Articles
Research of an influence of the directional crystallization conditions (temperature gradient and crystallization rate) on the dendrite arm spacing, size of strengthening γ'-phase in axes and interdendritic areas, porosity, size of eutectic γ /γ'-phase particles, features of segregation and mechanical properties of cast single-crystal superalloy is described in the article.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Petrushin N.V., Svetlov I.L. Komp'juternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokolenija dlja monokristallicheskih lopatok gazovyh turbin [Computer designing of heat resisting nickel alloy IV of generation for single-crystal blades of gas turbines] /V kn. Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina. M.: Nauka. 2006. S. 98–115.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
5. Versnyder F.F., Guard R.W. Directional Grain Structure for High Temperature Strength //Trans. ASM. 1960. V. 52. P. 485–493.
6. Kurc V., Zam P.R. Napravlennaja kristallizacija jevtekticheskih materialov [The directed crystallization of evtektichesky materials]. M.: Metallurgija. 1980. 272 s.
7. Bondarenko Ju.A., Kablov E.N., Morozova G.I. Vlijanie vysokogradientnoj napravlennoj kristallizacii na strukturu i fazovyj sostav zharoprochnogo splava tipa Rene N5 [Influence of the high-gradient directed crystallization on structure and phase composition of hot strength alloy of the Rene N5 type] //MiTOM. 1999. №2. S. 15–18.
8. Bondarenko Ju.A., Kablov E.N. Napravlennaja kristallizacija zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] //MiTOM. 2002. №7. S. 20–23.
9. Echin A.B., Bondarenko Ju.A. Novaja promyshlennaja vysokogradientnaja ustanovka UVNS-6 dlja poluchenija lopatok i drugih detalej GTD iz litejnyh zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [The new commercial UVNS-6 high-gradient unit for receiving blades and other details of GTD from cast heat resisting and intermetallidny alloys with single-crystal structure] //Aviacionnye materialy i tehnologii. 2014. №4. S. 31–36.
10. Bondarenko Ju.A., Kablov E.N., Surova V.A., Echin A.B. Vlijanie vysokogradientnoj napravlennoj kristallizacii na strukturu i svojstva renijsoderzhashhego monokristallicheskogo splava [Influence of the high-gradient directed crystallization on structure and property of reniysoderzhashchy single-crystal alloy] //MiTOM. 2006. №8. S. 33–35.
11. Kablov E.N., Bondarenko Ju.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v uslovijah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
12. Zharoprochnyj splav na osnove nikelja [Hot strength alloy on the basis of nickel]: pat. №2148099 Ros. Federacija; opubl. 18.01.99 Bjul. 2000. №12.
13. Bondarenko Ju.A., Echin A.B., Surova V.A., Narskij A.R. Vlijanie temperaturnogo gradienta na fronte rosta na strukturu zharoprochnogo splava pri napravlennoj kristallizacii [Influence of temperature gradient at the front growth on hot strength alloy structure at the directed crystallization] //Litejshhik Rossii. 2014. №5. S. 24–27.
Changes in structure and chemical composition of grain boundaries in Ni–Co–Cr–Al–Ti–W–Mo–Nb wrought heat-resistant alloys after simulation of operation and operation in GTE disk structure were investigated. The researches have shown that there is a relationship between operational properties and the state of internal interfaces (grain boundaries). The determined regularities are general for Ni–Co–Cr–Al–Ti–W–Mo–Nb wrought Ni-based alloys with different content of alloying elements. It was stated that the mechanisms of a decreasing in cohesive strength of grain boundaries are different after holding within different temperature intervals.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
3. Supersplavy [Superalloys]. T. II. Kn. 1. /Pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Hagelja. M.: Metallurgija. 1995. 384 s.
4. Lomberg B.S., Moiseev S.A. Zharoprochnye deformiruemye splavy dlja diskov GTD i perspektivy ih razvitija [Heat resisting deformable alloys for disks GTD and perspective of their development] /V sb. Aviacionnye materialy: nauch.-tehnich. sb. M.: VIAM. 1982. S. 119–123.
5. Lomberg B.S., Chabina E.B., Golubev A.A. Vlijanie vosstanovitel'noj termicheskoj obrabotki (VTO) na strukturu i svojstva diskov iz splava JeI698-VD [Influence of recovery thermal processing (WTO) on structure and property of disks from alloy EI698-VD] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Remontnye tehnologii v aviastroenii». M.: VIAM. 2002. S. 14–20.
6. Lomberg B.S. Zharoprochnye splavy i materialy dlja diskov GTD [Hot strength alloys and materials for disks GTD] /V sb. Aviacionnye materialy na rubezhe XX–XXI vekov: nauch.-tehnich. sb. M.: VIAM. 1994. S. 258–264.
7. Lomberg B.S., Moiseev S.A. Zharoprochnye deformiruemye splavy dlja sovremennyh i perspektivnyh GTD [Heat resisting deformable alloys for modern and perspective GTD] /V sb. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: Jubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM. 2002. S. 82–93.
8. Bokshtejn S.Z., Kishkin S.T., Shalin R.E. Strukturnaja stabil'nost' konstrukcionnyh materialov [Structural stability of constructional materials] /V sb. Aviacionnye materialy na rubezhe XX–XXI vekov. M.: VIAM. 1994. S. 547–553.
9. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvjaz' struktury i svojstv vysokozharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] //Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
10. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
11. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
12. Chabina E.B., Filonova E.V., Lomberg B.S., Morozova G.I. Jevoljucija struktury i fazovogo sostava deformiruemyh zharoprochnyh nikelevyh splavov dlja diskov GTD s uslozhneniem ih legirovanija [Evolution of structure and phase composition of deformable heat resisting nickel alloys for disks GTD with complication of their alloying] //MiTOM. 2015. №3 (717). S. 8–12.
13. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennyh deformiruemyh nikelevyh splavov [Structure of modern deformable nickel alloys] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №6. S. 22–27.
14. Kablov E.N., Bronfin M.B. Jeffekt S.T. Kishkina, ili pochemu struktura zharoprochnyh nikelevyh splavov dolzhna byt' geterofaznoj [Kishkin's effect or why the structure of heat resisting nickel alloys has to be heterophase] /V sb. Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina: Nauchn.-tehn. sb.; Pod. red. E.N. Kablova. M.: Nauka. 2006. S. 7–14.
15. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
16. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vlijanie mikrolegirujushhih jele-mentov na strukturno-fazovuju stabil'nost' i svojstva zharoprochnogo deformiruemogo splava (pri dlitel'nyh narabotkah) [Influence of microdoping elements on structural and phase stability and property of heat resisting deformable alloy (at long practices)] //Metallurg. 2013. №9. S. 93–97.
17. Fizicheskoe metallovedenie. T. 1. Atomnoe stroenie metallov i splavov [Physical metallurgical science. T. 1. Nuclear structure of metals and alloys] /Pod red. R.U. Kana, P. Haazena. M.: Metallurgija. 1987. 639 s.
18. Mak Lin D. Granicy zeren v metallah [Borders of grains in metals]. M.: Metallurgizdat. 1960. 322 s.
19. Guttmann M. Grain boundary segregation, two dimensional compound formation and precipitation //Metal Transaction. 1977. V. A8. №9. P. 1383–1403.
20. Meetham G.W. Trace elements in superalloys (overview) //Metals technology. 1984. V. 11. №10. P. 414–418.
21. Ohrupchivanie konstrukcionnyh stalej i splavov [Okhrupchivaniye constructional staly and alloys] /Pod. red. K.L. Brajenta, S.K. Benerdzhi. M.: Metallurgija. 1988. 551 s.
22. Guttmann M. Temper embrittlement and ternary equilibrium segregation //Material Science and Engineering. 1980. V. 42. P. 227–232.
23. McLean M., Strang A. Effects of trace elements on mechanical properties of superalloys //Metals Technology. 1984. V. 11. №10. P. 454–465.
24. Bragina T.K., Laricheva L.M. Osobennosti izmenenija harakteristik prochnosti diskov turbiny GTD posle dlitel'noj narabotki [Features of change of characteristics of durability of GTD turbine disks after long operating time] //Problemy prochnosti. 1976. №8. S. 78–87.
25. Bragina T.K., Laricheva L.M. Osobennosti struktury materialov v svjazi s dlitel'noj narabotkoj diskov turbin GTD [Features of structure of materials in connection with long operating time of disks of turbines GTD] //Problemy prochnosti. 1978. №3. S. 34–43.
26. Orehov N.G., Cherkasova E.R., Chabina E.B., Sidorenko V.I. Izuchenie poverhnostej razrushenija sovremennyh nikelevyh splavov metodom Ozhe-jelektronnoj spektroskopii [Studying of surfaces of destruction of modern nickel alloys by method Ozhe-elektronnoy of spectroscopy] /V sb. Voprosy aviacionnoj nauki i tehniki. Ser. «Aviacionnye materialy. Metody issledovanija konstrukcionnyh materialov». M.: VIAM. 1987. S. 150–156.
27. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
28. Metody analiza poverhnosti [Methods of the analysis of surface] /Pod red. A.M. Zanderny. M.: Mir. 1979. 582 s.
29. Edwards B.C., Byre B.L., Gage G. //Acta Metallurgica. 1980. V. 28. Р. 335–356.
30. Was G.S., Martin J.R. The influence of grain boundary precipitation on the measurement of chromium redistribution and phosphorous segregation in Ni–16Cr–9Fe //Metallurgical Transaction. 1985. V. 16A. №3. P. 349–359.
31. Guttmann M., Dumoulin P., Tan-Tai N., Fontaine P. An Auger Electron Spectroscopic study of phosphorus segregation in the grain boundaries of nickel base alloy 600 //Corrosion NACE. 1981. V. 37. №7. P. 416–425.
32. Briant C.L. Grain boundary segregation in Ni-base alloy 182 //Metallurgical Transaction. 1988. V. 19A. №1. P. 137–143.
33. Zhuanggi H., Hongwei S., Shouren G. Role of P, S and B on creep behavior of alloy 718 //Journal of Material Science and Technology. 2001. V. 17. №4. P. 399–402.
An uneven distribution of structural components caused by the segregation processes in the alloy during its melting and crystallization may occur on separate machined surfaces of castings in the course of production of Zr-bearing cast magnesium alloys: ML9, ML10, ML12 and VML20 intended for housing parts of hydraulic units, pumps, loaded wheel castings. The article describes the nature and formation mechanism of segregated inclusions. Their influence on the properties of castings is shown.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] //Nauka v Rossii. 2012. №3. S. 36–44.
4. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
6. Muhina I.Ju., Uridija Z.P. Magnij – osnova sverhlegkih materialov [Magnesium – basis of extralight materials] //Metallurgija mashinostroenija. 2005. №6. S. 29–31.
7. Antipov V.V., Vahromov R.O., Dujunova V.A., Nochovnaja N.A. Materialy s vysokoj udel'noj prochnost'ju na osnove aljuminija, magnija, titana i tehnologii ih pererabotki [Materials with high specific strength on the basis of aluminum, magnesium, titanium and technology of their processing] //Boepripasy i spechimija. 2013. №3. S. 51–55.
8. Sadkov V.V., Laponov Ju.L., Ageev A.P. i dr. Perspektivy i uslovija primenenija magnievyh splavov v samoletah OAO «Tupolev» [Perspectives and conditions of application of magnesium alloys in JSC Tupolev airplanes] //Metallurgija mashinostroenija. 2007. №4. S. 19–23.
9. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy: Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
10. Muhina I.Ju., Dujunova V.A., Uridija Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] //Litejnoe proizvodstvo. 2013. №5. S. 2–5.
11. Dujunova V.A., Goncharenko N.S., Muhina I.Ju., Uridija Z.P., Volkova E.F. Nauchnoe naprav-lenie akademika I.N. Fridljandera. Sovremennye issledovanija magnievyh i litejnyh aljuminievyh splavov v VIAM [Scientific direction of academician I.N. Fridlyandera. Modern researches of magnesium and cast aluminum alloys in VIAM] //Cvetnye metally. 2013. №9. S. 71–78.
12. Frolov A.V., Muhina I.Ju., Dujunova V.A., Uridija Z.P. Vlijanie tehnologicheskih parametrov plavki na strukturu i svojstva novyh magnievyh splavov [Influence of technological parameters of melting on structure and property of new magnesium alloys] //Metallurgija mashinostroenija. 2014. №2. S. 26–29.
13. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye aljuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Al'tmana) [Cast aluminum alloys (to the 100 anniversary since the birth of M.B. Altman)] //Trudy VIAM. 2014. №4. St. 02 (viam-works.ru).
14. Dujunova V.A., Muhina I.Ju., Uridija Z.P. Novye protivoprigarnye prisadochnye materialy dlja litejnyh form magnievyh otlivok [New protivoprigarny prisadochny materials for casting molds of magnesian otlivka] //Litejnoe proizvodstvo. 2009. №9. S. 18–21.
