V., Shpakov S.S., Lepakova O.K., Kasackij N.G., Shkoda O.A. Sintez mnogoslojnyh kompozitov i ih razrushenie pri dinamicheskom nagruzhenii [Synthesis of multi-layer composites and their destruction at dynamic loading] // Izvestiya vysshih uchebnyh zavedenij. Fizika. 2010. T. 53. №12–2. C. 161–165.
11. Zelepugin S.A., Lepakova O.K., Kasackij N.G., Shkoda O.A. Novyj podhod k sintezu mnog-oslojnyh metallo-intermetallidnyh kompozitov [New approach to synthesis of multi-layer metallo-intermetallidny composites] // Izvestiya vysshih uchebnyh zavedenij. Fizika. 2011. T. 54. №10–2. S. 80–83.
12. Krasnov E.I., Shtejnberg A.S., Shavnev A.A., Serpova V.M., Zhabin A.N. Issledovanie slois-togo metallicheskogo kompozicionnogo materiala sistemy Ti–TiAl3 [Research of layered metal composite material of Ti-TiAl3 system] // Fundamentalnye nauchnye osnovy sovremennyh kompleksnyh metodov issledovanij i ispytanij materialov, a takzhe elementov konstrukcij: sb. mater. molodezhnoj konferencii. M.: VIAM, 2015. S. 11.
13. Berlin A.A., Shtejnberg A.S., Krasnov E.I., Shavnev A.A., Lomov S.B., Serpova V.M. Eksperimentalnoe issledovanie polucheniya sloistyh kompozicionnyh materialov metodom elektroteplovogo vzryva. Ocenka ostatochnyh napryazhenij [Experimental study of receipt of layer composite materials by the method of electro-thermal explosion. Аssessment of residual stresses] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 5–10. DOI 10.18577/2071-9140-2014-0-s6-5-10.
14. Krasnov E.I., Shtejnberg A.S., Shavnev A.A., Berezovskij V.V. Issledovanie sloistogo metallicheskogo kompozicionnogo materiala sistemy Ti–TiAl3 [Study of Ti–TiAl3 laminate metal composite material ] // Aviacionnye materialy i tehnologii. 2013. №3. S. 16–19.
15. Kovtunov A.I., Myamin S.V. Issledovanie tehnologicheskih i mehanicheskih svojstv sloistyh titanoalyuminievyh kompozicionnyh materialov, poluchennyh zhidkofaznym sposobom [Study of the technological and mechanical properties of laminated titano-aluminium composite materials, produced by liquid-phase method] // Aviacionnye materialy i tehnologii. 2013. №1. S. 9–12.
16. Pacelov A.M., Gladkovskij S.V., Lavrikov R.D., Kamancev I.S. Treshhinostojkost sloistyh kompozitov s cheredovaniem sloev TiAl3–Ti–Al–Al3Ti v usloviyah staticheskogo i ciklicheskogo nagruzheniya [Crack firmness of layered composites with alternation of layers of TiAl3-Ti-Al-Al3Ti in the conditions of static and cyclic loading] // Deformaciya i razrushenie materialov. 2014. №12. S. 7–11.
17. Lazurenko D.V., Mali V.I., Shevtsova K.E. Structure and properties of Al–Ti multilayered composites with intermetallic layers // Applied Mechanics and Materials. 2014. Vol. 682. P. 132–137. DOI:10.4028/www.scientific.net/AMM.682.132.
18. Zelepugin S.A., Zelepugin A.S. Failure of multilayer composites under dynamic loading // 11th World Congress on Computational Mechanics (WCCM 2014); 5th European Conference on Computational Mechanics (ECCM 2014); 6th European Conference on Computational Fluid Dynamics (ECCFD 2014). Spain, Barcelona. Int. Center for Numerical Methods in Engineering (CIMNE). 2014. Vol. 4. P. 3926–3933.
19. Zelepugin S.A., Shpakov S.S. Razrushenie metallo-intermetallidnogo mnogoslojnogo kompozita pri vysokoskorostnom udare [Destruction of metallo-intermetallidny multi-layer composite at high-speed blow] // Mehanika kompozicionnyh materialov i konstrukcij. 2009. T. 15. №3. S. 369–382.
20. Zelepugin S.A., Shpakov S.S. Razrushenie mnogoslojnyh metallo-intermetallidnyh kompozitov pri dinamicheskom nagruzhenii [Destruction of multi-layer metallo-intermetallidny composites at dynamic loading] // Vestnik Nizhegorodskogo un-ta im. N.I. Lobachevskogo. 2011. №4 (4). S. 1490–1492.
21. Cao Y., Zhu S., Guo C., Vecchio K.S., Jiang F. Numerical investigation of the ballistic performance of metal-intermetallic laminate composites // Applied Composite Materials. 2015. Vol. 22. P. 437–456. DOI: 10.1007/s10443-014-9416-1.
22. Zelepugin S.A., Zelepugin A.S. Numerical simulation of multilayer composites failure under dynamic loading // Applied Mechanics and Materials. 2015. Vol. 756. P. 408–413. DOI: 10.4028/www.scientific.net/AMM.756.408.
23. Deribas A.A. Fizika uprochneniya i svarki vzryvom [Physics of hardening and explosion welding]. Novosibirsk: Nauka, 1972. 188 s.
