Articles
Fine-dispersed metal powders of the heat resisting alloy brand EP648-VI for laser metal deposition (LMD), obtained by method of atomization at a facility HERMIGA 10/100 VI are investigated. It is shown, that the obtained fine-dispersed powders when spraying by cold and hot gas have low oxygen content, the spherical form, the expressed dendritic structure in all range of the granulometric distribution. Adaptive laser metal deposition with application metal powder of the heat resisting alloy EP648-VI of the granulometric distribution 40–80 microns on working off technology of recovery of geometry extreme combs on the bandage shelf of working blades of the second step guarantees high quality of welding material (availability of defects of typemicrocracks, lack of penetrations is not revealed).
2. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlja lopatok gazovyh turbin (prodolzhenie) [Measurements in high-temperature nickel alloys for gas turbine blades (continued)] //Materialovedenie. 2000. №3. S. 38–43.
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat-resistant nickel alloys for turbine engine parts] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jele-menty – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
5. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–51.
6. Nerush S.V., Evgenov A.G. Proizvodstvo poroshkov pripoev i gotovyh polufabrikatov na ih osnove, a takzhe poroshkov zharoprochnyh splavov i stalej dlja additivnyh tehnologij [Manufacture of solder powder and semi-finished on their basis, as well as powders heat-resistant alloys and steels for additive technologies] /V sb. dokl. nauch.-tehnich. kongressa po dvigatelestroeniju (NTKD-2012). 2012. S. 344–347.
7. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
8. Lykov P.A., Safonov E.V., Bromer K.A., Shul'c A.O. Poluchenie metallicheskih mikroporoshkov gazodinamicheskim raspyleniem [Preparation of metal spray micropowders gasdynamic] //Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Ser. «Mashi-nostroenie». 2012. Vyp. 33. S. 107–112.
9. Evgenov A.G., Nerush S.V. Tehnologija poluchenija poroshkov i polufabrikatov pripoev, issledovanie melkodispersnyh poroshkov pripoev dlja diffuzionnoj vakuumnoj pajki, poluchennyh metodom atomizacii rasplava [Technology for producing powders and semi solders study of fine powders of alloys, diffusion vacuum brazing, obtained by atomization of the melt] /V sb. materialov V Vserossijskoj nauchno-tehnicheskoj konferencii molodyh specialistov. Ufa: UMPO. 2011. S. 159–162.
10. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Gorjunov A.V. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies for bar stock of casting superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97−105.
11. Lykov P.A., Bromer K.A., Roshhin V.E., Bryndin S.A. Opredelenie tehnologicheskih parametrov poluchenija metallicheskih ul'tradispersnyh poroshkov [Determination of process parameters for producing a metallic ultrafine powders] //Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Ser. «Metallurgija». 2011. Vyp. 14. S. 17–19.
12. Kablov E.N., Evgenov A.G., Ryl'nikov V.S., Afanas'ev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev dlja diffuzionnoj vakuumnoj pajki, poluchennyh metodom atomizacii rasplava [Investigation of fine powders of alloys, diffusion vacuum brazing, obtained by atomization of the melt] //Vestnik MGTU im. N.Je. Baumana. 2011. Spec. vyp. «Perspektivnye konstrukcionnye materialy i tehnologii». S. 79–87.
13. Ospennikova O.G., Evgenov A.G., Nerush S.V., Afanas'ev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev na nikelevoj osnove primenitel'no k polucheniju vysokotehnologichnogo polufabrikata v vide samoklejashhejsja lenty na organicheskom svjazujushhem [Investigation of fine solder powder nickel-based high-tech applied to obtain a semi-self-adhesive tape on the organic binder] //Vestnik UGATU. 2012. №5 (50). S. 137–144.
14. Ospennikova O.G. Strategija razvitija zharoprochnyh splavov i stalej special'nogo naznachenija, zashhitnyh i tehnologicheskih pokrytij [The development strategy of superalloys and special steel, protective coatings and technological] //Aviacionnye materialy i tehnologii. 2012. №S. S. 19–35.
15. Lykov P.A., Roshhin V.E., Vorob'ev E.I. Vlijanie tehnologicheskih parametrov raspylenija metallicheskih rasplavov na granulometricheskij sostav poroshka i formu chastic poroshka [Effect of process parameters on the melt spraying of metal powder particle size distribution and shape of the powder particles] //Izvestija vuzov. Ser. «Chernaja metallurgija». 2012. №6. S. 21–23.