15. Leonov A.A., Dujunova V.A., Stupak E.V., Trofimov N.V. Lit'e magnievyh splavov v razovye formy, poluchennye novymi metodami [Molding of magnesium alloys in the one-time forms received by new methods] //Trudy VIAM. 2014. №12. St. 01 (viam-works.ru).
16. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
17. Muhina I.Ju. Litejnye splavy i tehprocessy pri proizvodstve magnievyh otlivok [Cast alloys and technical processes by production of magnesian otlivka] //Litejnoe proizvodstvo. 2003. №4. S. 18–19.
18. Uridija Z.P., Muhina I.Ju. Novye propityvajushhie materialy dlja germetizacii otlivok iz aljuminievyh i magnievyh splavov [New impregnating materials for sealing of otlivka from aluminum and magnesium alloys] //Vse materialy. Jenciklopedicheskij spravochnik. 2011. №8. S. 37–41.
19. Uridija Z.P., Muhina I.Ju. O germetizacii otlivok iz aljuminievyh i magnievyh splavov [About sealing of otlivka from aluminum and magnesium alloys] //Litejnoe proizvodstvo. 2012. №2. S. 14–16.
20. Postnov V.I., Burhan O.L., Rahmatullin A.Je., Kachura S.M. Nerazrushajushhie metody kontrolja soderzhanija svjazujushhih v prepregah i PKM (obzor) [Nondestructive control methods of the contents binding in prepregs and PKM (review)] //Trudy VIAM. 2013. №12. St. 06 (viam-works.ru).
21. Murashov V.V. Nerazrushajushhij kontrol' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlja mnogorazovogo kosmicheskogo korablja «Buran» [Non-destructive testing of preparations and details from carbon - carbon composite material for the reusable Snow-storm spacecraft] //Trudy VIAM. 2013. №4. St. 06 (viam-works.ru).
22. Muhina I.Ju. Struktura i svojstva novyh litejnyh magnievyh splavov [Structure and properties of new cast magnesium alloys] //Litejnoe proizvodstva. 2011. №12. S. 12–14.
23. Muhina I.Ju., Uridija Z.P., Stepanov V.V. Issledovanie kachestva magnievo-cirkonievoj ligatury [Research of quality of magnesium-zirconium ligature] /V kn.: Magnievye splavy dlja sovremennoj tehniki. M.: Nauka. 1992. S. 135–142.
24. Rohlin L.L. Magnievye splavy, soderzhashhie redkozemel'nye metally [The magnesium alloys containing rare earth metals]. M.: Nauka. 1980. S. 47–55.
25. Uridija Z.P., Muhina I.Ju., Dujunova V.A., Kosarina E.I. Kontrol' kachestva lit'ja iz magnievyh splavov i sposoby vosstanovlenija germetichnosti otlivok [Molding quality control from magnesium alloys and ways of recovery of tightness of otlivka] //Trudy VIAM. 2014. №12. St. 04 (viam-works.ru).
A possibility of formation of hard anodic oxide coatings on parts made of casting alu-minum alloys produced by die casting was investigated. A difference in the process of anodizing of parts made by casting in sand mold, in chill mold and by die casting was revealed. An influence of the chemical composition of metal parts on quality of the formed anodic oxide coating was stated. An influence of the metal structure on the process of solid anodizing was investigated.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
4. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
5. Tomashov N.D., Tjukina M.N., Zalivalov F.P. Tolstoslojnoe anodirovanie aljuminija i ego splavov [Tolstosloynoye anodizing of aluminum and its alloys]. M.: Mashinostroenie. 1968. 156 s.
6. Lerner L. Tverdoe anodirovanie aljuminija: istorija i sovremennost' [Firm anodizing of aluminum: history and present] //Cvetnye metally. 2003. №3. S. 84–87.
7. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye aljuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Al'tmana) [Cast aluminum alloys (to the 100 anniversary since the birth of M. B. Altman)] //Trudy VIAM. 2014. №4. St. 02 (viam-works.ru).
8. Fal'ko V.N., Jurkevich S.N., Poljakova T.L., Kunashenko S.V. Opyt nanesenija pokrytij na detali aviacionnoj tehniki [Experience of drawing coverings on detail of aviation engineering] //Metalloobrabotka. 2003. №6. S. 28–30.
9. Aver'janov E.E. Spravochnik po anodirovaniju [Directory on anodizing]. M.: Mashinostroenie. 1988. 132 s.
10. Golubev A.I. Anodnoe okislenie aljuminievyh splavov [Anode oxidation of aluminum alloys]. M.: AN SSSR. 1961. 199 s.
11. Shrejder A.V. Oksidirovanie aljuminija i ego splavov [Oksidirovaniye of aluminum and its alloys]. M.: Metallurgizdat. 1960. 220 s.
12. Chufistov O.E., Chufistov E.A., Artem'ev V.P. Tehnologii, stroenie i svojstva pokrytij, formiruemyh metodami anodnogo oksidirovanija na aljuminii i ego splavah [Technologies, structure and properties of the coverings created by methods of anodic oxidation on aluminum and its alloy] //Cvetnye metally. 2009. №10. S. 57–61.
13. Semenova I.V., Florianovich G.M., Horoshilov A.V. Korrozija i zashhita ot korrozii [Corrosion and corrosion protection]: Ucheb. posobie. M.: Fizmatlit. 2010. 416 s.
14. Korytov V.N., Haljavina M.G., Vishtaljuk A.A., Popova T.P. Tehnologija tverdogo tolstoslojnogo shhavelevosernokislotnogo anodirovanija na detaljah iz aljuminija i ego splavov [Technology of firm tolstosloyny shchavelevosernokislotny anodizing on details from aluminum and its alloys] //Vestnik Rybinskoj gosudarstvennoj aviacionnoj tehnologicheskoj akademii im. P.A. Solov'eva. 2008. №1. S. 143–144.
15. Karimova S.A., Kutyrev A.E., Pavlovskaja T.G., Zaharov K.E. Nizkotemperaturnoe uplotnenie anodno-oksidnyh pokrytij na detaljah iz aljuminievyh splavov [Low-temperature consolidation of anode oxide coatings on details from aluminum alloys] //Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17.
16. Bordziłowski J., Królikowska A., Bonora P.L., Maconi I., Sollich A. Underwater EIS measurements //Progress in organic coatings. 2010. V. 67. №4. Р. 414–419.