In present article the thermo-resistant materials based on polyheteroarilens different types are described. The thermophysical (thermal conductivity, heat capacity) properties, thermal stability (TGA method, with increases temperature 5°С/min), the value of coke residue and strength properties (compression strength) after pyrolysis of polymer materials in coal at 1000°С during 1 hour, heat shield properties on temperature on the back side of sample (20 mm) and velocity of radiation heating as far as 800–1000°С and also erosion ablation properties are determined. It is shown, that material, based on different types of polyheteroarilens have improved operational properties versus material based on phenolic resins. Such material can be used as thermal protections materials. The work is executed within the implementation of the complex scientific direction 16.1. «Polymeric and foam materials» («The strategic directions of development of materials and technologies of their processing for
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3 Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
4. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
5. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
6. Shhetanov B.V., Ivahnenko Yu.A., Babashov V.G. Teplozashhitnye materialy [Heat-protective materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12−19.
7. Teplostojkij penogermetik: pat. 2263130 Ros. Federaciya [Heatresistant foamed sealant: pat. 2263130 Rus. Federation]; opubl. 25.06.04.
8. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: January 25, 2016).
9. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: January 25, 2016).
10. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professiya, 2006. 624 s.
11. Mihajlin Yu.A. Specialnye polimernye kompozicionnye materialy [Special polymeric composite materials]. SPb.: NOT, 2009. 658 s.
12. Kojtov S.A., Melnikov V.N. Analiz teplofizicheskih svojstv polimerov s celyu vybora optimalnogo kompozicionnogo materiala teplozashhitnogo pokrytiya letatelnogo apparata [The analysis of heatphysical properties of polymers for the purpose of choice of optimum composite material of heat-protective covering of the flight vehicle] // Vestnik YuUrGU. 2012. №12. S. 194–198.
13. Ahmad Reza Bahramian. Effect of external heat on the thermal diffusivity and ablation performance of carbon fiber reinforced novolac resin composite // Iranian Polymer Journal. 2013. V. 22. №8. P. 579–589.
14. Torre L., Kenny J.M., Maffezzoli A.M. Degradation behavior of a composite material for thermal protection systems. Part I. Experimental characterization // Journal of Material Science. 2010. V. 33. №12. P. 3137–3143.
15. Stirna U., Beverte I., Yakushin V., Gabulis U. Polyurethane and polyisocyanurate foams in external tank cryogenic insulation // Polymers and cryogenic temperatures. 2013. V. 1. P. 203–244.
This article describes preparation of polycyanurate binder, processed by the method of resin transfer molding (RTM). By the methods of HPLC, IR spectroscopy and DSC analysis the reaction of cyclotrimerization cyanate ester resin in the temperature range of 130 to 150°C is studied. The optimum mode of heat treatment is found for cyanate ester oligomer allowed to implement almost 100% conversion of the functional groups to obtain heat-resistant polymer matrix with Tg≥250°C on the basis of the received results. Fiberglass and carbon plastics based on the binder have a high level of strength properties, both at room and at elevated temperatures. The work is executed within the implementation of the complex scientific direction 13.1. «Binding for polymer and composite materials of constructional and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii, 2010. 822 s.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Muhametov R.R., Merkulova Yu.I., Chursova L.V. Termoreaktivnye polimernye svyazuyushhie s prognoziruemym urovnem reologicheskih i deformativnyh svojstv [Thermosetting polymeric binding with predicted level of rheological and deformativny properties] // Klei. Germetiki. Tehnologii. 2012. №5. S. 19–21.
5. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Molten binding for perspective methods of manufacturing of PKM of new generation] // Metally Evrazii. 2012. №3. S.10–14.
7. Dushin M.I., Muhametov R.R., Platonov A.A., Merkulova Yu.I. Issledovanie filtracionnyh harakteristik armiruyushhih napolnitelej i svyazuyushhih pri razrabotke tehnologii bezavtoklavnogo formovaniya polimernyh kompozicionnyh materialov [Study of filtration characteristics of reinforcing fillers and binders in the development of non-out-autoclave technology for polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №2. S. 22–25.
8. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
9. Beckwith S.W. Resin Infusion Technology: Part 3 – A Detailed Overview of RTM and VIP Infusion Processing Technologies // SAMPE Journal. 2007. V. 43. №4. Р. 66–70.
10. Yung-Tin Cnen, C.W. Macosko. Kinetics and Rheology Characterization During Curing of Dicyanates // Journal of Applied Polymer Science. 1996. V. 62. P. 567–576.
11. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
12. Kuznetsov A.A., Semenova G.K. Perspektivnye vysokotemperaturnye svyazuyushhie dlya polimernyh kompozicionnyh materialov [Perspective high-temperature binding for polymeric composite materials] // Rossijskij himicheskij zhurnal. 2009. T. LIII. №4. S. 86–96.
13. Muhametov R.R., Shimkin A.A., Dolgova E.V., Merkulova Yu.I. Polifunkcional'nye cianovye efiry dlya izgotovleniya kompozicionnyh materialov [Multifunctional cyanic ethers for manufacturing of composite materials] // Zhurnal prikladnoj himii. 2014. T. 87. Vyp. 12. S. 1836–1840.
14. Bershtejn V.A., Egorov V.M. Differencialnaya skaniruyushhaya kalorimetriya v fizikohimii polimerov [Differential scanning calorimetry in the physical chemistry of polymers]. L.: Himiya, 1990. 256 s.
15. Godovskij Yu.K. Teplofizicheskie metody issledovaniya polimerov [Heatphysical methods of research of polymers]. M.: Himiya, 1976. 216 s.
Antifriction organoplastics reinforced with fabrics with polytetrafluoroethylene (PTFE) fibers or ultrahigh molecular weight polyethylene (UHMWPE) fibers are investigated. It is shown that friction coefficients in pairs «organoplastic–steel» and «organoplastic–carbon-filled plastic» change in the range of 0,07 to 0,20 depending on load and sliding speed (0,8–3,2 MPa; 0,1–0,45 m/s) with extremely low weight wear. Organoplastics are recommended as antifriction coatings for heavy-loaded sliding bearings in condition of dry friction. The work is executed within the implementation of the complex scientific direction 13. «Polymer composite materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Sovremennye mashinostroitelnye materialy. Nemetallicheskie materialy: spravochnik / pod obshh. red. I.V. Gorynina i A.S. Oryshhenko [Modern machine-building materials. Non-metallic materials: the directory / gen. ed. by. I.V.Gorynin and A.S.Oryshchenko]. SPb.: Professional, 2012. 916 s.