16. Bersenev A.G., Logunov A.V., Logacheva A.I. Problemy povyshenija kachestva zharoprochnyh splavov, poluchaemyh metodom metallurgii granul [Problems of improving the quality of high-temperature alloys, obtained by granule metallurgy] //Vestnik MAI. 2008. T. 15. №3. S. 83–89.
17. Safronov V.P., Rytov N.N., Jeskin G.I., Solujanov Ju.F. Sovershenstvovanie tehnologii gazostrujnogo raspylenija rasplava [Improving technology gas-jet spray melt] /V sb. statej «Metallurgija granul». Vyp. 1. M.: VILS. 1983. S. 59–63.
18. Anuchin P.S., Shherbakov A.I., Kalicev V.A. i dr. Osobennosti proizvodstva zharoprochnyh poroshkovyh pripoev [Features production of heat-resistant powder solders] /V sb. statej «Metallurgija granul». Vyp. 1. M.: VILS. 1983. S. 154–159.
19. Anoshkin N.F., Hodkin V.I., Rytov N.N. Razrabotka i vnedrenie tehnologii proizvodstva granul vysokotemperaturnyh pripoev metodom strujnogo raspylenija dlja pajki detalej iz nikelevyh splavov [Development and implementation of high-temperature solder pellet production by spray jet soldering parts of nickel alloys] /V sb. statej «Metallurgija granul». Vyp. 1. M.: VILS. 1983. S. 127–134.
The effect of phosphorus impurity on structure transformation and stress rupture properties of VGM4-VI and VGM5-VI single crystal alloys was investigated. It was es-tablished that a phosphorus at increased content (above 0,01%) reduces the stress rup-ture properties. Using the scanning electron microscope method it was established that a phosphorus at increased content (above 0,01%) increases a quantity of microcracks near rupture place, favours more intensive proceeding the process of hardenable γ'-phase coagulation, enriches the areas near eutectic γ'-phase and favours melt of the structure components at heat treamtent. For neutralization of harmful phosphorus influence in alloys the rear earth metal – lanthanum application is effective.
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–51.
3. Kablov D.E., Sidorov V.V., Min P.G. Vlijanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka jeffektivnyh sposobov ego rafinirovanija [Influence of nitrogen impurities on the structure of single-crystal superal-loy nickel alloy ZHS30-VI and develop effective ways of refining its] //Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
4. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Technology features modern smelting and casting casting nickel-base superalloys] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. Spec. vyp. «Perspektivnye konstrukcionnye materialy i tehnologii». S. 68–78.
5. Sidorov V.V., Rigin V.E., Gorjunov A.V., Kablov D.E. Vysokojeffektivnye tehnologii i sovremennoe oborudovanie dlja proizvodstva shihtovyh zagotovok iz litejnyh zharo-prochnyh splavov [Enabling technologies and modern equipment for production of charge billets casting superalloys] //Metallurg. 2012. №5. S. 26–30.
6. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vlijanija azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [In-vestigation of the influence of nitrogen on the structure and properties of single crystals of cast superalloy ZHS30-VI] //MiTOM. 2013. №8. S. 3–7.
7. Kablov D.E., Beljaev M.S., Sidorov V.V., Komarova T.I. Issledovanie vlijanija primesi azota na malociklovuju ustalost' monokristallov zharoprochnogo nikelevogo splava ZhS30-VI [Investigation of the influence of nitrogen impurity on the low-cycle fatigue of single crystals heat-resistant nickel alloy ZHS30-VI] //MiTOM. 2012. №7. S. 46–47.
8. Yaoxiao Zhu, John Radavich et al. The development and Long-Time Structual Stadility of a Low Segregation Hf Free Supperalloy – DZ 125 /In: Superalloys-2000. 2000. P. 329–339.
9. Chao Yuan, Fengshi Yin et al. Effect of Phosphorus on Microstructore and High Temperature Properties of a Cast Ni-base Supperalloy //J. Mater. Sci. Technol. 2002. V. 18. №6. P. 555–557.
10. Zhuanggi H.V., Hongwei Song et al. Effect of Phosphorus on Microstructore and Creep Property of IN718b Superalloy //J. Mater. Sci. Technol. 2005. V. 21. P. 73–76.