A more environment-saving process of formation of adhesive layers on metal surfaces in solutions of organic silicone compounds is offered as an alternative to the processes of phosphating of steels and chromating of aluminum. Trialkoxysilanes-based water compositions were developed and optimum parameters of the process of forming of organic silicone coatings on metallic surfaces were determined on the basis of experimental data. The offered processes of formation of adhesive coatings have a smaller quantity of stages of surface preparation (both aluminum alloys and steels) for the subsequent application of paint coating.
2. Kablov E.N., Starcev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [The overview of foreign experience of researches of corrosion and security features from corrosion] //Aviacionnye materialy i tehnologii. 2015. №2. S. 76–87.
3. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
4. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaja agressivnost' primorskoj at-mosfery. Ch. 1. Faktory vlijanija (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] //Korrozija: materialy, zashhita. 2013. №12. S. 6–18.
5. Semenova L.V., Malova N.E., Kuznecova V.A., Pozhoga A.A. Lakokrasochnye materialy i po-krytija [Paint and varnish materials and coverings] //Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
6. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] //Trudy VIAM. 2013. №4. St. 02 (viam-works.ru).
7. Kozlova A.A., Kondrashov Je.K. Sistemy lakokrasochnyh pokrytij dlja protivokorrozionnoj zashhity magnievyh splavov [Systems of paint coatings for anticorrosive protection of magnesium alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 44–47.
8. Kuznecova V.A., Kuznecov G.V. Tendencii razvitija v oblasti toplivostojkih lakokrasochnyh pokrytij dlja zashhity toplivnyh kesson-bakov letatel'nyh apparatov (obzor) [Development tendencies in the field of toplivostoyky paint coatings for protection fuel caisson tanks of flight vehicles (review)] //Trudy VIAM. 2014. №11. St.08 (viam-works.ru).
9. Akimova E.F. Trebovanija k podgotovke poverhnosti chernyh i cvetnyh metallov pered okrashivaniem. Kontrol' kachestva podgotovki poverhnosti [Requirements to surface preparation of black and non-ferrous metals before coloring. Surface preparation quality control] /V sb. nauch. trudov «Pokrytija i obrabotka poverhnosti. Poslednie dostizhenija v tehnologijah, jekologii i oborudovanii». M.: RHTU im. D.I. Mendeleeva. 2015. S. 11–12.
10. Kuljushina N.V., Akimova E.F., Grigorjan N.S., Vagramjan T.A., Asnis N.A. Podgotovka metallicheskoj poverhnosti s pomoshh'ju kremnijorganicheskih pokrytij [Preparation of metallic surface by means of organic silicon coverings] //Praktika protivo-korrozionnoj zashhity. 2011. №4 (62). S. 6–11.
11. Gerald L. Witucki //Journal of coatings technology. 1993. V. 65. №822. Р. 57–60.
12. Men'shikov V.V., Kalinkina A.A., Mazurova D.V., Akimova E.F., Vagramjan T.A. Primenenie vodnyh rastvorov na osnove silanov dlja podgotovki poverhnosti pered naneseniem lakokrasochnyh pokrytij (Obzor literaturnyh dannyh) [Application of aqueous solutions on the basis of silons for surface preparation before drawing paint coatings (The review of literary data)] //Korrozija: materialy, zashhita. 2010. №4. S. 30–37.
The results of rheology investigations of alumina-based slip suspensions intended for production of ceramic filters are presented. It was shown that the replacement of water used as a technological binder with the water solution of carbamide and aluminum oxychloride leads to an increase of suspensions fluidity that, in turn, facilitates formability of green bod-ies and improves mechanical characteristics of ceramic materials. The ranges of ratios between solid phase (sintered powders) and liquid phase (technological binder) providing coagulation and direct contacts between solid phase particles in slips were determined.
2. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove aljuminidov nikelja [Alloys on the basis of nickel aluminides] //MiTOM. 1999. №1. S. 32–34.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Aminzare M., Mazaheri M., Golestanifard F., Rezaie H.R., Ajeian R. Sintering behavior of nano alumina powder shaped by pressure filtration //Ceramics International. 2011. №37. P. 9–14.
5. Keramicheskij fil'tr, soderzhashhij uglerodnoe pokrytie, i sposob ego izgotovlenija [The ceramic filter containing carbon covering, and way of its manufacturing]: pat. 2456056 Ros. Federacija; zajavl. 28.01.2008; opubl. 20.07.2012 Bjul. №20. 15 s.
6. Yang W., Jiang B., Wang A., Shi H. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy //Journal of Material Science and Technology. 2012. №28 (8). P. 707–712.
7. Vogt U.F., Gorbar M., Dimopoulos-Eggenschwiler P., Broenstrup A., Wagner G., Colombod P. Improving the properties of ceramic foams by a vacuum infiltration process //Journal of the European Ceramic Society. 2010. №30. P. 3005–3011.
8. Himicheskaja tehnologija keramiki [Chemical technology of ceramics]: Uch. posobie dlja vuzov /Pod red. I.Ja. Guzmana. M.: OOO RIF Strojmaterialy. 2003. 496 s.
9. Anciferov V.N. Problemy poroshkovogo materialovedenija [Problems of powder materials science]. Chast' II. Ekaterinburg: UrO RAN. 2002. 263 s.
10. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
11. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
12. Buchilin N.V., Prager E.P. Reologicheskie harakteristiki shlikernyh suspenzij na osnove oksida aljuminija [Rheological characteristics of slip suspensions on the basis of aluminum oxide] //Trudy VIAM. 2015. №5. St. 06 (viam-works.ru).
13. Sandoval M.L., Camerucci M.A. Foaming performance of aqueous albumin and mullite-albumin systems used in cellular ceramic processing //Ceramics International. 2014. №40. P. 1675–1686.
14. Magnani G., Brentari A., Burresi E., Raiteri G. Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method //Ceramics International. 2014. №40. P. 1759–1763.
15. Shhukin E.D., Percov A.V., Amelina E.A. Kolloidnaja himija [Colloid chemistry]. 3-e izd., pererab. i dop. M.: Vysshaja shkola. 2004. 445 s.
16. Praktikum i zadachnik po kolloidnoj himii [Workshop and the book of problems on colloid chemistry] /Pod red. V.V. Nazarova, A.S. Grodskogo. M.: Akademkniga. 2007. 374 s.
17. Otto M. Sovremennye metody analiticheskoj himii [Modern methods of analytical chemistry]. 2-e izd. M.: Tehnosfera. 2006. 416 s.