3. Voronkov B.D. Podshipniki suhogo treniya [Bearings of dry friction]. L.: Mashinostroenie, 1979. 224 s.
4. Buhin V.E., Evseev V.N., Postnikov Yu.A., Fedoseeva A.Yu. Polimernye materialy dlya uzlov treniya [Polymeric materials for friction nodes] // Tehnologiya, organizaciya proizvodstva i upravleniya, obzornaya informaciya. NIIEinformenergomash. 1987. Vyp. 15. S. 1–33.
5. Adamenko N.A., Agafonova G.V. Tribotehnicheskie polimernye materialy. Volgograd: VolgGTU, 2013. 107 s.
6. Sirenko G.A., Sviderskij V.P., Gerasimov V.D., Nikonov V.Z. Antifrikcionnye termostojkie polimery [Antifriction heat-resistant polymers]. Kiev: Tehnika, 1978. 246 s.
7. Davydova I.F., Kavun N.S. Teplostojkie antifrikcionnye tekstolity [Heat-resistant anti-friction textolites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 04. Available at: http://www.viam-works.ru (accessed: February 29, 2016). DOI: 10.18577/2307-6046-2014-0-11-4-4.
8. Donetskij K.I., Khrulkov A.V. Primenenie naturalnyh volokon pri izgotovlenii polimernyh kompozicionnyh materialov [Application of naturals fibers for manufacturing of polymer composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 10. Available at: http://www.viam-works.ru (accessed: March 04, 2016). DOI: 10.18577/2307-6046-2015-0-2-10-10.
9. Anisimov A.V., Bahareva V.E., Balyshko I.V., Ginzburg B.M., Kirik E.V., Tochilnikov D.G. Harakteristiki organoplastikov na osnove fenolnoj matricy i oksolanovogo volokna [Characteristics organic plastics on the basis of phenolic matrix and oxolan fiber] // Voprosy materialovedeniya. 2006. №2. S. 113–118.
10. Yudin A.S. Razrabotka iznosostojkih, antifrikcionnyh organotekstolitov na osnove polioksadiazol'nyh tkanej i polimer-mineralnyh modifikatorov: avtoref. dis. ... kand. tehn. nauk [Development wearproof, antifriction organocloth-based laminate on the basis of polyoxadiazole fabrics and polymer-mineral modifiers: thesis of Cand. Tech. Sci.]. M., 2013. 20 s.
11. Kablov E.N., Kondrashov S.V., Yurkov G.Y. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Nanotechnologies in Russia. 2013. Т. 8. №3–4. С. 163–185.
12. Bejder E.Ya., Donskoj A.A., Zhelezina G.F., Kondrashov E.K., Sytyj Yu.V., Surnin E.G. Opyt primeneniya ftorpolimernyh materialov v aviacionnoj tehnike [Experience of application of ftorpolimerny materials in aviation engineering] // Rossijskij himicheskij zhurnal. 2008. T. LII. №3. S. 30–44.
13. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
14. Timoshkov P.N., Hrulkov A.V. Sovremennye tehnologii pererabotki polimernyh kompozitsionnyh materialov, poluchaemyh metodom propitki rasplavnym svyazuyushchim [Modern technologies of hotmelt polymer composite materials processing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 04. Available at: http://www.viam-works.ru (accessed: February 19, 2016). DOI: 10.18577/2307-6046-2014-0-8-4-4.
15. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
Layered hybrid metal-plastic composite materials are considered in the article from the point of view of optimisation of their composition for various conditions of functioning. Positioning and thickness influence of high-rigid layers on cylindrical rigidity of the composite is shown at a symmetric and asymmetric (unilateral) bend. Recommendations for choice of hybrid composites for various kinds of loads are given. The work is executed within the implementation of the complex scientific direction 6. «Layered metal-plastic, bimetallic and hybrid materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 813.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s AIRBUS i TU DELFT [Layered aluminum fibreglasses SIAL-1441and cooperation with AIRBUS and TU DELFT] // Tsvetnye metally. 2013. №9 (849). S. 50–53.
5. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
6. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Perspektivy ispolzovaniya titanovyh splavov v sloistyh kompozicionnyh materialah [Prospects for the use of titanium alloys in laminated composite materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 04. Available at: http://www.viam-works.ru (accessed: February 16, 2016). DOI: 10.18577/2307-6046-2015-0-10-4-4.
7. Antipov V.V., Senatorova O.G., Sidelnikov V.V. Issledovanie pozharostojkosti sloistyh gibridnyh alyumostekloplastikov klassa SIAL [Research of fire firmness layered hybrid aluminum fibreglasses of SIAL’s class] // Aviacionnye materialy i tehnologii. 2011. №3. S. 36–41.
8. Antipov V.V. Tehnologichnyj alyuminijlitievyj splav 1441 i sloistye gibridnye kompozity na ego osnove [Technological aluminum lithium alloy 1441 and layered hybrid composites on its basis] // Metallurg. №5. 2012. S. 36–39.
9. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
10. Gayamov A.M., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Vybor zharostojkogo pokrytija dlya zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Selection of heat-resistant coating with metalloceramic barrier layer for protection of Re-Ru nickel-based superalloy] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №1. St. 01. Available at: http://viam-works.ru (accessed: February 14, 2016). DOI: 10.18577/2307-6046-2014-0-1-4-4.