11. Kablov E.N., Petrushin N.V., Morozova G.I., Svetlov I.L. Fiziko-himicheskie faktory zharoprochnosti nikelevyh splavov, soderzhashhih renij [Physico-chemical factors of heat resisting nickel alloys containing rhenium] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Vysokorenievye zharoprochnye splavy, tehnologii i oborudovanie dlja proizvodstva splavov i lit'ja monokristallicheskih turbinnyh lopatok GTD». M.: VIAM. 2004. S. 37–47.
12. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy, legirovannye ruteniem [Nickel superalloys, ruthenium doped] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Vysokorenievye zharoprochnye splavy, tehnologii i oborudovanie dlja proizvodstva splavov i lit'ja monokristallicheskih turbinnyh lopatok GTD». M.: VIAM. 2004. S. 80–90.
13. Kablov E.N., Bondarenko Ju.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v uslovijah vysokogradientnoj napravlennoj kristallizacii [Structure and properties of single crystals of high-temperature <001> high-rhenium nickel superalloy prepared under the high-gradient directional crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
14. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of GTE blades with single crystal superalloys and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
15. Kablov E.N., Sidorov V.V. Mikrolegirovanie RZM – sovremennaja tehnologija povyshenija svojstv litejnyh zharoprochnyh nikelevyh splavov [Microalloying REM - modern technology enhancing properties of cast heat-resistant nickel alloys] //Perspektivnye materialy. 2001. №1. S. 23–24.
16. Sidorov V.V., Timofeeva O.B., Kalicev V.A., Gorjunov A.V. Vlijanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashhenija v intermetallidnom splave VKNA-25-VI [Effect of microalloying REM on properties and structural phase transi-tions in the intermetallic alloy VKNA-25-VI] //Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
17. Harris G.K., Wahl J.B. Development in supperalloy castability and new applications for advanced supperalloys //Materials Science and Technology. 2009. V. 25. №2. P. 147–153.
18. Gorjunov A.V., Sidorov V.V., Rigin V.E., Zajcev D.V. Formirovanie nanostrukturirovannogo sostojanija v litejnom zharoprochnom splave VZhM4-VI pri mikrolegirovanii ego lantanom [Formation of nanostructured state in casting superalloy VZHM4-VI in his microalloying lanthanum] //Aviacionnye materialy i tehnologii. 2013. №3. S. 39–43.
19. Sidorov V.V., Goryunov A.V., Kolmakova N.A. Effect of lanthanum on the high-temperature strength of single-crystals of highly refractory alloy VZhM4-VI containing rhenium and ruthenium //Metal science and heat treatment. 2012. V. 54. №3–4. R. 126–130.
20. Pang H.T., Edmonds I.M., Jones C.N., Stone H.J., Rae C.M. Effect of Y and La additions on the processing and properties of a second generation single crystal nickel-base supperalloy CMSX-4 /In: Supperalloys-2012: International symposium on supperalloys. 2012. P. 301–310.
21. Sidorov V.V., Rigin V.E., Zajcev D.E., Gorjunov A.V. Formirovanie nanostrukturirovannogo sostojanija v litejnom zharoprochnom splave pri mikrolegirovanii ego lantanom [Formation of nanostructured state in casting superalloy with microalloying its lanthanum] //Trudy VIAM. 2013. №1. St. 01 (viam-works.ru).
In present article is shown the influence of additives of Fe2O3, MgO, SiO2 on alumina formation in fibers, obtained from spinning solution by sol-gel process. Influence of doping oxides on the grain size α-Al2O3, size distribution, grain growth rate at increase of sintering temperature is considered.
2. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Prospective reinforcing fiber for high temperature ceramic compo-sites and metal materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
3. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al‒SiS [Metal matrix composites based on Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
4. Shhetanov B.V., Kupcov R.S., Svistunov V.I. Metody poluchenija monokristallicheskih volokon oksida aljuminija dlja sozdanija kompozicionnyh materialov i vysokotempera-turnoj volokonnoj optiki [Methods of producing single crystal alumina fibers to create a high-temperature composite materials and fiber optics] //Trudy VIAM. 2013. №4. St. 01 (viam-works.ru).