18. Frolov Ju.G. Kurs kolloidnoj himii. Poverhnostnye javlenija i dispersnye sistemy [Course of colloid chemistry. Surface phenomena and disperse systems]. 2-e izd. M.: Himija. 1989. 464 s.
19. Kirienko T.A., Balinova Ju.A. Vlijanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on rheology of thin coats of the concentrated aqueous solutions of system «inorganic salts-organic polymers»] //Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58.
20. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
21. Kirienko T.A., Balinova Ju.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlja keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for the ceramic materials containing polyvinyl alcohol] //Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38.
22. Uvarova N.E., Grashhenkov D.V., Isaeva N.V., Orlova L.A., Sarkisov P.D. Vysokotemperaturnye radioprozrachnye materialy: segodnja i zavtra [High-temperature radio transparent materials: today and tomorrow] //Aviacionnye materialy i tehnologii. 2010. №1. S. 16–21.
23. Tehnologija stekla [The technology has flown down] /Pod red. I.I. Kitajgorodskogo. 3-e izd. M.: Gosudarstvennoe izdatel'stvo literatury po stroitel'stvu, arhitekture i stroitel'nym materialam. 1961. S. 517.
24. Malkin A.Ja., Isaev A.I. Reologija: koncepcii, metody, prilozhenija [Rheology: concepts, methods, appendices]. SPb: Professija. 2007. 560 s.
An express-method for estimation of heat treatment quality of discrete fibers of 80% Al2O3–20%SiO2 composition and SiO2 dispersion is described in this paper.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Kablov E.N., Shhetanov B.V., Abuzin Ju.A., Ivahnenko Ju.A. Metallicheskie i keramicheskie kompozicionnye materialy [Metal and ceramic composite materials] /V sb. materialov Mezhdunarodnoj nauch.-praktich. konf. «Sovremennye tehnologii – kljuchevoe zveno v vozrozhdenii otechestvennogo aviastroenija». T. 1. Kazan'. 2008. S. 181–188.
5. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye tep-loizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
6. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullito-korundovy and quartz fibers] //Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
7. Grashhenkov D.V., Balinova Ju.A., Tinjakova E.V. Keramicheskie volokna oksida aljuminija i materialy na ih osnove [Ceramic fibers of aluminum oxide and materials on their basis] //Steklo i keramika. 2012. №4. S. 32–36.
8. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] //Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
9. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru)
10. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heat-protective materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12–19.
11. Babashov V.G., Shhetanov B.V. Gibkij nizkoplotnyj vysokotemperaturnyj material na osnove mullitokorundovogo volokna [Flexible low-density high-temperature material on the basis of mullitokorundovy fiber] //Sovremennye problemy nauki i obrazovanija. 2015. №1 (www.science-education.ru).
12. Ivahnenko Ju.A., Shheglova T.M., Judin A.V., Pshechenkov P.A. Oksidnye volokna dlja keramicheskih i metallicheskih kompozicionnyh materialov [Oksidnye of fiber for ceramic and metal composite materials] /V sb. statej Mezhdunarodnoj nauch.-tehnich. konf. «Sovremennye materialy i tehnologii–2002». Penza. 2002. S. 41–43.
13. Shhetanov B.V., Kablov E.N., Shheglova T.M. Mehanizm formirovanija stabilizirovannoj struktury v vysokotermostojkih polikristallicheskih voloknah sistemy Al2O3–SiO2, poluchaemyh po zol'-gel' tehnologii [The mechanism of forming of the stabilized structure in the high-heat-resistant polycrystalline fibers of Al2O3–SiO2 system received on sol-gel of technology] /V sb. materialov XXIV ezhegodnoj Mezhdunarodnoj konf. i vystavki «Kompozicionnye materialy v promyshlennosti». Jalta. 2004. S. 324–326.
14. Wei W.Ch., Halloran J.W. Transformation Kinetics of Diphasic Aluminosilicate Gels //J. Am. Ce-ram. Soc. 1988. V. 71. №7. P. 581–587.
The article presents data about structural glass-reinforced plastics produced with the use of solvent- and melt-based binders. Some data on the most popular developments of VIAM used in aviation engineering are given. The main advantages of glass-reinforced plastics based on the melt binders are described. Elastic-strength characteristics of the developed glass-reinforced plastics at elevated temperatures, humidity and under action of various aggressive environments were studied. The main fields of application of these materials in aviation equipment are described in the article.
2. Davydova I.F., Kavun N.S. Stekloplastiki v konstrukcijah aviacionnoj i raketnoj tehniki [Fibreglasses in designs aviation and rocketry] //Steklo i keramika. 2012. №4. S. 1–7.
3. Davydova I.F., Kavun N.S. Stekloplastiki ‒ mnogofunkcional'nye kompozicionnye materialy [Fibreglasses ‒ multifunction composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
4. Poljakov M. Zelenaja himija: ocherednaja promyshlennaja revoljucija [Green chemistry: next industrial revolution] //Himija i zhizn'. 2004. №6. S. 2–12.
5. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern production technologies of polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
8. Hrul'kov A.V., Grigor'ev M.M. Jevoljucija materiala vertoletnoj lopasti: ot nakrahmalennoj tkani i dereva k metallu i kompozitu [Evolution of material of the helicopter blade: from the starched fabric and tree to metal and composite] //Novosti materialovedenija. Nauka i tehnika. 2015. №2 (14) (materialsnews.ru).
9. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PKM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
10. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
11. Sokolov I.I., Vavilova M.I. Konstrukcionnye stekloplastiki na osnove rasplavnyh svjazujushhih i tkanej Porcher [Constructional fibreglasses on the basis of molten binding and Porcher fabrics] //Novosti materialovedenija. Nauka i tehnika. 2013. №5. St. 02 (materialsnews.ru).
A review of scientific research dealing with waste recycling of polymer composite materials is presented. A list of the companies involved in recycling is given as well. Advantages and disadvantages of the technologies used are described. Recommendations concerning recycling technologies of fiber reinforced PCM are given. The problems to be solved to implement PCM recycling technologies in Russia are described.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
4. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vlijanija klimaticheskih faktorov i mehanicheskogo nagruzhenija na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PKM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4 (21). S. 41–45.
5. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
6. Doneckij K.I., Hrul'kov A.V. Principy «zelenoj himii» v perspektivnyh tehnologijah izgotovlenija izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing techniques of products from PKM] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
7. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitel'nyh konstrukcijah [Application of polymeric composite materials in construction designs] //Trudy VIAM. 2013. №8. St. 03 (viam-works.ru).