11. Belous V. Ya., Loshhinina A.O., Varlamova V.E., Nikitin Ya.Yu. Korrozionna ya stojkost i podgotovka poverhnosti holodnokatanoj lenty iz stali VNS-9-Sh dl ya izgotovleni ya MPKM [Corrosion resistance and preparation of a surface of a cold rolled tape from VNS9-Sh steel for production of metalpolymeric composite material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 10. Available at: http://www.viam-works.ru (accessed: Febru-ary 14, 2016). DOI: 10.18577/2307-6046-2015-0-11-10-10.
12. Bulanov I.M., Vorobej V.V. Tehnologiya raketnyh i aerokosmicheskih konstrukcij iz kompozicionnyh materialov: ucheb. dlya vuzov [Technology of rocket and space designs from composite materials: textbook for higher education institutions]. M.: Izd-vo MGTU im. N.E. Baumana, 1998. 516 s.
13. Propedevticheskaya stomatologiya: ucheb. dlya medicinskih vuzov / pod red. E.A. Bazikyana [Propaedeutic stomatology: textbook for medical higher education institutions / ed. by E.A. Bazikyan]. M.: GEOTAR-Media, 2008. 768 s.
14. Zhelezina G.F. Treshhinostojkie metalloorganoplastiki dlya aviacionnyh konstrukcij: avtoref. dis. … kand. tehn. nauk [Crack resistant metalorganoplastics for aviation designs: thesis … Cand. Tech. Sci.]. M.: VIAM, 1996. 32 s.
15. Trefilov B.F. Razrabotka i issledovanie uglealyuminievogo kompozicionnogo materiala VKU-1 [Development and research carbon aluminum VKU-1 composite material] // Aviacionnye materialy. M.: ONTI VIAM, 1981. Vyp. 1. S. 17–25.
16. Prochnost, ustojchivost, kolebaniya: spravochnik v 3 t. / pod obshh. red. I.A. Birgera, Ya.G. Panovko [Durability, stability, fluctuations: the directory in 3 vol. / gen. ed. by. I.A.Birger, Ya.G.Panovko]. M.: Mashinostroenie, 1968.T. 2. 464 s.
The possibility of spectrophotometric determination of palladium content (from 0,2 to 2,5 wt. %) in platinum-palladium coatings using thiopyrine reagent is studied. Thiopyrine forms complex compounds with a characteristic absorption band intensely stained (=4,1•104) at maх=335 nm in acid solution with Pd (II) ion. It is established by isomolar series methods that thiopyrine and palladium in 0,1 N H2SO4 medium are included in the complex forming coloration with 1:3 ratio. In order to analyze the platinum-palladium coating was separated from the copper substrate on which it was deposited by dissolving the latter in HNO3 solution (1:1), while the platinum palladium coating remained undissolved. After washing and weighing the coating was dissolved in a mixture of HCl and HNO3 acids (acid ratio of 3:1) under heating. After sample preparation, the optical density of the solution at a wavelength =335 nm with a spectrophotometer PE-5400 was determined. An appropriate concentration of reage
2. Habirov V.V. Rol RAN v sozdanii proizvodstva redkih i redkozemelnyh metallov [Role of the Russian Academy of Sciences in creation of production of rare and rare earth metals] // Redkie zemli. 2013. №1. S. 46–51.
3. Kozhahmetov S. Vek redkih metallov [Century of rare metals] // Redkie zemli. 2013. №1. S. 60–65.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N., Karpov Yu.A., Karfidova K.E., Kudryavceva G.S., Titov V.I., Gundobin N.V. Opredelenie reniya i ruteniya v nanostrukturirovannyh zharoprochnyh nikelevyh splavah dlya aviacionnoj tehniki [Reniye and ruthenium definition in the nanostructured heat resisting nickel alloys for aviation engineering] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T.80. №1. S. 6–12.
7. Petrova A.M., Kasikov A.G. Bez reniya rakety ne letayut [Without reniye of the rocket do not fly] // Redkie zemli. 2013. №1. S. 56–59.
8. Sidorov V.V., Timofeeva O.B., Kalitsev V.A., Goryunov A.V. Vliyanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashheniya v intermetallidnom splave VKNA-25-VI [Influence of microalloying of RZM on properties and structural phase changes in intermetallidny alloy VKNA-25-VI] // Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
9. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: January 14, 2016).
10. Budinovskij S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoj modeli opredeleniya uprugih napryazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostojkih pokrytij dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 26–37.
11. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
12. Ginzburg S.I., Ezerskaya N.A., Prokofeva I.V., Fedorenko N.V. Analiticheskaya himiya platinovyh metallov [Analytical chemistry of platinum metals]. M.: Nauka, 1972. 616 s.
13. Malyutina T.M., Alekseeva T.Yu., Karpov Yu.A. Opredelenie platiny i palladiya v otrabotannyh katalizatorah metodom ICP/OES posle vskrytiya proby vysokotemperaturnym splavleniem [Platinum and palladium definition in the fulfilled catalysts the ICP/OES method after opening of test by high-temperature fusing] // Zavodskaya laboratoriya. Diagnostika materialov. 2009. T. 75. №1. S. 4–7.
14. Basargin N.N., Rozovskij Yu.G. Fotometricheskij metod opredeleniya palladiya [Photometric method of definition of palladium] // Teoreticheskie i prakticheskie voprosy primeneniya organicheskih reagentov v analize. M.: Nauka, 1976. S. 125–131.
15. Titov V.I., Gundobin N.V., Pilipenko L.V. Opredelenie palladiya v poroshkoobraznyh materialah elektrotehnicheskih izdelij, otrabotavshih svoj resurs [Determination of palladium in powder materials of electrical products after their service life exhausting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 11. URL: http://www.viam-works.ru (accessed: January 14, 2016). DOI: 10.18577/2307-6046-2015-0-1-11-11.