5. Balinova Ju.A. Nepreryvnye polikristallicheskie volokna oksida aljuminija dlja kompozicionnyh materialov [Continuous polycrystalline alumina fibers for composite materials]: Avtoref. dis. k.t.n. M.: VIAM. 2012. 20 s.
6. Milejko S.T. Kompozity i nanostruktury [Composites and Nanostructures] //Kompozity i nanostruktury. 2009. №1. S. 6–33.
7. Milejko S.T. Kompozity i nanostruktury. 7-ja Mezhdunarodnaja konferencija «Vysoko-temperaturnye kompozity s keramicheskoj matricej (NT-SMS7)» [Composites and nanostructures. 7th International Conference "High-ceramic matrix composites (HT-SMS7)"] //Kompozity i nanostruktury. 2010. №3. S. 5–19.
8. Krenkel W., Lamon J. Hight-Temperature Ceramic Materials and Composites /In: 7-th Internatiolal Conference on Ceramic Matrix Composites (HT-CMC 7). 2010. 938 p.
9. Novák P., Šotka D., Novák M., Michalcová A., Šerák J., Vojtěch D. Preparation of NiAl-Ceramics Composite by reactive Sintering /In: METAL-2010. Rožnov pod Radhoštěm. 2010. P. 231–236.
10. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline α-Al2O3 fibers] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
11. Shhetanov B.V., Shheglova T.M., Balinova Ju.A. Izgotovlenie, struktura i svojstva polikristallicheskih volokon oksida aljuminija [Manufacturing, Structure and properties of polycrystalline alumina fibers] /V sb. materialov 29-oj Mezhdunarodnoj konf. «Kompozicionnye materialy v tehnologii». Jalta. 2009. S. 148–150.
12. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high temperature oxide fibers for thermal barrier, thermal insulation and composite materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №4. S. 24–29.
13. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature and heat-insulating materials based on fibers of refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
14. Shkrabina R.A., Moroz Je.M., Levickij Je.A. Polimorfnye prevrashhenija okisej i gidrookisej aljuminija [Polymorphic transformations of aluminum oxides and hydroxides] //Kinetika i kataliz. 1981. T. XXII. №5. S. 1293–1299.
15. Shhetanov B.V. Mehanizm formirovanija struktury i razrabotka processov poluchenija polikristallicheskih volokon oksida aljuminija dlja teplozashhitnyh i teploizoljacionnyh materialov [The mechanism of formation of the structure and development of processes for the production of polycrystalline alumina fibers for thermal barrier and heat loizolyatsionnyh materials]: Avtoref. dis. d.t.n. M.: VIAM. 2000. 70 s.
16. Birchall J.D. The preparation and properties of polycrystalline aluminium oxide fibers //Trans. J. Br. Ceram. Soc. 1983. V. 82. P. 143–145.
17. Fei Zuo, Claud Carry, Sebastien Sounier, Sylvain Marinel, Dominique Goeuriot. Comparison of the Microwave and Conventional Sintering of Alumina: Effect of MgO Doping and Particle Size// Journal of the American Ceramic Society. 2013. V. 6. P. 1732–1737.
18. Lavaste V., Berger M.H., Bunsell A.R., Besson J. Microstructure and mechanical char-acteristics of alpha-alumina-based fibers //J. of Materials Science. 1995. V. 30. №17. P. 4215–4225.
19. Xue L.A., Chen I. Influence of additives on the γ-to-α transformation of alumina //J. of Materials Science Letters. 1992. V. 11. №8. S. 443–445.
20. Zhou R.-S., Snyder R.L. Structures and Transformation Mechanisms of the η-, γ- and ѳ-Transition Aluminas //J. Acta Cryst. 1991. V. 47. №5. P. 617–630.
21. Nakagawa Z., Aosaki T., Enomoto N. Crystallization Process of Amorphous Aluminas to α-Alumina //Materials Science and Engineering Serving Society. Amsterdam: Elsevier Science B. 1998. P. 52–55.
22. Naslain R., Wallenberger F.T. Ceramic oxide fibers from sol-gels and slurries /In: Ad-vanced Inorganic Fibers. Processing, Structures, Properties, Application. Boston. 2000. V. 6. P. 205–232.
23. Sumita S., Bowen H.K. Effects of foreign oxides on grain growth and densification of sintered Al2O3 //Ceramic Transactions. 1988. V. 21. P. 840–847.