8. Pickering S.J. Recycling technologies for thermoset composite materials – current status //Composites: Part A 37. 2006. Р. 1206–1215.
9. Borshhevskij A.A., Il'in A.S. Mehanicheskoe oborudovanie dlja proizvodstva stroitel'nyh materialov i izdelij [Mechanical equipment for production of construction materials and products]. M.: Vysshaja shkola. 1987. 366 s.
10. Howarth J., Sada S.R., Mativenga P.T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite //Journal of Cleaner Production. 2014. V. 81. P. 46–50.
11. Palmer J. Mechanical Recycling of Automotive Composites for Use as Reinforcement in Thermoset Composites //University of Exeter. 2009. https://ore.exeter.ac.uk.
12. Palmer J., Ghita O.R., Savage L., Evans K.E. Successful closed-loop recycling of thermoset composites //Composites: Part A. 2009. V. 40. P. 490–498.
13. Keiji Ogi, Takashi Nishikawa, Yasutaka Okano & Ichiro Taketa. Mechanical properties of ABS resin reinforced with recycled CFRP //Advanced Composite Materials. 2007. V. 16. №2. P. 181–194.
14. Conroy A., Halliwell S., Reynolds T. Composite recycling in the construction industry //Composites. Part A. 2006. V. 37. P. 1216–1222.
15. Pinero-Hernanz R., Dodds C., Hyde J. et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water //Composites: Part A. 2008. V. 39. P. 454–461.
16. Okajima I. et al. Chemical Recycling of Carbon Fiber Reinforced Plastic with Supercritical Alcohol //Journal of Advanced Research in Physics. 2012. V. 3. №2. P. 1–4.
17. Pico D., Seide G., Gries T. Thermo chemical processes: potential improvement of the wind blades life cycle //Chemical Engineering Transactions. 2014. V. 36. P. 211–216.
18. Pinero-Hernanz R., Garcıa-Serna J., Dodds C., Hydec J., Poliakoff M., Jose Cocero M., Kingman S., Pickering S., Lester E. Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions //J. of Supercritical Fluids. 2008. V. 46. P. 83–92.
19. Hitachi Chemical Technical Report №56 /Hitachi Chemical Co., Ltd. March. 2014.
20. Elghazzaoui H., Le Gal La Salle E., Bellettre J. Recycling of aeronautical composites by supercritical solvolysis (http://www.isasf.net).
21. Final Report Summary – EURECOMP (Recycling Thermoset Composites of the SST) (http://cordis.europa.eu).
22. Recycling of Composite Materials using Fluidised Bed Processes (http://core.ac.uk).
23. Recycling Fibres Recovered from Composite Materials using a Fluidised Bed Process (http://eprints.nottingham.ac.uk).
24. Pimenta S., Pinho S.T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook //Waste Management. 2011. V. 31. №2. P. 378–392.
25. Meyer L.O., Schulte K., Grove-Nielsen E. CFRP-recycling following a pyrolysis route: process optimization and potentials //Journal of Composite Materials. 2009. V. 43. P. 1121–1132.
26. Job S. Recycling composites commercially (Part 1) //Reinforced Plastics. 2014. V. 58. №5. P. 32–34.
27. Job S. Recycling composites commercially (Part 2) //Reinforced Plastics. 2014. V. 58. №5. P. 36–38.
28. www.carbonxt.de.
29. http://www.cfk-recycling.com.
30. http://www.elgcf.com.
31. http://mitrcf.com.
32. http://www.emergingmit.com.
33. http://www.reprocover.com.
34. http://www.compocycle.com.
35. http://en.procotex.com.
36. http://www.refiber.com.
37. http://extreme-ecosolutions.com.
38. http://698.jp/cfri.
39. http://www.ecopolycrete.com.
40. http://www.hambleside-danelaw.co.uk.
41. http://www.karborekrcf.it.
42. Ustanovka dlja piroliza othodov kompozicionnyh materialov [Installation for pyrolysis of waste of composite materials]: pat. 2208203 Ros. Federacija; opubl. 10.07.2003.
Ultrasonic methods of non-destructive testing and technical diagnostics, which require application of contact liquids for creation of an acoustic contact between the converter of a test device and the product under control are described. Three groups of contact liquids are considered. The contact liquid MBG-1 based on aqueous solution of polyvinyl alcohol offered by VIAM was investigated. Results of pilot studies of methods to remove the contact liquid after the control procedure are given
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
3. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
4. Petrova A.P., Lukina N.F. Klei dlja mnogorazovoj kosmicheskoj sistemy [Glues for reusable space system] //Trudy VIAM. 2013. №4. St. 04 (viam-works.ru).
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Smith R.A., Nelson L.J. et al. Automation of control and estimation of parameters of defects in parts of the PCM //Insight. 2009. V. 51. №2. Р. 82–87.
8. Murashov V.V., Mishurov K.S. Ocenka prochnostnyh harakteristik ugleplastikov akusticheskim metodom [Assessment of strength characteristics ugleplastikov acoustic method] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 81–85.
9. Murashov V.V. Opredelenie fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov akusticheskimi metodami [Definition of physicomechanical characteristics and composition of polymeric composite materials acoustic methods] //Aviacionnye materialy i tehnologii. 2012. №S. S. 465–475.
10. Murashov V.V., Rumjancev A.F. Defektoskopija i diagnostika polimernyh kompozicionnyh materialov akusticheskimi metodami [Defektoskopiya and diagnostics of polymeric composite materials by acoustic methods] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 342–347.
11. Murashov V.V. K voprosu opredelenija uprugih i prochnostnyh svojstv polimernyh kompozicionnyh materialov akusticheskim kompleksnym metodom [To question of determination of elastic and strength properties of polymeric composite materials acoustic complex method] //Deformacija i razrushenie materialov. 2014. №11. S. 39–45.
12. Bobrov V.T., Rozlovenko S.G., Murashov V.V. Materials characterization //Testing. Diagnostics. 2010. №2. P. 42–44.
13. Murashov V.V., Kosarina E.I., Generalov A.S. Kontrol' kachestva aviacionnyh detalej iz polimernyh kompozicionnyh materialov i mnogoslojnyh kleenyh konstrukcij [Quality control of aviation details from polymeric composite materials and multi-layer kleeny designs] //Aviacionnye materialy i tehnologii. 2013. №3. S. 65–70.