16. Kanaev N.A., Smirnova L.I., Pilipenko L.V. Uskorennye metody analiza metallov s primeneniem tiopirina [The accelerated methods of the analysis of metals using thiopyrine] // Povyshenie effektivnosti i kachestva kontrolya himicheskogo sostava materialov: mater. seminara. M.: MDNTP im. F.E. Dzerzhinskogo, 1978. S. 111–116.
17. Sharlo G. Metody analiticheskoj himii [Methods of analytical chemistry]. L.: Himiya, 1965. 758 s.
18. Predstavlenie rezultatov himicheskogo analiza (rekomendacii IUPAC 1994) [Representation of results of chemical analysis (IUPAC 1994 recommendation)] // Zhurnal analiticheskoj himii. 1998. T. 53. №9. S. 998–1008.
The method of research of creep at step loading is offered and the device of automatic registration of deformation is developed. This method consists in uniaxial step stretching of polymer sample in isothermal conditions at temperature of 100°C when mobility of supermolecular structures of polymer is facilitated. As a result the dependence of relative deformation on time is having the step appearance . The constant deformation, i.e. equilibrium deformation of certain structural elements remains on each step of this curve. The curve consists of three sites: on the first the Hooke law is carried out; the second is responsible for step creep; on the third is developed the general plastic strain and sample passes to neck. Sample reduction to the initial sizes is also revealed at loading reduction after step loading. It is supposed that driving force of process of retardation are relaxation processes. The method of step loading is peculiar «mechanical spectroscopy» of supermolecular structu
2. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
3. Larionov S.A., Deev I.S., Petrova G.N., Bejder E.Ya. Vliyanie uglerodnyh napolnitelej na elektrofizicheskie, mehanicheskie i reologicheskie svojstva polietilena [Effect of carbon fillers on the electrical, mechanical and rheological properties of polyethylene] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 04. Available at: http://www.viam-works.ru (accessed: April 20, 2016).
4. Shurajc A.L., Kargin V.Yu., Volnov Yu.N. Gazoprovody iz polimernyh materialov: posobie po proektirovaniyu, stroitelstvu i ekspluatacii [Gas pipelines from polymeric materials: grant on design, construction and operation]. Saratov: Volga – HHI vek, 2007. S. 30–46.
5. Cheng Joy J. Mechanical and Chemical Properties of High Density Polyethylene: Effects of Microstructure on Creep Characteristics: PHD thesis. Waterloo. Ontario. Canada. 2008. P. 9–10.
6. Marihin V.A., Myasnikova L.P. Nadmolekulyarnaya struktura polimerov [Supramolecular structure of polymers]. L.: Himiya, 1977. C. 42–49.
7. Uajt Dzh.L., Choj D.D. Polietilen, polipropilen i drugie poliolefiny: per. s angl [Polyethylene, polypropylene and other polyolefins: tans. from English]. SPb.: Professiya, 2006. S. 97–100.
8. Kuleznev V.N., Shershnev V.A. Himiya i fizika polimerov. 2-e izd. [Chemistry and physics of polymers. 2nd ed.]. M.: Koloss, 2007. S. 118–121.
9. Petrova G.N., Perfilova D.N., Gryaznov V.I., Bejder E.Ya. Termoplastichnye elastomery dlya zameny rezin [Thermoflexible elastomer for replacement of rubbers] // Aviacionnye materialy i tehnologii. 2012. №S. S. 302–308.
10. Petrova G.N., Rumyantseva T.V., Perfilova D.N., Bejder E.Ya., Gryaznov V.I. Termoelastoplasty – novyj klass polimernyh materialov [Thermoelastoplastics – new class of polymeric materials] // Aviacionnye materialy i tehnologii. 2010. №4. S. 20–25.
11. Tkachuk A.I., Grebeneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svyazuyushhie. Nastoyashhee i budushhee [Thermoplastic binders. The present and the future] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 07. Available at: http://www.viam-works.ru (accessed: April 20, 2016).
12. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
13. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: April 20, 2016). DOI: 10.18577/2307-6046-2014-0-7-6-6.
14. Kuleznev V.N., Ivanov M.S. Stupenchataya polzuchest polietilenov trubnyh marok v temperaturnom rezhime predplavleniya [Step creep of polyethylene of pipe brands in temperature mode of premelting] // Vysokomolekulyarnye soedineniya. 2016. Ser.: A. T. 58. №4. S. 1–8.
15. Pemberton S., Chrystle-Lowe D., Rafiq S., Modelska K., Ingham E. Development of slow crack growth resistance (strain hardering) test for assessment of ageing PE pipeline materials // 17th Plastic Pipes Conference. September 22–24, 2014. Chicago. Illinoys, USA.
16. Deblieck Rudy A.C., D.J.M. van Beek, Remerie K., Ward Ian M. Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network // Polymer. 2011. V. 52. P. 2979–2990.
17. McCarthy M., Deblieck R., Mindermann P., Kloth R., Kurelec L., Martens H. New accelerated method to determine slow crack growth behavior of polyethylene pipe materials // 14th Plastic Pipes Conference. 2008.
18. Kurelec L., Teeuwenb M., Schoffeleersb H., Deblieck R. Strain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene // Polymer. 2005. V. 46. P. 6369–6379.
19. E. van der Stok, Scholten F. Strain hardering tests on PE pipe materials // Plastic Pipes XVI Conference. September 24–26, 2012. Barcelona, Spain.
20. Alwis K.G.N.C., Burgoyne C.J. Accelerated creep testing for aramid fibres using the stepped isothermal method // J. Mater. Sci. 2008. V. 43. P. 4789–4800.