24. Monceau D., Petot C., Petot-Ervas G., Fraser J.W., Fraser M.J., Graham M.J., Sproule G.L. Surface segregation and morphology of Mg-doped α-alumina //Journal of European Ceramic Society. 1997. V. 80. P. 2361–2366.
25. Kim M.J., Kim S.M., Yoon D.Y. Singular Grain Boundaries in Alumina Doped with Silica //J. Am. Ceram. Soc. 2004. V. 87. P. 507–509.
26. MacLaren R.M., Cannon M.A., Gülgün R., Voytovych N., Popescu-Porion C., Scheu U., Täffner M. Rühle Abnormal grain growth in alumina: Synergetic effects of Yttria and Silica //Journal of American Ceramic Society. 2007. V. 86(4). P. 650–659.
27. Gavrilov K.L., Bennison S.J., Mikeska K.R., Levi-Setti R. Role of magnesia and silica in alumina microstructure evolution //Journal of Materials Science. 2003. V. 38. P. 3965–3972.
28. Bagley R.D., Johnson D.L. Effect of magnesia on grain growth in alumina //Advanced Ceramic materials. 1984. №10. P. 666–678.
29. Radonjic L., Srdic V. Effiect of magnesia on the densification behavior and grain growth of nucleated gel alumina //Materials Chemistry and Physics. 1997. V. 47. P. 78–84.
30. Ikegami T., Iyi N., Sakaguchi I. Influence of magnesia on sintering stress of alumina //Ceramics International. 2010. V. 36. P. 1143–1146.
31. Dillon S.J., Harmer M.P., Rohrer G.S. Influence of interface energies on solute parti-tioning mechanisms in doped aluminas //Acta Mat. 2010. V. 58. P. 5097–5108.
32. Louet N., Reveron H., Fantozzi G. Sintering behaviour and microstructural evolution of ultrapure α-alumina containing low amounts of SiO2 //Journal of European Ceramic Society. 2008. V. 28. P. 205–215.
Contains information about the composition, properties, purpose, effectiveness glass-enamel coating for protection of cast parts hot tract of gas turbine engines of iron-nickel alloys, from high-temperature gas corrosion. The coating retains its high temperature resistance, head-resistance, durability of cou-pling in the process of multistage heat treatment: hardening at temperature 1120°C – 3 hours, aging at 750°C – 15 hours, and during operation at temperature of 700 to 900°C, which reduces the oxidation of alloys in 25–30 times.
2. Ospennikova O.G. Strategija razvitija zharoprochnyh splavov i stalej special'nogo naznachenija, zashhitnyh i teplozashhitnyh pokrytij [The development strategy of superalloys and special steel, protective and thermal barrier coatings] //Aviacionnye mate-rialy i tehnologii. 2012. №S. S. 19–36.
3. Solncev S.S. Vysokotemperaturnye steklokeramicheskie materialy i pokrytija – perspektivnoe napravlenie aviacionnogo materialovedenija [High-temperature glass-ceramic materials and coatings – a promising direction aviation materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2009. №1. S. 26–37.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composites] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S 20–24.
5. Vaganova M.L., Shhegoleva N.E., Grashhenkov D.V. Perspektivy razvitija vysokotemperaturnyh keramicheskih kompozicionnyh materialov [Prospects for the development of high-temperature ceramic composites] //Vse materialy. Jenciklopedicheskij spravochnik. 2013. №5. S. 8–14.
6. Solncev S.S., Isaeva N.V., Shvagireva V.V., Maksimov V.I. Vysokotemperaturnye pokrytija dlja zashhity splavov i uglerodkeramicheskih kompozicionnyh materialov ot okislenija [High-temperature protective coatings for alloys and carbon-ceramic composite materials from oxidation] //Konversija v mashinostroenii. 2004. №4. S. 77–81.
7. Solncev S.S., Isaeva N.V., Shvagireva V.V., Solov'eva G.A. Zharostojkie jemalevye pokrytija dlja zashhity korrozionnostojkih stalej i zharoprochnyh splavov ot vozdejstvija agressivnyh sred [Heat-resistant enamel coatings for corrosion protection of steel and heat resisting alloys from corrosion] //Aviacionnye materialy i tehnologii. 2008. №1. S. 29–31.