14. Murashov V.V. Kontrol' mnogoslojnyh kleenyh konstrukcij akustiko-teplovym metodom [Control of multi-layer kleeny designs by akustiko-thermal method] //Klei. Germetiki. Tehnologii. 2014. №9. S. 36–40.
15. Murashov V.V. Nerazrushajushhij kontrol' kleevyh soedinenij [Non-destructive testing of glued joints] //Klei. Germetiki. Tehnolo-gii. 2008. №7. S. 21–28.
16. Murashov V.V. Opredelenie sostava i plotnosti konstrukcionnyh ugleplastikov lazerno-akusticheskim sposobom ul'trazvukovogo kontrolja [Definition of structure and density constructional ugleplastikov in the laser and acoustic way of ultrasonic control] //Materialovedenie. 2014. №11. S. 24–29.
17. Nagem R.J., Seng J.M., Williams J.H. Residual life predictions of composite aircraft structures via nondestructive testing. Part 1: Prediction methodology and via nondestructive //Materials Evalua-tion. 2000. V. 58. №9. Р. 1065–1074.
18. Murashov V.V., Rumjancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detaljah i konstrukcijah [Diagnostics of structure and properties of polymeric composites in details and designs] //Kontrol'. Diagnostika. 2008. №8. S. 13–17.
19. Murashov V.V., Aleksashin V.M. Kontrol' prochnosti zony soedinenija jelementov integral'nyh konstrukcij iz polimernyh kompozitov ul'trazvukovym metodom [Control of durability of zone of connection of elements of integral designs from polymeric composites ultrasonic method] //Klei. Germetiki. Tehnologii. 2014. №7. S. 15–19.
20. Murashov V.V. Vyjavlenie zon otsutstvija adgezionnogo soedinenija sloev v mnogoslojnyh konstrukcijah [Identification of zones of lack of adhesive connection of layers in multi-layer designs] //Klei. Germetiki. Tehnologii. 2013. №3. S. 29–31.
21. Murashov V.V. Akusticheskie metody i sredstva kontrolja izdelij iz polimernyh materialov [Acoustic methods and control facilities of products from polymeric materials] //Defektoskopija. 1990. №9. S. 46–52.
22. Murashov V.V., Generalov A.S. Kontrol' mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multi-layer kleeny designs by low-frequency acoustic methods] //Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67.
23. Bakunov A.S., Murashov V.V., Sysoev A.M. Kontrol' lopastej vozdushnogo vinta sredstvami nizkochastotnoj akustiki [Control of blades of air screw by means of low-frequency acoustics] //Kontrol'. Diagnostika. 2012. №6. S. 72–74.
24. Semerenko A.V. Ul'trazvukovoj kontrol' izdelij iz kompozicionnyh materialov, primenjajushhihsja v aviacionnoj otrasli promyshlennosti [Ultrasonic control of products from the composite materials which are applying in aviation industry] //Territorija NDT. 2014. №4. S. 57–61.
25. Murashov V.V., Rumjancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyjavlenija. Chast' 2. Metody vyjavlenija defektov monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 2. Methods of detection of defects of monolithic details and multi-layer designs from polymeric composite materials] //Kontrol'. Diagnostika. 2007. №5. S. 31–36, 41–42.
26. Rose J. Achievements and prospects of development of the ultrasonic waveguide method of control //Materials Evaluation. 2010. V. 68. №5. P. 494–500.
27. Murashov V.V. Nerazrushajushhij kontrol' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlja mnogorazovogo kosmicheskogo korablja «Buran» [Non-destructive testing of preparations and details from carbon - carbon composite material for the reusable Snow-storm spacecraft] //Trudy VIAM. 2013. №4. St. 05 (viam-works.ru).
28. Murashov V.V. Kontrol' mnogoslojnyh kleenyh konstrukcij iz polimernyh kompozicionnyh materialov [Control of multi-layer kleeny designs from polymeric composite materials] //Klei. Germetiki. Tehnologii. 2011. №10. S. 16–23.
29. Murashov V.V., Mishurov K.S. Opredelenie poristosti ugleplastikov v aviacionnyh konstrukcijah ul'trazvukovym metodom [Determination of porosity ugleplastikov in aviation designs ultrasonic method] //Aviacionnye materialy i tehnologii. 2015. №2. S. 88–92.
30. Nerazrushajushhij kontrol': Spravochnik: V 8 t. [Non-destructive testing] /Pod obshh. red. V.V. Kljueva. T. 3. I.N. Ermo-lov, Ju.V. Lange. Ul'trazvukovoj kontrol'. 2-e izd., ispr. M.: Mashinostroenie. 2006. 864 s.
31. Zeighami M., Hohorvar F. Control of glue joints by immersion method of reflection //Materials Evaluation. 2009. №8. P. 945–954.
32. Murashov V.V., Rumjancev A.F. Opredelenie prochnosti soedinenija detalej integral'nyh konstrukcij iz polimernyh kompozicionnyh materialov ul'trazvukovym metodom [Determination of durability of connection of details of integral designs from polymeric composite materials ultrasonic method] //Kontrol'. Diagnostika. 2006. №4. S. 45–51.
33. Murashov V.V., Rumjancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] //Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
34. Karabutov A.A., Murashov V.V., Oraevsky A.A., Podymova N.B. Nondestructive characterization of layered composite materials with a laser optoacoustic sensor /In: Nondestructive Evaluation of Materials and Composites II. San Antonio: Published by SPIE – The International Society for Optical Engineering. 1998. V. 3396. P. 103–111.
35. Sposob opredelenija fiziko-mehanicheskih harakteristik polimernyh kompozicionnyh materialov i ustrojstvo dlja ego osushhestvlenija [Way of definition of physicomechanical characteristics of polymeric composite materials and the device for its implementation]: pat. 2214590 Ros. Federacija; opubl. 20.10.2003. Bjul. №29.
36. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods //Ultrasound. Kaunas: Tecnologija. 2006. №2. Р. 7–10.
37. Sposob opredelenija prochnostnyh harakteristik polimernyh kompozicionnyh materialov [Way of definition of strength characteristics of polymeric composite materials]: pat. 2461820 Ros. Federacija; opubl. 20.09.2012. Bjul. №26.
38. Sposob opredelenija stepeni polimerizacii kompozicionnyh materialov [Way of definition of polymerization degree of composite materials]: pat. 2274856 Ros. Federacija; opubl. 20.04.2006. Bjul. №11.