21. Achereiner F., Engelsing K., Bastian M., Heidemeyer P. Accelerated creep testing of polymers using the stepped isothermal method // Polymer Testing. 2013. V. 32. P. 447–454.
22. Hadid M., Guerira B., Bahri M., Zouani A. Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics // Polymer Testing. 2014. V. 34. P. 113–119.
Different existing test methods on corrosion aggression of aviation gasolines are given in the work. The conditions influencing corrosion aggression of gasolines are analyzed. Complex test methods executed at FSUE «VIAM» on metal materials of the aircraft engine, including different influencing factors, such as elevated temperature and humidity are considered. Results on comprehensive tests are given in this work on determination of corrosion aggression and acidity of Avgas 100LL gasoline. On the basis of the developed technique the internal FSUE «VIAM» STO 1-595-7-503–2015 standard «Method of determination of corrosion aggression of gasoline» was published. The work is executed within the implementation of the complex scientific direction 2.2. «Qualification and researches of materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. C. 2–14.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
4. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
5. Chulkov P.V. Motornye topliva: resursy, kachestvo, zameniteli: spravochnik [Motor fuels: resources, quality, substitutes: directory]. M.: Politehnika, 1998. S. 162–185.
6. Shkolnikov V.M. Topliva. Smazochnye materialy. Tehnicheskie zhidkosti. Assortiment i primenenie [Fuels. Lubricants. Technical liquids. Range and application]. M.: Tehinform, 1999. S. 62–75.
7. Trudy 25 GosNII MO RF [Works 25 of the State research institute of Defense agency of the Russian Federation] / M-vo oborony Ros. Federacii, 25 Gos. Nauch.-issled. In-t Minoborony Rossii. M.: Graliya. 2008. Vyp. 54. S. 267–269.
8. Barsukov V.I. Plamenno-emissionnye i atomno-absorbcionnye metody analiza i instrumentalnye sposoby povysheniya ih chuvstvitelnosti [Flame and emission and nuclear and absorbing methods of the analysis and tool ways of increase of their sensitivity]. M.: Mashinostroenie-1, 2004. 172 s.
9. Butina N.P., Zamyatina E.R., Zorina L.P. Primenenie atomno-absorbcionnoj spektroskopii dlya opredeleniya medi, cinka, magniya i kalciya v maslah i prisadkah [Application of nuclear and absorbing spectroscopy for definition of copper, zinc, magnesium and calcium in oils and additives] // Neftepererabotka i neftehimiya. 1997. №6. S. 21–23.
10. Privalenko A.N., Balak G.M., Bagramova E.K. Opredelenie soderzhaniya metallov v neftyanyh toplivah metodom atomno-absorbcionnoj spektrometrii [Definition of the content of metals in oil fuels method of nuclear and absorbing spectrometry] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. / M-vo oborony Ros. Federacii, 25 Gos. Nauch.-issled. In-t Minoborony Rossii. 2014. C. 298–306.
11. Butina N.P., Zorina L.P. Atomno-absorbcionnoe opredelenie elementov v tehnologicheskih otlozheniyah s ispolzovaniem vozdushno-acetilenovogo plameni [Nuclear and absorbing definition of elements in technological deposits with use of acetylene-air flame] // Neftepererabotka i neftehimiya. 1998. №1. C. 24–26.
12. Mikov D.A., Kravchenko N.G., Petrova V.A., Kutyrev A.E. Opredelenie soderzhaniya medi v aviacionnyh toplivah metodom atomno-absorbcionnoj spektrometrii [Quantitative analysis of copper in aviation fuel by atomic absorption spectrometry] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 12. Available at: http://www.viam-works.ru (accessed: February 25, 2016). DOI: 10.18577/2307-6046-2015-0-10-12-12.
13. Zagvozdkina T.N., Karachevtsev F.N., Dvoretskov R.M. Primenenie modelnyh rastvorov v atomno-absorbcionnom analize [Application of model solutions for ICP-AES procedures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 10. Available at: http://www.viam-works.ru (accessed: February 25, 2016). DOI: 10.18577/2307-6046-2015-0-3-10-10.
14. Dvoretskov R.M., Karachevtsev F.N., Isachenko Ya.A., Zagvozdkina T.N. Opredelenie osnovnyh i legiruyushhih elementov v termostabilnyh magnitnyh materialah sistemy RZM–Fe–Co–B metodom AES-ISP [ICP-AES determination of basic and alloying elements in thermostable magnetic materials of REM–Fe–Co–B system] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №11. St. 10. Available at: http://viam-works.ru (accessed: February 25, 2016). DOI: 10.18577/2307-6046-2014-0-11-10-10.
15. Prajs V. Analiticheskaya atomno-absorbcionnaya spektroskopiya [Analytical nuclear and absorbing spectroscopy]. M.: Mir, 1976. 358 c.
The research results and curves built on the developed mathematical algorithm of probability detection of defects by their size and also the comparative analysis of testing results reliability by using the ultrasonic phased arrays and single element piezoelectric convertor are shown. It is shown that probability of defect detection for ultrasonic testing of the monolithic CFRP structures by phased array technique is considerably higher than by using traditional piezoelectric transducers.
2. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41.
4. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazuyushhie dlya perspektivnykh metodov izgotovleniya konstruktsionnyh voloknistykh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
5. Dushin M.I., Khrulkov A.V., Platonov A.A., Akhmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennykh po rastvornoj tehnologii [Out-of-autoclave formation carbon plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
6. Boychuk A.S. Nerazrushayushchiy kontrol detaley i konstruktsiy aviatsionnoy tekhniki iz polimernykh kompozitsionnykh materialov pri ispolzovanii ultrazvukovykh fazirovannykh reshetok [Non-destructive testing of details and designs of aviation engineering from polymeric composite materials when using the ultrasonic phased grids] // Tez. dokl. 19-y Vseros. nauch.-tekhnich. konf. po nerazrushayushchemu kontrolyu i tekhnicheskoy diagnostike. Samara, 2011. S. 289–291.
7. Boychuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Kontrol tekhnologicheskikh i ekspluatatsionnykh narusheniy sploshnosti ploskikh paneley iz polimernykh kompozitsionnykh materialov pri ispolzovanii ultrazvukovykh fazirovannykh reshetok [Control of technological and operating disturbances of continuity of flat panels from polymeric composite materials when using the ultrasonic phased grids] // Tez. dokl. Vseros. konferentsii po ispytaniyam i issledovaniyam materialov «TestMat-2012». M.: VIAM, 2012. S. 6.
8. Boychuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Nerazrushayushchiy kontrol tekhnologicheskikh narusheniy sploshnosti T-obraznoy zony integralnoy konstruktsii iz PKM s ispolzovaniem ultrazvukovykh fazirovannykh reshetok [Non-destructive testing of technological violations of continuity of the Tee zone of integral design from PCM with use of the ultrasonic phased grids] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №10. S. 38–44.
9. Boychuk A.S., Generalov A.S., Lozhkova D.S., Stepanov A.V. Kontrol T-obraznykh zon stringera iz PKM s ispolzovaniem ultrazvukovykh fazirovannykh reshetok [Control of Tee zones of stringer from PCM with use of the ultrasonic phased grids] // Radioelektronika, elektrotekhnika i energetika: tez. dokl. 18-y Mezhdunar. nauch.-tekhnich. konf. studentov i aspirantov. M., 2012. T. 2. S. 127–128.
10. Boychuk A.S., Generalov A.S., Stepanov A.V. Yukhatskova O.V. Nerazrushayushchiy kontrol PKM s ispolzovaniem ultrazvukovykh fazirovannykh reshetok [Non-destructive testing of PCM with use of the ultrasonic phased grids] // Promyshlennye ASU i kontrollery. 2013. №2. S. 54–58.
11. Boychuk A.S., Stepanov A.V, Kosarina E.I., Generalov A.S. Primenenie tehnologii ultrazvukovyh fazirovannyh reshetok v nerazrushayushhem kontrole detalej i konstruktsij aviacionnoj tehniki, izgotavlivaemyh iz PKM [Application of ultrasonic phased lattice technique for nondestructive testing of aviation FRP parts structures] // Aviacionnye materialy i tehnologii. 2013. №2. S. 41–46.
12. Boychuk A.S., Generalov A.S., Stepanov A.V. Nondestructive testing of FRP by using phased array ultrasonic technology // Application of Contemporary Non-Destructive Testing in Engineering: abstracts of the 12th International Conference of the Slovenian Society for Non-Destructive Testing. Portorož, Slovenia. September 4–6, 2013.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Boychuk A.S., Generalov A.S., Lozhkova D.S., Stepanov A.V. Otsenka veroyatnosti obnaruzheniya defektov v ugleplastikakh pri ultrazvukovoy defektoskopii s ispolzovaniem fazirovannykh reshetok [Assessment of probability of detection of defects in ugleplastikakh at ultrasonic defects scope with use of the phased grids] // Radioelektronika, elektrotekhnika i energetika: tez. dokl. 19-y Mezhdunar. nauch.-tekhnich. konf. studentov i aspirantov. M.: MEI, 2013. T. 2. S. 106.
15. Boychuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Veroyatnostnaya otsenka dostovernosti rezultatov ultrazvukovogo nerazrushayushchego kontrolya konstruktsiy iz PKM, primenyaemykh v aviatsionnoy promyshlennosti [Probabilistic assessment of reliability of results of ultrasonic non-destructive testing of designs from PCM applied in the aviation industry] // Remont. Vosstanovlenie. Modernizatsiya. 2013. №9. S. 36–40.
Research results of operation capabilities of ultrasonic resonance method during multilayer constructions control are given. It is shown that the resonance method can be used for detection of glued joints defects and stratifications in constructions from metal and non-metallic materials. Recommendations about application of contact environment on water basis for acoustic contact between piezoelectric invertor of the defectoscope and controlled product are made.
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. Vyp. «Metody ispytaniy i kontrolya kachestva metallicheskikh i nemetallicheskikh materialov». S. 3–8.
3. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
4. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstruktsiy aviatsionnoy tekhniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii. 2002. №1.
S. 61–65.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Nerazrushayushchiy kontrol: spravochnik / pod obshch. red. V.V. Klyueva [Non-destructive testing: directory / gen. ed. by V. V. Klyuyev]. M.: Mashinostroenie, 2006. T. 3. Ultrazvukovoy kontrol / I.N. Ermolov, Yu.V. Lange. 864 s.
7. Murashov V.V. Kontrol kleenykh konstruktsiy [Control of glued designs] // Klei. Germetiki. Tekhnologii. 2005. №1. S. 21–27.
8. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] //Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
9. Murashov V.V. Nerazrushayushchiy kontrol kleevykh soedineniy [Non-destructive testing of glued joints] // Klei. Germetiki. Tekhnologii. 2008. №7. S. 21–28.
10. Murashov V.V. Nondestructive Testing of Glued Joints // Polymer Science. Series D. Glues and Sealing Materials. 2009. V. 2. №1. Р. 58–63.
11. Murashov V.V., Rumyantsev A.F. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov i metody ikh vyyavleniya. Chast 1. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 1. Defects of monolithic details and multi-layer designs from polymeric composite materials] // Kontrol. Diagnostika. 2007. №4. S. 23–32.
12. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultrasound. Kaunas: Tecnologija. 2006. №2. Р. 7–10.