8. Solncev S.S., Isaeva N.V., Shvagireva V.V., Solov'eva G.A. Vysokotemperaturnye zharostojkie jemalevye pokrytija dlja zashhity ot korrozionnogo vozdejstvija produktov sgoranija topliva teplonagruzhennyh jelementov iz korrozionnostojkih stalej i zharoprochnyh splavov [High-temperature heat-resistant enamel coatings for protection against corrosion effects of the combustion products of thermally loaded components of corrosion resistant steels and superalloys] //Aviacionnye materialy i tehnologii. 2008. №4. S. 16–18.
9. Kablov E.N., Mubojadzhan S.A. Zharostojkie teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat-resistant heat-protective coatings for high-pressure turbine blades looking GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
10. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Preparation of ceramic thermal barrier coatings for turbine blades of aircraft GTE magnetron sputtering] //Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
11. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Technology features modern smelting and casting casting nickel-base superalloys] //Vestnik MGTU im. N.Je. Baumana. Ser. Mashinostroenie. 2011. №SP2. S. 68–78.
12. Solncev S.S., Shvagireva V.V., Isaeva N.V., Solov'eva G.A. Armirovannye zharostojkie steklojemali dlja kamer sgoranija gazoturbinnyh dvigatelej [Reinforced heat resistant vitreous for combustors of gas turbine engines] //Aviacionnye materialy i tehnologii. 2010. №1. S. 26–29.
13. Solncev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Keramicheskie pokrytija dlja zashhity vysokoprochnoj stali pri termicheskoj obrabotke [The ceramic coating to protect the high-strength steel during heat treatment] //Aviacionnye materialy i tehnologii. 2011. №4. S. 3–8.
14. Solncev S.S. Zashhitnye tehnologicheskie pokrytija i tugoplavkie jemali [Protective technological coatings and refractory enamel]. M.: Mashinostroenie. 1984. 255 s.
15. Himicheskaja tehnologija stekla i sitallov [Chemical technology of glass and ceramics] /Pod red. N.M. Pavlushkina. M.: Strojizdat. 1983. 432 s.
16. Appen A.A. Temperaturoustojchivye neorganicheskie pokrytija [Thermally stable in-organic coatings]. M.-L.: Himija. 1976. 107 s.
17. Solncev S.S., Rozenenkova V.A., Isaeva N.V. Razrabotka i primenenie v aviakosmicheskoj tehnike steklokeramicheskih pokrytij i materialov [Development and application in aerospace engineering glass-ceramic coatings and materials] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM. 2007. S. 99–107.
Even more often in space and civil industries when manufacturing products from polymer composites materials use braided preforms. Such materials are characterized by considerable resistance to stratifying and blow, high fatigue rates. Use braided preforms allows to provide possibility of automation of production, to provide the high speed and profitability of process of manufacturing of polymer composites materials. The knowledge of their properties at design of samples of equipment allows to optimize release of products with necessary parameters.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern technologies of polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
4. Roberts G.D., Pereira J.M., Revilock D.M., Binienda W.K., Xie Ming, Braley M. Ballistic Impact of Braided Composites With a Soft Projectile //J. Aerospace Eng. 2005. V. 18. №1. R. 3–7.
5. Kablov E.N., Starcev O.V., Deev I.S., Nikishin E.F. Svojstva polimernyh kompozicionnyh materialov posle vozdejstvija otkrytogo kosmosa na okolozemnyh orbitah [Properties of polymeric composite materials after exposure to open space in earth orbit] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №10. S. 2–3.
6. Doneckij K.I., Hrul'kov A.V., Kogan D.I., Belinis P.G., Luk'janenko Ju.V. Primenenie ob`emno-armirujushhih preform pri izgotovlenii izdelij iz PKM [Application of space-reinforcing preforms during the production of PCM] //Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
7. McClain M., Goering J. Overview of Recent Developments in 3D Structures //ICCM 17, 3D Textiles & Composites. Edinburgh. 2009.
8. Geoff Wood. Quasi-isotropic braid reduces cost in large composite tooling //JEC com-posites magazine. 2009. V. 53. №11–12. P. 46–47.
9. Doneckij K.I., Kogan D.I., Hrul'kov A.V. Ispol'zovanie tehnologij pletenija pri proizvodstve jelementov konstrukcij iz PKM [The use of technology in the production of weaving elements of designs from RMB] //Trudy VIAM. 2013. №10. St. 04 (viam-works.ru).
10. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Features manufacture of RMB by pressure impregnation] //Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
11. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for advanced manufacturing techniques of structural fi-brous RMB] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
12. Kompozitnaja lopatka ventiljatora s mnogoslojnym armirujushhim materialom [Composite fan blade with multilayer reinforcing material]: pat. 2384749 Ros. Federacija. opubl. 20.03.2010. Bjul. №8.
13. Lavris E.V. Sovershenstvovanie pletel'nogo oborudovanija dlja proizvodstva tekstil'nyh detalej slozhnyh form [Improving braiding equipment for production of textile complex parts] //Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudar-stvennogo agrarnogo universiteta. 2011. №70.
14. Internet resurs www.braider.com.
15. Kohlman L.W., Bail J.L., Roberts G.D., Salem J.A., Martin R.E., Binienda W.K. A notched coupon approach for tensile testing of braided composites /In: NASA Publications. 2012. №65. P. 1–9.
16. Robert G.D., Goldberg R.K., Binienda W.K., Arnol W.A., Littell J.D., Kohlman L.W. 65-th Annual Forum and Technology Display sponsored by the American Helicopter Society. Grapevine. 2009. P. 1–41.
17. Erber A., Birkefeld K., Drechsler K. The influence of braiding configuration on damage tolerance of drive shafts /In: SAMPE EUROPE 30-th international Jubilee Conference and Forum Paris 2010. P. 364–371.
The article provides information about heat-resistant adhesives, which has been de-veloped by FGUP VIAM, on the basis on element organic, phenolic and сarboran-containing oligomers. These adhesives are designed for working in conjunctions in temperatures up to 1200°C. The article covers basic characteristics of the heat-resistant adhesives, which are produced at the present time, for usage in aviation and space technologies.
2. Demonis I.M. Petrova A.P. Materialy VIAM v kosmicheskoj tehnike [VIAM materials in space technology] //Vse materialy. Jenciklopedicheskij spravochnik. 2011. №6. S. 2–9.
3. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po klejam i germetikam (WAC-2012, Francija) [Browse by materials of the international confer-ence on adhesives and sealants (WAC-2012, France)] //Trudy VIAM. 2013. №8. St. 06 (viam-works.ru).
4. Petrova A.P., Lukina N.F. Primenenie kleev i germetikov v izdelii «Buran» [Application of adhesives and sealants in the article "Buran"] //Klei. Germetiki. Tehnologii. 2009. №1. S. 27–32.
5. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of methods of corrosion protection structures operating in space] //Trudy VIAM. 2013. №4. St. 02 (viam-works.ru).
6. Petrova A.P., Lukina N.F. Klei dlja mnogorazovoj kosmicheskoj sistemy [Adhesives for reusable space system] //Trudy VIAM. 2013. №4. St. 04 (viam-works.ru).
7. Savenkova A.V., Chursova L.V., Eliseev O.A., Glazov P.A. Germetiki aviacionnogo naznachenija [Sealants aviation applications] //Aviacionnye materialy i tehnologii. 2012. №3. S. 40–43.
8. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i teplostojkie klei [Structural and heat-resistant adhesives] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
9. Grashhenkov D.V., Chursova L.V. Strategija razvitija polimernyh kompozicionnyh i funkcional'nyh materialov [The development strategy of polymer composite and functional materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
10. Kleevaja kompozicija [The adhesive composition]: pat. 2471842 Ros. Federacija; opubl. 11.05.2011.
11. Petrova A.P., Lukina N.F., Dement'eva L.A., Tjumeneva T.Ju. i dr. Klei dlja aviacionnoj tehniki [Adhesives for aircraft] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 46–52.
12. Petrova A.P. Osnovnye jetapy tehnologii skleivanija [Main stages of bonding technology] //Klei. Germetiki. Tehnologii. 2014. (v pechati).
13. Shuklina O.V., Lukina N.F. Svojstva novogo teplostojkogo kleja VS-10T-U [Properties of a new heat-resistant adhesive Sun-10T-U] //Klei. Germetiki. Tehnologii. 2012. №5. S. 8–9.
14. Zastrogina O.B., Shvec N.I., Postnov V.I., Serkova E.A. Fenolformal'degidnye svjazujushhie dlja novogo pokolenija materialov inter'era [Phenol-formaldehyde binders for the new generation of interior materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.