39. Sposob opredelenija prochnosti soedinenija detalej integral'nyh konstrukcij iz polimernyh kompozicionnyh materialov [Way of determination of durability of connection of details of integral designs from polymeric composite materials]: pat. 2262099 Ros. Federacija; opubl. 10.10.2005. Bjul. №28.
40. Sposob opredelenija fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov v konstrukcijah ul'trazvukovym metodom [Way of definition of physicomechanical characteristics and composition of polymeric composite materials in designs ultrasonic method]: pat. 2196982. Ros. Federacija; opubl. 20.01.2003. Bjul. №2.
41. Kontaktnaja zhidkost' dlja ul'trazvukovogo kontrolja [Contact liquid for ultrasonic control]: a.s. 534684 SSSR; opubl. 05.11.1976. Bjul. №41.
42. Murashov V.V., Batizat V.P., Guljaeva V.V. Kontaktnaja zhidkost' dlja ul'trazvukovogo kontrolja [Contact liquid for ultrasonic control] //Defektoskopija. 1978. №5. S. 99–100.
Methods of spectral analysis are widely used at production of Ni-based superalloys to determine the chemical composition of the melt. Certified reference samples of material composition (CRMs) are used for plotting of calibration curves to make quantitative spectral analysis. Uncertainty of the certified values of CRMs affects significantly on the accuracy of quantitative analysis. The uncertainty of the inhomogeneity of the CRM composition is one of the components of the total uncertainty of the CRM certified value. In this work, a study of inhomogeneity of wrought Ni-based superalloy VZH175-ID was carried out with the use of X-ray fluorescence spectroscope S8 Tiger and measurement conditions were selected. The standard uncertainty of the heterogeneity was estimated. It was shown that the obtained level of the standard uncertainty of heterogeneity allows the usage of CRM material for development and production of state standard reference samples (SCRM) of the approved type.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehno-logii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Features of smelting technology and razlivka of modern cast high-heat resisting nickel alloys] //Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 68–78.
4. Kablov E.N., Sidorov V.V., Kablov D.E. i dr. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies of receiving bar preparations from foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
5. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] /Pod. obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 181–196.
6. Sposob lit'ja diskovyh i kol'cevyh zagotovok iz zharoprochnyh trudnodeformiruemyh splavov na nikelevoj osnove [Way of molding of disk and ring preparations from heat resisting trudnodeformiruyemy nickel-based alloys]: pat. 2422244 Ros. Federacija; opubl. 28.10.2009.
7. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] //Kryl'ja Rodiny. 2010. №4. S. 31–33.
8. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. C. 36–51.
9. Jerhardt H. Rentgenofluorescentnyj analiz. Primenenie v zavodskih laboratorijah [Rentgenofluorestsentny analysis. Application in factory laboratories]. M.: Metallurgija, 1985. 256 s.
10. Juing G.V. Instrumental'nye metody himicheskogo analiza [Tool methods of chemical analysis]. M.: Mir. 1989. 608 s.
11. Afonin V.P., Komjak N.I., Nikolaev V.I., Plotnikov R.I. Rentgenofluorescentnyj analiz [Rentgenofluorestsentny analysis]. Novosibirsk: Nauka. 1991. 173 s.
12. Oreshnikova E.G. Spektral'nyj analiz [Spectrum analysis]. M.: Vysshaja shkola, 1982. 375 s.
13. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaja N.P. Attestacija standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem jetalona [Certification of standard samples of structure of complex-alloyed alloys using standard] //Aviacionnye materialy i tehnologii. 2012. №2. C. 9–11.
14. Letov A.F., Karachevcev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznachenija [Development of standard samples of structure of alloys of aviation assignment] //Aviacionnye materialy i tehnologii. 2012. №S. C. 393–398.
15. GOST 8.315. Standartnye obrazcy sostava i svojstv veshhestv i materialov. Osnovnye polozhenija [Standard samples of structure and properties of substances and materials. Basic provisions].
16. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k prove-deniju jekspertizy materialov [Methodical approach to carrying out examination of materials] //Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
17. Federal'nyj zakon ot 26 ijulja 2008 g. №102-FZ «Ob obespechenii edinstva izmerenij». St. 12 «Utverzhdenie tipa standartnyh obrazcov ili tipa sredstv izmerenij» [The federal law from July 26, 2008 of No. 102-FZ «About ensuring unity of measurements». Art. 12 «The statement like standard samples or type of measuring instruments»].
18. GOST 8.531–2002 Standartnye obrazcy sostava monolitnyh i dispersnyh materialov. Sposoby ocenivanija odnorodnosti [Standard samples of structure of monolithic and disperse materials. Ways of estimation of uniformity].
19. R 50.2.058–2007 Ocenivanie neopredelennosti attestovannyh znachenij standartnyh obrazcov [Estimation of uncertainty of the certified values of standard samples].
20. Smagunova A.N., Kozlov V.A. Primery primenenija matematicheskoj teorii jeksperimenta v rentgenofluorescentnom analize [Examples of application of the mathematical theory of experiment in the rentgenofluorestsentny analysis]. Irkutsk: IGU. 1990. 232 s.
In the course of operation, materials of aircraft gas turbine engine components are subjected to very different static and dynamic loads over a wide range of operating temperature and durability. Therefore, for strength calculations of basic engine parts and verification of their resource it is necessary to have a large nomenclature of the strength characteristics of metals under static and cyclic loading. This paper presents a statistical overview of tensile strength of titanium alloy VT41 obtained on Zwick/Roell machines.
2. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
3. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №1S. S. 3–9.
4. Kablov E.N. Ways for improving the heat resistance of nickel alloys //Metallurg. 2000. №4. S. 26–28.
5. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tehnologii, pokrytija [Cast blades of gas turbine engines. Alloys, technologies, coverings]. 2-e izd. /Pod obshh. red. E.N. Kablova. M.: Nauka. 2006. 632 s.
6. Kablov E.N. Materialy i tehnologii VIAM v konstrukcijah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel'» [Materials and VIAM technologies in designs of perspective engines of development of JSC Aviadvigatel] //IB «Permskie aviacionnye dvigateli». 2014. №31. S. 43–47.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravlenija razvitija konstrukcionnyh materialov i tehnologij ih pererabotki dlja aviacionnyh dvigatelej nastojashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] //Avtomaticheskaja svarka. 2013. №10. S. 23–32.
8. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran»] /Pod obshh. red. E.N. Kablova M.: Fond «Nauka i zhizn'». 2013. 128 s.
9. Kablov E.N., Tolorajja V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii lit'ja monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTD and GTU] //Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
10. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.