13. Murashov V.V. Opredelenie fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov akusticheskimi metodami [Definition of physicomechanical characteristics and composition of polymeric composite materials acoustic methods] // Aviacionnye materialy i tehnologii. 2012. №S. S. 465–475.
14. Murashov V.V., Rumyantsev A.F., Ivanova G.A., Fayzrakhmanov N.G. Diagnostika struktury, sostava i svoystv polimernykh kompozitsionnykh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
15. Karabutov A.A., Murashov V.V., Podymova N.B. Diagnostika sloistykh kompozitov s pomoshch'yu lazernogo optiko-akusticheskogo preobrazovatelya [Diagnostics of layered composites by means of the laser optics-acoustic converter] // Mekhanika kompozitnykh materialov. Riga. 1999. T. 35. №1. S. 125–134.
16. Karabutov A.A., Murashov V.V., Podymova N.B., Oraevsky A.A. Nondestructive characterization of layered composite materials with a laser optoacoustic sensor // Proceedings of SPIE – The International Society for Optical Engineering Nondestructive Evaluation of Materials and Composites II. San Antonio. TX. 1998. P. 103–111.
17. Murashov V.V., Rumyantsev A.F. Diagnostika sostava i svoystv polimernykh kompozitov v detalyakh i konstruktsiyakh [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. №8. S. 13–17.
18. Mishurov K.S., Murashov V.V. Determination of the Composition and Density of Polymer Composite Materials in Details and Constructions by Nondestructive Methods // Polymer Science. Series D. 2016. V. 9. №2. P. 176–180.
19. Murashov V.V. Kontrol kleenykh konstruktsiy akusticheskim impedansnym metodom [Control of glued designs by acoustic impedance method] // Klei. Germetiki. Tekhnologii. 2010. №3. S. 13–20.
20. Murashov V.V. Kontrol monolitnykh i kleenykh konstruktsiy iz polimernykh kompozitsionnykh materialov akusticheskim impedansnym metodom [Control of monolithic and glued designs from polymeric composite materials acoustic impedance method] // Aviacionnaya promyshlennost. 2009. №3. C. 43–48.
21. Murashov V.V. Identification of Areas of Absence of Adhesive Bonding between Layers in Multilayer Structures // Polymer Science. Series D. Glues and Sealing Materials. 2014. V. 7. №1. Р. 46–48.
22. Murashov V.V. Nerazrushayushchie metody kontrolya kachestva kleevykh soedineniy [Non-destructive methods of quality control of glued joints] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №9. S. 20–26.
23. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method // Polymer Science. Series D: Glues and Sealing Materials. 2010. V. 3. №4. Р. 267–273.
24. Murashov V.V. Control of Glued Structures by the Electromagnetic Acoustic Variant of the Impedance Method // Polymer Science. Series D. Glues and Sealing Materials. 2014. V. 7. №2. Р. 136–139.
25. Murashov V.V. Control of Multilayer Constructions by Spectral Acoustic-Impedance Defectoscopy // Polymer Science. Series D: Glues and Sealing Materials. 2014. V. 7. №2. Р. 133–135.
26. Murashov V.V., Generalov A.S. Kontrol mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multilayer adhesive structures operating in severe climatic condition] // Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67.
27. Bakunov A.S., Murashov V.V., Sysoev A.M. Kontrol lopastey vozdushnogo vinta sredstvami nizkochastotnoy akustiki [Control of blades of air screw by means of low-frequency acoustics] // Kontrol. Diagnostika. 2012. №6. S. 72–74.
28. Murashov V.V. Kontrol kleenykh konstruktsiy akusticheskim metodom svobodnykh kolebaniy [Control of glued designs by acoustic method of free fluctuations] // Klei. Germetiki. Tekhnologii. 2012. №4. S. 40–44.
29. Murashov V.V. Kontrol kleenykh konstruktsiy iz raznorodnykh materialov ultrazvukovym reverberatsionnym metodom [Control of glued designs from diverse materials ultrasonic reverberatsionny method] // Klei. Germetiki. Tekhnologii. 2015. №12. S. 18–22.
30. Murashov V.V., Trifonova S.I. Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] // Aviacionnye materialy i tehnologii. 2015. №4. S. 86–90.
31. Murashov V.V., Trifonova S.I. Kontrol kleevykh soedineniy v konstruktsiyakh i izdeliyakh iz PKM ultrazvukovym tenevym metodom [Control of glued joints in designs and products from PKM ultrasonic shadow method] // Klei. Germetiki. Tekhnologii. 2015. №5. S. 15–23.
32. Murashov V.V. Kontrol kleenykh konstruktsiy akustiko-topograficheskim metodom [Control of glued designs by acoustic-topographical method] // Klei. Germetiki. Tekhnologii. 2016. №3. S. 21–27.
33. Murashov V.V. Glued Joint Strength Diagnostics // Polymer Science. Series D: Glues and Sealing Materials. 2009. V. 2. №1. Р. 64–70.
34. Lange Yu.V. Akusticheskie nizkochastotnye metody i sredstva nerazrushayushchego kontrolya mnogosloynykh konstruktsiy [Acoustic low-frequency methods and means of non-destructive testing of multi-layer designs]. M.: Mashinostroenie, 1991. 272 s.
35. Murashov V.V., Laptev A.S. Kontaktnye zhidkosti dlya sozdaniya akusticheskogo kontakta pri ul'trazvukovom kontrole mnogoslojnyh konstrukcij iz PKM [Contact liquids for creation of an acoustic contact at ultrasonic control of multi-layer structures from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №8. St. 10. Available at: http://www.viam-works.ru (accessed: May 17, 2016). DOI: 10.18577/2307-6046-2015-0-8-10-10.